import os from typing import Dict, List, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from torch.nn.attention import sdpa_kernel, SDPBackend from .context_parallel import all_to_all_collect_tokens, all_to_all_collect_heads, all_gather, get_cp_rank_size, is_cp_active from .layers import ( FeedForward, PatchEmbed, RMSNorm, TimestepEmbedder, ) from .mod_rmsnorm import modulated_rmsnorm from .residual_tanh_gated_rmsnorm import ( residual_tanh_gated_rmsnorm, ) from .rope_mixed import ( compute_mixed_rotation, create_position_matrix, ) from .temporal_rope import apply_rotary_emb_qk_real from .utils import ( AttentionPool, modulate, pad_and_split_xy, unify_streams, ) try: from flash_attn import flash_attn_varlen_qkvpacked_func FLASH_ATTN_IS_AVAILABLE = True except ImportError: FLASH_ATTN_IS_AVAILABLE = False try: from sageattention import sageattn SAGEATTN_IS_AVAILABLE = True except ImportError: SAGEATTN_IS_AVAILABLE = False COMPILE_FINAL_LAYER = False #os.environ.get("COMPILE_DIT") == "1" COMPILE_MMDIT_BLOCK = False #os.environ.get("COMPILE_DIT") == "1" backends = [] if torch.cuda.get_device_properties(0).major <= 7.5: backends.append(SDPBackend.MATH) if torch.cuda.get_device_properties(0).major >= 9.0: backends.append(SDPBackend.CUDNN_ATTENTION) else: backends.append(SDPBackend.EFFICIENT_ATTENTION) class AsymmetricAttention(nn.Module): def __init__( self, dim_x: int, dim_y: int, num_heads: int = 8, qkv_bias: bool = True, qk_norm: bool = False, attn_drop: float = 0.0, update_y: bool = True, out_bias: bool = True, attend_to_padding: bool = False, softmax_scale: Optional[float] = None, device: Optional[torch.device] = None, attention_mode: str = "sdpa", ): super().__init__() self.dim_x = dim_x self.dim_y = dim_y self.num_heads = num_heads self.head_dim = dim_x // num_heads self.attn_drop = attn_drop self.update_y = update_y self.attend_to_padding = attend_to_padding self.softmax_scale = softmax_scale self.attention_mode = attention_mode if dim_x % num_heads != 0: raise ValueError( f"dim_x={dim_x} should be divisible by num_heads={num_heads}" ) # Input layers. self.qkv_bias = qkv_bias self.qkv_x = nn.Linear(dim_x, 3 * dim_x, bias=qkv_bias, device=device) # Project text features to match visual features (dim_y -> dim_x) self.qkv_y = nn.Linear(dim_y, 3 * dim_x, bias=qkv_bias, device=device) # Query and key normalization for stability. assert qk_norm self.q_norm_x = RMSNorm(self.head_dim, device=device) self.k_norm_x = RMSNorm(self.head_dim, device=device) self.q_norm_y = RMSNorm(self.head_dim, device=device) self.k_norm_y = RMSNorm(self.head_dim, device=device) # Output layers. y features go back down from dim_x -> dim_y. self.proj_x = nn.Linear(dim_x, dim_x, bias=out_bias, device=device) self.proj_y = ( nn.Linear(dim_x, dim_y, bias=out_bias, device=device) if update_y else nn.Identity() ) def run_qkv_y(self, y): cp_rank, cp_size = get_cp_rank_size() local_heads = self.num_heads // cp_size if is_cp_active(): # Only predict local heads. assert not self.qkv_bias W_qkv_y = self.qkv_y.weight.view( 3, self.num_heads, self.head_dim, self.dim_y ) W_qkv_y = W_qkv_y.narrow(1, cp_rank * local_heads, local_heads) W_qkv_y = W_qkv_y.reshape(3 * local_heads * self.head_dim, self.dim_y) qkv_y = F.linear(y, W_qkv_y, None) # (B, L, 3 * local_h * head_dim) else: qkv_y = self.qkv_y(y) # (B, L, 3 * dim) qkv_y = qkv_y.view(qkv_y.size(0), qkv_y.size(1), 3, local_heads, self.head_dim) q_y, k_y, v_y = qkv_y.unbind(2) return q_y, k_y, v_y def prepare_qkv( self, x: torch.Tensor, # (B, N, dim_x) y: torch.Tensor, # (B, L, dim_y) *, scale_x: torch.Tensor, scale_y: torch.Tensor, rope_cos: torch.Tensor, rope_sin: torch.Tensor, valid_token_indices: torch.Tensor, ): # Pre-norm