mirror of
https://git.datalinker.icu/kijai/ComfyUI-CogVideoXWrapper.git
synced 2025-12-09 04:44:22 +08:00
Update pipeline_cogvideox.py
This commit is contained in:
parent
27a1515967
commit
251d6599c0
@ -419,7 +419,7 @@ class CogVideoXPipeline(DiffusionPipeline):
|
||||
self._num_timesteps = len(timesteps)
|
||||
|
||||
# 5. Prepare latents.
|
||||
latent_channels = self.transformer.config.in_channels
|
||||
latent_channels = self.vae.config.latent_channels
|
||||
|
||||
if latents is None and num_frames == t_tile_length:
|
||||
num_frames += 1
|
||||
@ -443,20 +443,24 @@ class CogVideoXPipeline(DiffusionPipeline):
|
||||
latents
|
||||
)
|
||||
latents = latents.to(self.transformer.dtype)
|
||||
print("latents", latents.shape)
|
||||
|
||||
# 5.5.
|
||||
if image_cond_latents is not None:
|
||||
image_cond_latents = torch.cat(image_cond_latents, dim=0).to(self.transformer.dtype)#.permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
|
||||
print("image_cond_latents", image_cond_latents.shape)
|
||||
#image_cond_latents = torch.cat(image_cond_latents, dim=0).to(self.transformer.dtype)#.permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
|
||||
|
||||
padding_shape = (
|
||||
batch_size,
|
||||
num_frames - 1,
|
||||
latent_channels,
|
||||
(latents.shape[1] - 1),
|
||||
self.vae.config.latent_channels,
|
||||
height // self.vae_scale_factor_spatial,
|
||||
width // self.vae_scale_factor_spatial,
|
||||
)
|
||||
print("padding_shape", padding_shape)
|
||||
latent_padding = torch.zeros(padding_shape, device=device, dtype=self.transformer.dtype)
|
||||
image_latents = torch.cat([image_latents, latent_padding], dim=1)
|
||||
image_cond_latents = torch.cat([image_cond_latents, latent_padding], dim=1)
|
||||
print("image_cond_latents", image_cond_latents.shape)
|
||||
|
||||
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||||
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||||
@ -598,7 +602,11 @@ class CogVideoXPipeline(DiffusionPipeline):
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
if image_cond_latents is not None:
|
||||
|
||||
|
||||
latent_image_input = torch.cat([image_cond_latents] * 2) if do_classifier_free_guidance else image_cond_latents
|
||||
print("latent_model_input",latent_model_input.shape)
|
||||
print("image_cond_latents",image_cond_latents.shape)
|
||||
latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2)
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user