support input latents for vid2vid

This commit is contained in:
kijai 2024-08-06 22:02:29 +03:00
parent 5755a8c7f3
commit 0d69d73c60
2 changed files with 124 additions and 186 deletions

104
nodes.py
View File

@ -122,21 +122,82 @@ class CogVideoTextEncode:
embeds = clip.encode_from_tokens(tokens, return_pooled=False, return_dict=False) embeds = clip.encode_from_tokens(tokens, return_pooled=False, return_dict=False)
return (embeds, ) return (embeds, )
class CogVideoSampler: class CogVideoImageEncode:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return {"required": { return {"required": {
"pipeline": ("COGVIDEOPIPE",), "pipeline": ("COGVIDEOPIPE",),
"positive": ("CONDITIONING", ), "image": ("IMAGE", ),
"negative": ("CONDITIONING", ), },
"height": ("INT", {"default": 480, "min": 128, "max": 2048, "step": 8}), }
"width": ("INT", {"default": 720, "min": 128, "max": 2048, "step": 8}),
"num_frames": ("INT", {"default": 48, "min": 8, "max": 100, "step": 8}), RETURN_TYPES = ("LATENT",)
"fps": ("INT", {"default": 8, "min": 1, "max": 100, "step": 1}), RETURN_NAMES = ("samples",)
"steps": ("INT", {"default": 25, "min": 1}), FUNCTION = "encode"
"cfg": ("FLOAT", {"default": 6.0, "min": 0.0, "max": 30.0, "step": 0.01}), CATEGORY = "CogVideoWrapper"
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
def encode(self, pipeline, image):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
generator = torch.Generator(device=device).manual_seed(0)
vae = pipeline["pipe"].vae
vae.to(device)
image = image * 2.0 - 1.0
image = image.to(vae.dtype).to(device)
image = image.unsqueeze(0).permute(0, 4, 1, 2, 3) # B, C, T, H, W
B, C, T, H, W = image.shape
chunk_size = 16
latents_list = []
# Loop through the temporal dimension in chunks of 16
for i in range(0, T, chunk_size):
# Get the chunk of 16 frames (or remaining frames if less than 16 are left)
end_index = min(i + chunk_size, T)
image_chunk = image[:, :, i:end_index, :, :] # Shape: [B, C, chunk_size, H, W]
# Encode the chunk of images
latents = vae.encode(image_chunk)
sample_mode = "sample"
if hasattr(latents, "latent_dist") and sample_mode == "sample":
latents = latents.latent_dist.sample(generator)
elif hasattr(latents, "latent_dist") and sample_mode == "argmax":
latents = latents.latent_dist.mode()
elif hasattr(latents, "latents"):
latents = latents.latents
latents = vae.config.scaling_factor * latents
latents = latents.permute(0, 2, 1, 3, 4) # B, T_chunk, C, H, W
latents_list.append(latents)
# Concatenate all the chunks along the temporal dimension
final_latents = torch.cat(latents_list, dim=1)
print("final latents: ", final_latents.shape)
vae.to(offload_device)
return ({"samples": final_latents}, )
class CogVideoSampler:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"pipeline": ("COGVIDEOPIPE",),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"height": ("INT", {"default": 480, "min": 128, "max": 2048, "step": 8}),
"width": ("INT", {"default": 720, "min": 128, "max": 2048, "step": 8}),
"num_frames": ("INT", {"default": 48, "min": 8, "max": 100, "step": 8}),
"fps": ("INT", {"default": 8, "min": 1, "max": 100, "step": 1}),
"steps": ("INT", {"default": 25, "min": 1}),
"cfg": ("FLOAT", {"default": 6.0, "min": 0.0, "max": 30.0, "step": 0.01}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
},
"optional": {
"samples": ("LATENT", ),
"denoise_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
} }
} }
@ -145,7 +206,7 @@ class CogVideoSampler:
FUNCTION = "process" FUNCTION = "process"
CATEGORY = "CogVideoWrapper" CATEGORY = "CogVideoWrapper"
def process(self, pipeline, positive, negative, fps, steps, cfg, seed, height, width, num_frames): def process(self, pipeline, positive, negative, fps, steps, cfg, seed, height, width, num_frames, samples=None, denoise_strength=1.0):
mm.soft_empty_cache() mm.soft_empty_cache()
device = mm.get_torch_device() device = mm.get_torch_device()
offload_device = mm.unet_offload_device() offload_device = mm.unet_offload_device()
@ -162,6 +223,8 @@ class CogVideoSampler:
num_frames = num_frames, num_frames = num_frames,
fps = fps, fps = fps,
guidance_scale=cfg, guidance_scale=cfg,
latents=samples["samples"] if samples is not None else None,
denoise_strength=denoise_strength,
prompt_embeds=positive.to(dtype).to(device), prompt_embeds=positive.to(dtype).to(device),
negative_prompt_embeds=negative.to(dtype).to(device), negative_prompt_embeds=negative.to(dtype).to(device),
#negative_prompt_embeds=torch.zeros_like(embeds), #negative_prompt_embeds=torch.zeros_like(embeds),
@ -198,11 +261,15 @@ class CogVideoDecode:
vae = pipeline["pipe"].vae vae = pipeline["pipe"].vae
vae.to(device) vae.to(device)
num_frames = pipeline["num_frames"] if "num_frames" in pipeline:
fps = pipeline["fps"] num_frames = pipeline["num_frames"]
fps = pipeline["fps"]
else:
num_frames = latents.shape[2]
fps = 8
num_seconds = num_frames // fps num_seconds = num_frames // fps
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width] latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
latents = 1 / vae.config.scaling_factor * latents latents = 1 / vae.config.scaling_factor * latents
@ -217,6 +284,7 @@ class CogVideoDecode:
vae.to(offload_device) vae.to(offload_device)
frames = torch.cat(frames, dim=2) frames = torch.cat(frames, dim=2)
print(frames.min(), frames.max())
video = pipeline["pipe"].video_processor.postprocess_video(video=frames, output_type="pt") video = pipeline["pipe"].video_processor.postprocess_video(video=frames, output_type="pt")
print(video.shape) print(video.shape)
video = video[0].permute(0, 2, 3, 1).cpu().float() video = video[0].permute(0, 2, 3, 1).cpu().float()
@ -229,11 +297,13 @@ NODE_CLASS_MAPPINGS = {
"DownloadAndLoadCogVideoModel": DownloadAndLoadCogVideoModel, "DownloadAndLoadCogVideoModel": DownloadAndLoadCogVideoModel,
"CogVideoSampler": CogVideoSampler, "CogVideoSampler": CogVideoSampler,
"CogVideoDecode": CogVideoDecode, "CogVideoDecode": CogVideoDecode,
"CogVideoTextEncode": CogVideoTextEncode "CogVideoTextEncode": CogVideoTextEncode,
"CogVideoImageEncode": CogVideoImageEncode
} }
NODE_DISPLAY_NAME_MAPPINGS = { NODE_DISPLAY_NAME_MAPPINGS = {
"DownloadAndLoadCogVideoModel": "(Down)load CogVideo Model", "DownloadAndLoadCogVideoModel": "(Down)load CogVideo Model",
"CogVideoSampler": "CogVideo Sampler", "CogVideoSampler": "CogVideo Sampler",
"CogVideoDecode": "CogVideo Decode", "CogVideoDecode": "CogVideo Decode",
"CogVideoTextEncode": "CogVideo TextEncode" "CogVideoTextEncode": "CogVideo TextEncode",
"CogVideoImageEncode": "CogVideo ImageEncode"
} }