for visual features x = modulated_rmsnorm(x, scale_x) # (B, M, dim_x) where M = N / cp_group_size # Process visual features qkv_x = self.qkv_x(x) # (B, M, 3 * dim_x) assert qkv_x.dtype == torch.bfloat16 qkv_x = all_to_all_collect_tokens( qkv_x, self.num_heads ) # (3, B, N, local_h, head_dim) # Process text features y = modulated_rmsnorm(y, scale_y) # (B, L, dim_y) q_y, k_y, v_y = self.run_qkv_y(y) # (B, L, local_heads, head_dim) q_y = self.q_norm_y(q_y) k_y = self.k_norm_y(k_y) # Split qkv_x into q, k, v q_x, k_x, v_x = qkv_x.unbind(0) # (B, N, local_h, head_dim) q_x = self.q_norm_x(q_x) q_x = apply_rotary_emb_qk_real(q_x, rope_cos, rope_sin) k_x = self.k_norm_x(k_x) k_x = apply_rotary_emb_qk_real(k_x, rope_cos, rope_sin) # Unite streams qkv = unify_streams( q_x, k_x, v_x, q_y, k_y, v_y, valid_token_indices, ) return qkv def flash_attention(self, qkv, cu_seqlens, max_seqlen_in_batch, total, local_dim): with torch.autocast("cuda", enabled=False): out: torch.Tensor = flash_attn_varlen_qkvpacked_func( qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen_in_batch, dropout_p=0.0, softmax_scale=self.softmax_scale, ) # (total, local_heads, head_dim) return out.view(total, local_dim) def sdpa_attention(self, qkv): q, k, v = rearrange(qkv, '(b s) t h d -> t b h s d', b=1) with torch.autocast("cuda", enabled=False): with sdpa_kernel(backends): out = F.scaled_dot_product_attention( q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False ) return rearrange(out, 'b h s d -> s (b h d)') def sage_attention(self, qkv): q, k, v = rearrange(qkv, '(b s) t h d -> t b h s d', b=1) with torch.autocast("cuda", enabled=False): out = sageattn( q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False ) return rearrange(out, 'b h s d -> s (b h d)') def comfy_attention(self, qkv): from comfy.ldm.modules.attention import optimized_attention q, k, v = rearrange(qkv, '(b s) t h d -> t b h s d', b=1) with torch.autocast("cuda", enabled=False): out = optimized_attention( q, k, v, heads = self.num_heads, skip_reshape=True ) return out.squeeze(0) @torch.compiler.disable() def run_attention( self, qkv: torch.Tensor, # (total <= B * (N + L), 3, local_heads, head_dim) *, B: int, L: int, M: int, cu_seqlens: torch.Tensor, max_seqlen_in_batch: int, valid_token_indices: torch.Tensor, ): _, cp_size = get_cp_rank_size() N = cp_size * M assert self.num_heads % cp_size == 0 local_heads = self.num_heads // cp_size local_dim = local_heads * self.head_dim total = qkv.size(0) if self.attention_mode == "flash_attn": out = self.flash_attention(qkv, cu_seqlens, max_seqlen_in_batch, total, local_dim) elif self.attention_mode == "sdpa": out = self.sdpa_attention(qkv) elif self.attention_mode == "sage_attn": out = self.sage_attention(qkv) elif self.attention_mode == "comfy": out = self.comfy_attention(qkv) x, y = pad_and_split_xy(out, valid_token_indices, B, N, L, qkv.dtype) assert x.size() == (B, N, local_dim) assert y.size() == (B, L, local_dim) x = x.view(B, N, local_heads, self.head_dim) x = all_to_all_collect_heads(x) # (B, M, dim_x = num_heads * head_dim) x = self.proj_x(x) # (B, M, dim_x) if is_cp_active(): y = all_gather(y) # (cp_size * B, L, local_heads * head_dim) y = rearrange( y, "(G B) L D -> B L (G D)", G=cp_size, D=local_dim ) # (B, L, dim_x) y = self.proj_y(y) # (B, L, dim_y) return x, y def forward( self, x: torch.Tensor, # (B, N, dim_x) y: torch.Tensor, # (B, L, dim_y) *, scale_x: torch.Tensor, # (B, dim_x), modulation for pre-RMSNorm. scale_y: torch.Tensor, # (B, dim_y), modulation for pre-RMSNorm. packed_indices: Dict[str, torch.Tensor] = None, **rope_rotation, ) -> Tuple[torch.Tensor, torch.Tensor]: """Forward pass of asymmetric multi-modal attention. Args: x: (B, N, dim_x) tensor for visual tokens y: (B, L, dim_y) tensor of text token features packed_indices: Dict with keys for Flash Attention num_frames: Number of frames in the video. N = num_frames * num_spatial_tokens Returns: x: (B, N, dim_x) tensor of visual tokens after multi-modal attention y: (B, L, dim_y) tensor of text token features after multi-modal attention """ B, L, _ = y.shape _, M, _ = x.shape # Predict a packed QKV tensor from visual and text features. # Don't checkpoint the all_to_all. qkv = self.prepare_qkv( x=x, y=y, scale_x=scale_x, scale_y=scale_y, rope_cos=rope_rotation.get("rope_cos"), rope_sin=rope_rotation.get("rope_sin"), valid_token_indices=packed_indices["valid_token_indices_kv"], ) # (total <= B * (N + L), 3, local_heads, head_dim) x, y = self.run_attention( qkv, B=B, L=L, M=M, cu_seqlens=packed_indices["cu_seqlens_kv"], max_seqlen_in_batch=packed_indices["max_seqlen_in_batch_kv"], valid_token_indices=packed_indices["valid_token_indices_kv"], ) return x, y #@torch.compile(disable=not COMPILE_MMDIT_BLOCK) class AsymmetricJointBlock(nn.Module): def __init__( self, hidden_size_x: int, hidden_size_y: int, num_heads: int, *, mlp_ratio_x: float = 8.0, # Ratio of hidden size to d_model for MLP for visual tokens. mlp_ratio_y: float = 4.0, # Ratio of hidden size to d_model for MLP for text tokens. update_y: bool = True, # Whether to update text tokens in this block. device: Optional[torch.device] = None, attention_mode: str = "sdpa", **block_kwargs, ): super().__init__() self.update_y = update_y self.hidden_size_x = hidden_size_x self.hidden_size_y = hidden_size_y self.attention_mode = attention_mode self.mod_x = nn.Linear(hidden_size_x, 4 * hidden_size_x, device=device) if self.update_y: self.mod_y = nn.Linear(hidden_size_x, 4 * hidden_size_y, device=device) else: self.mod_y = nn.Linear(hidden_size_x, hidden_size_y, device=device) # Self-attention: self.attn = AsymmetricAttention( hidden_size_x, hidden_size_y, num_heads=num_heads, update_y=update_y, device=device, attention_mode=attention_mode, **block_kwargs, ) # MLP. mlp_hidden_dim_x = int(hidden_size_x * mlp_ratio_x) assert mlp_hidden_dim_x == int(1536 * 8) self.mlp_x = FeedForward( in_features=hidden_size_x, hidden_size=mlp_hidden_dim_x, multiple_of=256, ffn_dim_multiplier=None, device=device, ) # MLP for text not needed in last block. if self.update_y: mlp_hidden_dim_y = int(hidden_size_y * mlp_ratio_y) self.mlp_y = FeedForward( in_features=hidden_size_y, hidden_size=mlp_hidden_dim_y, multiple_of=256, ffn_dim_multiplier=None, device=device, ) def forward( self, x: torch.Tensor, c: torch.Tensor, y: torch.Tensor, **attn_kwargs, ): """Forward pass of a block. Args: x: (B, N, dim) tensor of visual tokens c: (B, dim) tensor of conditioned features y: (B, L, dim) tensor of text tokens num_frames: Number of frames in the video. N = num_frames * num_spatial_tokens Returns: x: (B, N, dim) tensor of visual tokens after block y: (B, L, dim) tensor of text tokens after block """ N = x.size(1) c = F.silu(c) mod_x = self.mod_x(c) scale_msa_x, gate_msa_x, scale_mlp_x, gate_mlp_x = mod_x.chunk(4, dim=1) mod_y = self.mod_y(c) if self.update_y: scale_msa_y, gate_msa_y, scale_mlp_y, gate_mlp_y = mod_y.chunk(4, dim=1) else: scale_msa_y = mod_y # Self-attention block. x_attn, y_attn = self.attn( x, y, scale_x=scale_msa_x, scale_y=scale_msa_y, **attn_kwargs, ) assert x_attn.size(1) == N x = residual_tanh_gated_rmsnorm(x, x_attn, gate_msa_x) if self.update_y: y = residual_tanh_gated_rmsnorm(y, y_attn, gate_msa_y) # MLP block. x = self.ff_block_x(x, scale_mlp_x, gate_mlp_x) if self.update_y: y = self.ff_block_y(y, scale_mlp_y, gate_mlp_y) return x, y def ff_block_x(self, x, scale_x, gate_x): x_mod = modulated_rmsnorm(x, scale_x) x_res = self.mlp_x(x_mod) x = residual_tanh_gated_rmsnorm(x, x_res, gate_x) # Sandwich norm return x def ff_block_y(self, y, scale_y, gate_y): y_mod = modulated_rmsnorm(y, scale_y) y_res = self.mlp_y(y_mod) y = residual_tanh_gated_rmsnorm(y, y_res, gate_y) # Sandwich norm return y #@torch.compile(disable=not COMPILE_FINAL_LAYER) class FinalLayer(nn.Module): """ The final layer of DiT. """ def __init__( self, hidden_size, patch_size, out_channels, device: Optional[torch.device] = None, ): super().__init__() self.norm_final = nn.LayerNorm( hidden_size, elementwise_affine=False, eps=1e-6, device=device ) self.mod = nn.Linear(hidden_size, 2 * hidden_size, device=device) self.linear = nn.Linear( hidden_size, patch_size * patch_size * out_channels, device=device ) def forward(self, x, c): c = F.silu(c) shift, scale = self.mod(c).chunk(2, dim=1) x = modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class AsymmDiTJoint(nn.Module): """ Diffusion model with a Transformer backbone. Ingests text embeddings instead of a label. """ def __init__( self, *, patch_size=2, in_channels=4, hidden_size_x=1152, hidden_size_y=1152, depth=48, num_heads=16, mlp_ratio_x=8.0, mlp_ratio_y=4.0, t5_feat_dim: int = 4096, t5_token_length: int = 256, patch_embed_bias: bool = True, timestep_mlp_bias: bool = True, timestep_scale: Optional[float] = None, use_extended_posenc: bool = False, rope_theta: float = 10000.0, device: Optional[torch.device] = None, attention_mode: str = "sdpa", **block_kwargs, ): super().__init__() self.in_channels = in_channels self.out_channels = in_channels self.patch_size = patch_size self.num_heads = num_heads self.hidden_size_x = hidden_size_x self.hidden_size_y = hidden_size_y self.head_dim = ( hidden_size_x // num_heads ) # Head dimension and count is determined by visual. self.use_extended_posenc = use_extended_posenc self.t5_token_length = t5_token_length self.t5_feat_dim = t5_feat_dim self.rope_theta = ( rope_theta # Scaling factor for frequency computation for temporal RoPE. ) self.x_embedder = PatchEmbed( patch_size=patch_size, in_chans=in_channels, embed_dim=hidden_size_x, bias=patch_embed_bias, device=device, ) # Conditionings # Timestep self.t_embedder = TimestepEmbedder( hidden_size_x, bias=timestep_mlp_bias, timestep_scale=timestep_scale ) # Caption Pooling (T5) self.t5_y_embedder = AttentionPool( t5_feat_dim, num_heads=8, output_dim=hidden_size_x, device=device ) # Dense Embedding Projection (T5) self.t5_yproj = nn.Linear( t5_feat_dim, hidden_size_y, bias=True, device=device ) # Initialize pos_frequencies as an empty parameter. self.pos_frequencies = nn.Parameter( torch.empty(3, self.num_heads, self.head_dim // 2, device=device) ) # for depth 48: # b = 0: AsymmetricJointBlock, update_y=True # b = 1: AsymmetricJointBlock, update_y=True # ... # b = 46: AsymmetricJointBlock, update_y=True # b = 47: AsymmetricJointBlock, update_y=False. No need to update text features. blocks = [] for b in range(depth): # Joint multi-modal block update_y = b < depth - 1 block = AsymmetricJointBlock( hidden_size_x, hidden_size_y, num_heads, mlp_ratio_x=mlp_ratio_x, mlp_ratio_y=mlp_ratio_y, update_y=update_y, device=device, attention_mode=attention_mode, **block_kwargs, ) blocks.append(block) self.blocks = nn.ModuleList(blocks) self.final_layer = FinalLayer( hidden_size_x, patch_size, self.out_channels, device=device ) def embed_x(self, x: torch.Tensor) -> torch.Tensor: """ Args: x: (B, C=12, T, H, W) tensor of visual tokens Returns: x: (B, C=3072, N) tensor of visual tokens with positional embedding. """ return self.x_embedder(x) # Convert BcTHW to BCN #@torch.compile(disable=not COMPILE_MMDIT_BLOCK) def prepare( self, x: torch.Tensor, sigma: torch.Tensor, t5_feat: torch.Tensor, t5_mask: torch.Tensor, ): """Prepare input and conditioning embeddings.""" #("X", x.shape) with torch.profiler.record_function("x_emb_pe"): # Visual patch embeddings with positional encoding. T, H, W = x.shape[-3:] pH, pW = H // self.patch_size, W // self.patch_size x = self.embed_x(x) # (B, N, D), where N = T * H * W / patch_size ** 2 assert x.ndim == 3 B = x.size(0) with torch.profiler.record_function("rope_cis"): # Construct position array of size [N, 3]. # pos[:, 0] is the frame index for each location, # pos[:, 1] is the row index for each location, and # pos[:, 2] is the column index for each location. pH, pW = H // self.patch_size, W // self.patch_size N = T * pH * pW assert x.size(1) == N pos = create_position_matrix( T, pH=pH, pW=pW, device=x.device, dtype=torch.float32 ) # (N, 3) rope_cos, rope_sin = compute_mixed_rotation( freqs=self.pos_frequencies, pos=pos ) # Each are (N, num_heads, dim // 2) with torch.profiler.record_function("t_emb"): # Global vector embedding for conditionings. c_t = self.t_embedder(1 - sigma) # (B, D) with torch.profiler.record_function("t5_pool"): # Pool T5 tokens using attention pooler # Note y_feat[1] contains T5 token features. # print("B", B) # print("t5 feat shape",t5_feat.shape) # print("t5 mask shape", t5_mask.shape) assert ( t5_feat.size(1) == self.t5_token_length ), f"Expected L={self.t5_token_length}, got {t5_feat.shape} for y_feat." t5_y_pool = self.t5_y_embedder(t5_feat, t5_mask) # (B, D) assert ( t5_y_pool.size(0) == B ), f"Expected B={B}, got {t5_y_pool.shape} for t5_y_pool." c = c_t + t5_y_pool y_feat = self.t5_yproj(t5_feat) # (B, L, t5_feat_dim) --> (B, L, D) return x, c, y_feat, rope_cos, rope_sin def forward( self, x: torch.Tensor, sigma: torch.Tensor, y_feat: List[torch.Tensor], y_mask: List[torch.Tensor], packed_indices: Dict[str, torch.Tensor] = None, rope_cos: torch.Tensor = None, rope_sin: torch.Tensor = None, ): """Forward pass of DiT. Args: x: (B, C, T, H, W) tensor of spatial inputs (images or latent representations of images) sigma: (B,) tensor of noise standard deviations y_feat: List((B, L, y_feat_dim) tensor of caption token features. For SDXL text encoders: L=77, y_feat_dim=2048) y_mask: List((B, L) boolean tensor indicating which tokens are not padding) packed_indices: Dict with keys for Flash Attention. Result of compute_packed_indices. """ B, _, T, H, W = x.shape # Use EFFICIENT_ATTENTION backend for T5 pooling, since we have a mask. # Have to call sdpa_kernel outside of a torch.compile region. with sdpa_kernel(backends): x, c, y_feat, rope_cos, rope_sin = self.prepare( x, sigma, y_feat[0], y_mask[0] ) del y_mask cp_rank, cp_size = get_cp_rank_size() N = x.size(1) M = N // cp_size assert ( N % cp_size == 0 ), f"Visual sequence length ({x.shape[1]}) must be divisible by cp_size ({cp_size})." if cp_size > 1: x = x.narrow(1, cp_rank * M, M) assert self.num_heads % cp_size == 0 local_heads = self.num_heads // cp_size rope_cos = rope_cos.narrow(1, cp_rank * local_heads, local_heads) rope_sin = rope_sin.narrow(1, cp_rank * local_heads, local_heads) for i, block in enumerate(self.blocks): x, y_feat = block( x, c, y_feat, rope_cos=rope_cos, rope_sin=rope_sin, packed_indices=packed_indices, ) # (B, M, D), (B, L, D) del y_feat # Final layers don't use dense text features. x = self.final_layer(x, c) # (B, M, patch_size ** 2 * out_channels) patch = x.size(2) x = all_gather(x) x = rearrange(x, "(G B) M P -> B (G M) P", G=cp_size, P=patch) x = rearrange( x, "B (T hp wp) (p1 p2 c) -> B c T (hp p1) (wp p2)", T=T, hp=H // self.patch_size, wp=W // self.patch_size, p1=self.patch_size, p2=self.patch_size, c=self.out_channels, ) return x