View File

@ -18,7 +18,6 @@ from dataclasses import dataclass
from typing import Callable, Dict, List, Optional, Tuple, Union from typing import Callable, Dict, List, Optional, Tuple, Union
import torch import torch
from transformers import T5EncoderModel, T5Tokenizer
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel
@ -165,8 +164,6 @@ class CogVideoXPipeline(DiffusionPipeline):
def __init__( def __init__(
self, self,
tokenizer: T5Tokenizer,
#text_encoder: T5EncoderModel,
vae: AutoencoderKLCogVideoX, vae: AutoencoderKLCogVideoX,
transformer: CogVideoXTransformer3DModel, transformer: CogVideoXTransformer3DModel,
scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler], scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler],
@ -174,7 +171,7 @@ class CogVideoXPipeline(DiffusionPipeline):
super().__init__() super().__init__()
self.register_modules( self.register_modules(
tokenizer=tokenizer, vae=vae, transformer=transformer, scheduler=scheduler vae=vae, transformer=transformer, scheduler=scheduler
) )
self.vae_scale_factor_spatial = ( self.vae_scale_factor_spatial = (
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
@ -182,136 +179,11 @@ class CogVideoXPipeline(DiffusionPipeline):
self.vae_scale_factor_temporal = ( self.vae_scale_factor_temporal = (
self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4 self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4
) )
self.tokenizer_max_length = (
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 226
)
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial) self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
def _get_t5_prompt_embeds(
self,
prompt: Union[str, List[str]] = None,
num_videos_per_prompt: int = 1,
max_sequence_length: int = 226,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
device = device or self._execution_device
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because `max_sequence_length` is set to "
f" {max_sequence_length} tokens: {removed_text}"
)
#prompt_embeds = self.text_encoder(text_input_ids.to(device))[0]
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
# duplicate text embeddings for each generation per prompt, using mps friendly method
_, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
return prompt_embeds
def encode_prompt(
self,
prompt: Union[str, List[str]],
negative_prompt: Optional[Union[str, List[str]]] = None,
do_classifier_free_guidance: bool = True,
num_videos_per_prompt: int = 1,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
max_sequence_length: int = 226,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
Whether to use classifier free guidance or not.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
device: (`torch.device`, *optional*):
torch device
dtype: (`torch.dtype`, *optional*):
torch dtype
"""
device = device or self._execution_device
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt is not None:
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
prompt_embeds = self._get_t5_prompt_embeds(
prompt=prompt,
num_videos_per_prompt=num_videos_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
dtype=dtype,
)
if do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = negative_prompt or ""
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
if prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
negative_prompt_embeds = self._get_t5_prompt_embeds(
prompt=negative_prompt,
num_videos_per_prompt=num_videos_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
dtype=dtype,
)
return prompt_embeds, negative_prompt_embeds
def prepare_latents( def prepare_latents(
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, timesteps, denoise_strength, num_inference_steps, latents=None,
): ):
shape = ( shape = (
batch_size, batch_size,
@ -328,12 +200,27 @@ class CogVideoXPipeline(DiffusionPipeline):
if latents is None: if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# scale the initial noise by the standard deviation required by the scheduler
else: else:
latents = latents.to(device) latents = latents.to(device)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, denoise_strength, device)
latent_timestep = timesteps[:1]
noise = randn_tensor(shape, generator=generator, device=device, dtype=latents.dtype)
frames_needed = noise.shape[1]
current_frames = latents.shape[1]
if frames_needed > current_frames:
repeat_factor = frames_needed // current_frames
additional_frame = torch.randn((latents.size(0), repeat_factor, latents.size(2), latents.size(3), latents.size(4)), dtype=latents.dtype, device=latents.device)
latents = torch.cat((latents, additional_frame), dim=1)
elif frames_needed < current_frames:
latents = latents[:, :frames_needed, :, :, :]
# scale the initial noise by the standard deviation required by the scheduler latents = self.scheduler.add_noise(latents, noise, latent_timestep)
latents = latents * self.scheduler.init_noise_sigma latents = latents * self.scheduler.init_noise_sigma
return latents return latents, timesteps
def decode_latents(self, latents: torch.Tensor, num_seconds: int): def decode_latents(self, latents: torch.Tensor, num_seconds: int):
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width] latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
@ -372,10 +259,8 @@ class CogVideoXPipeline(DiffusionPipeline):
# Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs # Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs
def check_inputs( def check_inputs(
self, self,
prompt,
height, height,
width, width,
negative_prompt,
callback_on_step_end_tensor_inputs, callback_on_step_end_tensor_inputs,
prompt_embeds=None, prompt_embeds=None,
negative_prompt_embeds=None, negative_prompt_embeds=None,
@ -389,29 +274,6 @@ class CogVideoXPipeline(DiffusionPipeline):
raise ValueError( raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
) )
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape: if prompt_embeds.shape != negative_prompt_embeds.shape:
@ -420,6 +282,16 @@ class CogVideoXPipeline(DiffusionPipeline):
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}." f" {negative_prompt_embeds.shape}."
) )
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
if hasattr(self.scheduler, "set_begin_index"):
self.scheduler.set_begin_index(t_start * self.scheduler.order)
return timesteps.to(device), num_inference_steps - t_start
@property @property
def guidance_scale(self): def guidance_scale(self):
@ -444,8 +316,6 @@ class CogVideoXPipeline(DiffusionPipeline):
@replace_example_docstring(EXAMPLE_DOC_STRING) @replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__( def __call__(
self, self,
prompt: Optional[Union[str, List[str]]] = None,
negative_prompt: Optional[Union[str, List[str]]] = None,
height: int = 480, height: int = 480,
width: int = 720, width: int = 720,
num_frames: int = 48, num_frames: int = 48,
@ -453,6 +323,7 @@ class CogVideoXPipeline(DiffusionPipeline):
num_inference_steps: int = 50, num_inference_steps: int = 50,
timesteps: Optional[List[int]] = None, timesteps: Optional[List[int]] = None,
guidance_scale: float = 6, guidance_scale: float = 6,
denoise_strength: float = 1.0,
num_videos_per_prompt: int = 1, num_videos_per_prompt: int = 1,
eta: float = 0.0, eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
@ -553,10 +424,8 @@ class CogVideoXPipeline(DiffusionPipeline):
# 1. Check inputs. Raise error if not correct # 1. Check inputs. Raise error if not correct
self.check_inputs( self.check_inputs(
prompt,
height, height,
width, width,
negative_prompt,
callback_on_step_end_tensor_inputs, callback_on_step_end_tensor_inputs,
prompt_embeds, prompt_embeds,
negative_prompt_embeds, negative_prompt_embeds,
@ -565,12 +434,8 @@ class CogVideoXPipeline(DiffusionPipeline):
self._interrupt = False self._interrupt = False
# 2. Default call parameters # 2. Default call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1 batch_size = prompt_embeds.shape[0]
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
@ -587,7 +452,7 @@ class CogVideoXPipeline(DiffusionPipeline):
# 5. Prepare latents. # 5. Prepare latents.
latent_channels = self.transformer.config.in_channels latent_channels = self.transformer.config.in_channels
num_frames += 1 num_frames += 1
latents = self.prepare_latents( latents, timesteps = self.prepare_latents(
batch_size * num_videos_per_prompt, batch_size * num_videos_per_prompt,
latent_channels, latent_channels,
num_frames, num_frames,
@ -596,7 +461,10 @@ class CogVideoXPipeline(DiffusionPipeline):
prompt_embeds.dtype, prompt_embeds.dtype,
device, device,
generator, generator,
latents, timesteps,
denoise_strength,
num_inference_steps,
latents
) )
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline