diff --git a/cogvideox_fun/fun_pab_transformer_3d.py b/cogvideox_fun/fun_pab_transformer_3d.py
new file mode 100644
index 0000000..079798e
--- /dev/null
+++ b/cogvideox_fun/fun_pab_transformer_3d.py
@@ -0,0 +1,723 @@
+# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
+# All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import Any, Dict, Optional, Tuple, Union
+
+import os
+import json
+import torch
+import glob
+import torch.nn.functional as F
+from torch import nn
+
+from diffusers.configuration_utils import ConfigMixin, register_to_config
+from diffusers.utils import is_torch_version, logging
+from diffusers.utils.torch_utils import maybe_allow_in_graph
+from diffusers.models.attention import Attention, FeedForward
+#from diffusers.models.attention_processor import AttentionProcessor
+from diffusers.models.embeddings import TimestepEmbedding, Timesteps, get_3d_sincos_pos_embed
+from diffusers.models.modeling_outputs import Transformer2DModelOutput
+from diffusers.models.modeling_utils import ModelMixin
+#from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero
+
+from ..videosys.modules.normalization import AdaLayerNorm, CogVideoXLayerNormZero
+from ..videosys.modules.embeddings import apply_rotary_emb
+from ..videosys.core.pab_mgr import enable_pab, if_broadcast_spatial
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+class CogVideoXAttnProcessor2_0:
+ r"""
+ Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on
+ query and key vectors, but does not include spatial normalization.
+ """
+
+ def __init__(self):
+ if not hasattr(F, "scaled_dot_product_attention"):
+ raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
+
+ def __call__(
+ self,
+ attn: Attention,
+ hidden_states: torch.Tensor,
+ encoder_hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ image_rotary_emb: Optional[torch.Tensor] = None,
+ ) -> torch.Tensor:
+ text_seq_length = encoder_hidden_states.size(1)
+
+ hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
+
+ batch_size, sequence_length, _ = (
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
+ )
+
+ if attention_mask is not None:
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
+
+ query = attn.to_q(hidden_states)
+ key = attn.to_k(hidden_states)
+ value = attn.to_v(hidden_states)
+
+ # if attn.parallel_manager.sp_size > 1:
+ # assert (
+ # attn.heads % attn.parallel_manager.sp_size == 0
+ # ), f"Number of heads {attn.heads} must be divisible by sequence parallel size {attn.parallel_manager.sp_size}"
+ # attn_heads = attn.heads // attn.parallel_manager.sp_size
+ # query, key, value = map(
+ # lambda x: all_to_all_comm(x, attn.parallel_manager.sp_group, scatter_dim=2, gather_dim=1),
+ # [query, key, value],
+ # )
+
+ attn_heads = attn.heads
+
+ inner_dim = key.shape[-1]
+ head_dim = inner_dim // attn_heads
+
+ query = query.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2)
+ key = key.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2)
+ value = value.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2)
+
+ if attn.norm_q is not None:
+ query = attn.norm_q(query)
+ if attn.norm_k is not None:
+ key = attn.norm_k(key)
+
+ # Apply RoPE if needed
+ if image_rotary_emb is not None:
+ emb_len = image_rotary_emb[0].shape[0]
+ query[:, :, text_seq_length : emb_len + text_seq_length] = apply_rotary_emb(
+ query[:, :, text_seq_length : emb_len + text_seq_length], image_rotary_emb
+ )
+ if not attn.is_cross_attention:
+ key[:, :, text_seq_length : emb_len + text_seq_length] = apply_rotary_emb(
+ key[:, :, text_seq_length : emb_len + text_seq_length], image_rotary_emb
+ )
+
+ hidden_states = F.scaled_dot_product_attention(
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
+ )
+
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn_heads * head_dim)
+
+ #if attn.parallel_manager.sp_size > 1:
+ # hidden_states = all_to_all_comm(hidden_states, attn.parallel_manager.sp_group, scatter_dim=1, gather_dim=2)
+
+ # linear proj
+ hidden_states = attn.to_out[0](hidden_states)
+ # dropout
+ hidden_states = attn.to_out[1](hidden_states)
+
+ encoder_hidden_states, hidden_states = hidden_states.split(
+ [text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
+ )
+ return hidden_states, encoder_hidden_states
+
+
+class FusedCogVideoXAttnProcessor2_0:
+ r"""
+ Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on
+ query and key vectors, but does not include spatial normalization.
+ """
+
+ def __init__(self):
+ if not hasattr(F, "scaled_dot_product_attention"):
+ raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
+
+ def __call__(
+ self,
+ attn: Attention,
+ hidden_states: torch.Tensor,
+ encoder_hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ image_rotary_emb: Optional[torch.Tensor] = None,
+ ) -> torch.Tensor:
+ text_seq_length = encoder_hidden_states.size(1)
+
+ hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
+
+ batch_size, sequence_length, _ = (
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
+ )
+
+ if attention_mask is not None:
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
+
+ qkv = attn.to_qkv(hidden_states)
+ split_size = qkv.shape[-1] // 3
+ query, key, value = torch.split(qkv, split_size, dim=-1)
+
+ inner_dim = key.shape[-1]
+ head_dim = inner_dim // attn.heads
+
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
+
+ if attn.norm_q is not None:
+ query = attn.norm_q(query)
+ if attn.norm_k is not None:
+ key = attn.norm_k(key)
+
+ # Apply RoPE if needed
+ if image_rotary_emb is not None:
+ query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb)
+ if not attn.is_cross_attention:
+ key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb)
+
+ hidden_states = F.scaled_dot_product_attention(
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
+ )
+
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
+
+ # linear proj
+ hidden_states = attn.to_out[0](hidden_states)
+ # dropout
+ hidden_states = attn.to_out[1](hidden_states)
+
+ encoder_hidden_states, hidden_states = hidden_states.split(
+ [text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
+ )
+ return hidden_states, encoder_hidden_states
+
+class CogVideoXPatchEmbed(nn.Module):
+ def __init__(
+ self,
+ patch_size: int = 2,
+ in_channels: int = 16,
+ embed_dim: int = 1920,
+ text_embed_dim: int = 4096,
+ bias: bool = True,
+ ) -> None:
+ super().__init__()
+ self.patch_size = patch_size
+
+ self.proj = nn.Conv2d(
+ in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
+ )
+ self.text_proj = nn.Linear(text_embed_dim, embed_dim)
+
+ def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
+ r"""
+ Args:
+ text_embeds (`torch.Tensor`):
+ Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim).
+ image_embeds (`torch.Tensor`):
+ Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width).
+ """
+ text_embeds = self.text_proj(text_embeds)
+
+ batch, num_frames, channels, height, width = image_embeds.shape
+ image_embeds = image_embeds.reshape(-1, channels, height, width)
+ image_embeds = self.proj(image_embeds)
+ image_embeds = image_embeds.view(batch, num_frames, *image_embeds.shape[1:])
+ image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels]
+ image_embeds = image_embeds.flatten(1, 2) # [batch, num_frames x height x width, channels]
+
+ embeds = torch.cat(
+ [text_embeds, image_embeds], dim=1
+ ).contiguous() # [batch, seq_length + num_frames x height x width, channels]
+ return embeds
+
+@maybe_allow_in_graph
+class CogVideoXBlock(nn.Module):
+ r"""
+ Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model.
+
+ Parameters:
+ dim (`int`):
+ The number of channels in the input and output.
+ num_attention_heads (`int`):
+ The number of heads to use for multi-head attention.
+ attention_head_dim (`int`):
+ The number of channels in each head.
+ time_embed_dim (`int`):
+ The number of channels in timestep embedding.
+ dropout (`float`, defaults to `0.0`):
+ The dropout probability to use.
+ activation_fn (`str`, defaults to `"gelu-approximate"`):
+ Activation function to be used in feed-forward.
+ attention_bias (`bool`, defaults to `False`):
+ Whether or not to use bias in attention projection layers.
+ qk_norm (`bool`, defaults to `True`):
+ Whether or not to use normalization after query and key projections in Attention.
+ norm_elementwise_affine (`bool`, defaults to `True`):
+ Whether to use learnable elementwise affine parameters for normalization.
+ norm_eps (`float`, defaults to `1e-5`):
+ Epsilon value for normalization layers.
+ final_dropout (`bool` defaults to `False`):
+ Whether to apply a final dropout after the last feed-forward layer.
+ ff_inner_dim (`int`, *optional*, defaults to `None`):
+ Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used.
+ ff_bias (`bool`, defaults to `True`):
+ Whether or not to use bias in Feed-forward layer.
+ attention_out_bias (`bool`, defaults to `True`):
+ Whether or not to use bias in Attention output projection layer.
+ """
+
+ def __init__(
+ self,
+ dim: int,
+ num_attention_heads: int,
+ attention_head_dim: int,
+ time_embed_dim: int,
+ dropout: float = 0.0,
+ activation_fn: str = "gelu-approximate",
+ attention_bias: bool = False,
+ qk_norm: bool = True,
+ norm_elementwise_affine: bool = True,
+ norm_eps: float = 1e-5,
+ final_dropout: bool = True,
+ ff_inner_dim: Optional[int] = None,
+ ff_bias: bool = True,
+ attention_out_bias: bool = True,
+ block_idx: int = 0,
+ ):
+ super().__init__()
+
+ # 1. Self Attention
+ self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
+
+ self.attn1 = Attention(
+ query_dim=dim,
+ dim_head=attention_head_dim,
+ heads=num_attention_heads,
+ qk_norm="layer_norm" if qk_norm else None,
+ eps=1e-6,
+ bias=attention_bias,
+ out_bias=attention_out_bias,
+ processor=CogVideoXAttnProcessor2_0(),
+ )
+
+ # parallel
+ #self.attn1.parallel_manager = None
+
+ # 2. Feed Forward
+ self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
+
+ self.ff = FeedForward(
+ dim,
+ dropout=dropout,
+ activation_fn=activation_fn,
+ final_dropout=final_dropout,
+ inner_dim=ff_inner_dim,
+ bias=ff_bias,
+ )
+
+ # pab
+ self.attn_count = 0
+ self.last_attn = None
+ self.block_idx = block_idx
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ encoder_hidden_states: torch.Tensor,
+ temb: torch.Tensor,
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
+ timestep=None,
+ ) -> torch.Tensor:
+ text_seq_length = encoder_hidden_states.size(1)
+
+ # norm & modulate
+ norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
+ hidden_states, encoder_hidden_states, temb
+ )
+
+ # attention
+ if enable_pab():
+ broadcast_attn, self.attn_count = if_broadcast_spatial(int(timestep[0]), self.attn_count, self.block_idx)
+ if enable_pab() and broadcast_attn:
+ attn_hidden_states, attn_encoder_hidden_states = self.last_attn
+ else:
+ attn_hidden_states, attn_encoder_hidden_states = self.attn1(
+ hidden_states=norm_hidden_states,
+ encoder_hidden_states=norm_encoder_hidden_states,
+ image_rotary_emb=image_rotary_emb,
+ )
+ if enable_pab():
+ self.last_attn = (attn_hidden_states, attn_encoder_hidden_states)
+
+ hidden_states = hidden_states + gate_msa * attn_hidden_states
+ encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states
+
+ # norm & modulate
+ norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
+ hidden_states, encoder_hidden_states, temb
+ )
+
+ # feed-forward
+ norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
+ ff_output = self.ff(norm_hidden_states)
+
+ hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:]
+ encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length]
+
+ return hidden_states, encoder_hidden_states
+
+
+class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin):
+ """
+ A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo).
+
+ Parameters:
+ num_attention_heads (`int`, defaults to `30`):
+ The number of heads to use for multi-head attention.
+ attention_head_dim (`int`, defaults to `64`):
+ The number of channels in each head.
+ in_channels (`int`, defaults to `16`):
+ The number of channels in the input.
+ out_channels (`int`, *optional*, defaults to `16`):
+ The number of channels in the output.
+ flip_sin_to_cos (`bool`, defaults to `True`):
+ Whether to flip the sin to cos in the time embedding.
+ time_embed_dim (`int`, defaults to `512`):
+ Output dimension of timestep embeddings.
+ text_embed_dim (`int`, defaults to `4096`):
+ Input dimension of text embeddings from the text encoder.
+ num_layers (`int`, defaults to `30`):
+ The number of layers of Transformer blocks to use.
+ dropout (`float`, defaults to `0.0`):
+ The dropout probability to use.
+ attention_bias (`bool`, defaults to `True`):
+ Whether or not to use bias in the attention projection layers.
+ sample_width (`int`, defaults to `90`):
+ The width of the input latents.
+ sample_height (`int`, defaults to `60`):
+ The height of the input latents.
+ sample_frames (`int`, defaults to `49`):
+ The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49
+ instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings,
+ but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with
+ K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1).
+ patch_size (`int`, defaults to `2`):
+ The size of the patches to use in the patch embedding layer.
+ temporal_compression_ratio (`int`, defaults to `4`):
+ The compression ratio across the temporal dimension. See documentation for `sample_frames`.
+ max_text_seq_length (`int`, defaults to `226`):
+ The maximum sequence length of the input text embeddings.
+ activation_fn (`str`, defaults to `"gelu-approximate"`):
+ Activation function to use in feed-forward.
+ timestep_activation_fn (`str`, defaults to `"silu"`):
+ Activation function to use when generating the timestep embeddings.
+ norm_elementwise_affine (`bool`, defaults to `True`):
+ Whether or not to use elementwise affine in normalization layers.
+ norm_eps (`float`, defaults to `1e-5`):
+ The epsilon value to use in normalization layers.
+ spatial_interpolation_scale (`float`, defaults to `1.875`):
+ Scaling factor to apply in 3D positional embeddings across spatial dimensions.
+ temporal_interpolation_scale (`float`, defaults to `1.0`):
+ Scaling factor to apply in 3D positional embeddings across temporal dimensions.
+ """
+
+ _supports_gradient_checkpointing = True
+
+ @register_to_config
+ def __init__(
+ self,
+ num_attention_heads: int = 30,
+ attention_head_dim: int = 64,
+ in_channels: int = 16,
+ out_channels: Optional[int] = 16,
+ flip_sin_to_cos: bool = True,
+ freq_shift: int = 0,
+ time_embed_dim: int = 512,
+ text_embed_dim: int = 4096,
+ num_layers: int = 30,
+ dropout: float = 0.0,
+ attention_bias: bool = True,
+ sample_width: int = 90,
+ sample_height: int = 60,
+ sample_frames: int = 49,
+ patch_size: int = 2,
+ temporal_compression_ratio: int = 4,
+ max_text_seq_length: int = 226,
+ activation_fn: str = "gelu-approximate",
+ timestep_activation_fn: str = "silu",
+ norm_elementwise_affine: bool = True,
+ norm_eps: float = 1e-5,
+ spatial_interpolation_scale: float = 1.875,
+ temporal_interpolation_scale: float = 1.0,
+ use_rotary_positional_embeddings: bool = False,
+ ):
+ super().__init__()
+ inner_dim = num_attention_heads * attention_head_dim
+
+ post_patch_height = sample_height // patch_size
+ post_patch_width = sample_width // patch_size
+ post_time_compression_frames = (sample_frames - 1) // temporal_compression_ratio + 1
+ self.num_patches = post_patch_height * post_patch_width * post_time_compression_frames
+ self.post_patch_height = post_patch_height
+ self.post_patch_width = post_patch_width
+ self.post_time_compression_frames = post_time_compression_frames
+ self.patch_size = patch_size
+
+ # 1. Patch embedding
+ self.patch_embed = CogVideoXPatchEmbed(patch_size, in_channels, inner_dim, text_embed_dim, bias=True)
+ self.embedding_dropout = nn.Dropout(dropout)
+
+ # 2. 3D positional embeddings
+ spatial_pos_embedding = get_3d_sincos_pos_embed(
+ inner_dim,
+ (post_patch_width, post_patch_height),
+ post_time_compression_frames,
+ spatial_interpolation_scale,
+ temporal_interpolation_scale,
+ )
+ spatial_pos_embedding = torch.from_numpy(spatial_pos_embedding).flatten(0, 1)
+ pos_embedding = torch.zeros(1, max_text_seq_length + self.num_patches, inner_dim, requires_grad=False)
+ pos_embedding.data[:, max_text_seq_length:].copy_(spatial_pos_embedding)
+ self.register_buffer("pos_embedding", pos_embedding, persistent=False)
+
+ # 3. Time embeddings
+ self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
+ self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)
+
+ # 4. Define spatio-temporal transformers blocks
+ self.transformer_blocks = nn.ModuleList(
+ [
+ CogVideoXBlock(
+ dim=inner_dim,
+ num_attention_heads=num_attention_heads,
+ attention_head_dim=attention_head_dim,
+ time_embed_dim=time_embed_dim,
+ dropout=dropout,
+ activation_fn=activation_fn,
+ attention_bias=attention_bias,
+ norm_elementwise_affine=norm_elementwise_affine,
+ norm_eps=norm_eps,
+ )
+ for _ in range(num_layers)
+ ]
+ )
+ self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine)
+
+ # 5. Output blocks
+ self.norm_out = AdaLayerNorm(
+ embedding_dim=time_embed_dim,
+ output_dim=2 * inner_dim,
+ norm_elementwise_affine=norm_elementwise_affine,
+ norm_eps=norm_eps,
+ chunk_dim=1,
+ )
+ self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)
+
+ self.gradient_checkpointing = False
+
+ def _set_gradient_checkpointing(self, module, value=False):
+ self.gradient_checkpointing = value
+
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedCogVideoXAttnProcessor2_0
+ def fuse_qkv_projections(self):
+ """
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
+ are fused. For cross-attention modules, key and value projection matrices are fused.
+
+
+
+ This API is 🧪 experimental.
+
+
+ """
+ self.original_attn_processors = None
+
+ for _, attn_processor in self.attn_processors.items():
+ if "Added" in str(attn_processor.__class__.__name__):
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
+
+ self.original_attn_processors = self.attn_processors
+
+ for module in self.modules():
+ if isinstance(module, Attention):
+ module.fuse_projections(fuse=True)
+
+ self.set_attn_processor(FusedCogVideoXAttnProcessor2_0())
+
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
+ def unfuse_qkv_projections(self):
+ """Disables the fused QKV projection if enabled.
+
+
+
+ This API is 🧪 experimental.
+
+
+
+ """
+ if self.original_attn_processors is not None:
+ self.set_attn_processor(self.original_attn_processors)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ encoder_hidden_states: torch.Tensor,
+ timestep: Union[int, float, torch.LongTensor],
+ timestep_cond: Optional[torch.Tensor] = None,
+ inpaint_latents: Optional[torch.Tensor] = None,
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
+ return_dict: bool = True,
+ ):
+ batch_size, num_frames, channels, height, width = hidden_states.shape
+
+ # 1. Time embedding
+ timesteps = timestep
+ t_emb = self.time_proj(timesteps)
+
+ # timesteps does not contain any weights and will always return f32 tensors
+ # but time_embedding might actually be running in fp16. so we need to cast here.
+ # there might be better ways to encapsulate this.
+ t_emb = t_emb.to(dtype=hidden_states.dtype)
+ emb = self.time_embedding(t_emb, timestep_cond)
+
+ # 2. Patch embedding
+ if inpaint_latents is not None:
+ hidden_states = torch.concat([hidden_states, inpaint_latents], 2)
+ hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
+
+ # 3. Position embedding
+ text_seq_length = encoder_hidden_states.shape[1]
+ if not self.config.use_rotary_positional_embeddings:
+ seq_length = height * width * num_frames // (self.config.patch_size**2)
+ # pos_embeds = self.pos_embedding[:, : text_seq_length + seq_length]
+ pos_embeds = self.pos_embedding
+ emb_size = hidden_states.size()[-1]
+ pos_embeds_without_text = pos_embeds[:, text_seq_length: ].view(1, self.post_time_compression_frames, self.post_patch_height, self.post_patch_width, emb_size)
+ pos_embeds_without_text = pos_embeds_without_text.permute([0, 4, 1, 2, 3])
+ pos_embeds_without_text = F.interpolate(pos_embeds_without_text,size=[self.post_time_compression_frames, height // self.config.patch_size, width // self.config.patch_size],mode='trilinear',align_corners=False)
+ pos_embeds_without_text = pos_embeds_without_text.permute([0, 2, 3, 4, 1]).view(1, -1, emb_size)
+ pos_embeds = torch.cat([pos_embeds[:, :text_seq_length], pos_embeds_without_text], dim = 1)
+ pos_embeds = pos_embeds[:, : text_seq_length + seq_length]
+ hidden_states = hidden_states + pos_embeds
+ hidden_states = self.embedding_dropout(hidden_states)
+
+ encoder_hidden_states = hidden_states[:, :text_seq_length]
+ hidden_states = hidden_states[:, text_seq_length:]
+
+ # 4. Transformer blocks
+
+ for i, block in enumerate(self.transformer_blocks):
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
+ hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(block),
+ hidden_states,
+ encoder_hidden_states,
+ emb,
+ image_rotary_emb,
+ **ckpt_kwargs,
+ )
+ else:
+ hidden_states, encoder_hidden_states = block(
+ hidden_states=hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ temb=emb,
+ image_rotary_emb=image_rotary_emb,
+ timestep=timestep,
+ )
+
+ if not self.config.use_rotary_positional_embeddings:
+ # CogVideoX-2B
+ hidden_states = self.norm_final(hidden_states)
+ else:
+ # CogVideoX-5B
+ hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
+ hidden_states = self.norm_final(hidden_states)
+ hidden_states = hidden_states[:, text_seq_length:]
+
+ # 5. Final block
+ hidden_states = self.norm_out(hidden_states, temb=emb)
+ hidden_states = self.proj_out(hidden_states)
+
+ # 6. Unpatchify
+ p = self.config.patch_size
+ output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, channels, p, p)
+ output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
+
+ if not return_dict:
+ return (output,)
+ return Transformer2DModelOutput(sample=output)
+
+ @classmethod
+ def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, transformer_additional_kwargs={}):
+ if subfolder is not None:
+ pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
+ print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...")
+
+ config_file = os.path.join(pretrained_model_path, 'config.json')
+ if not os.path.isfile(config_file):
+ raise RuntimeError(f"{config_file} does not exist")
+ with open(config_file, "r") as f:
+ config = json.load(f)
+
+ from diffusers.utils import WEIGHTS_NAME
+ model = cls.from_config(config, **transformer_additional_kwargs)
+ model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
+ model_file_safetensors = model_file.replace(".bin", ".safetensors")
+ if os.path.exists(model_file):
+ state_dict = torch.load(model_file, map_location="cpu")
+ elif os.path.exists(model_file_safetensors):
+ from safetensors.torch import load_file, safe_open
+ state_dict = load_file(model_file_safetensors)
+ else:
+ from safetensors.torch import load_file, safe_open
+ model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors"))
+ state_dict = {}
+ for model_file_safetensors in model_files_safetensors:
+ _state_dict = load_file(model_file_safetensors)
+ for key in _state_dict:
+ state_dict[key] = _state_dict[key]
+
+ if model.state_dict()['patch_embed.proj.weight'].size() != state_dict['patch_embed.proj.weight'].size():
+ new_shape = model.state_dict()['patch_embed.proj.weight'].size()
+ if len(new_shape) == 5:
+ state_dict['patch_embed.proj.weight'] = state_dict['patch_embed.proj.weight'].unsqueeze(2).expand(new_shape).clone()
+ state_dict['patch_embed.proj.weight'][:, :, :-1] = 0
+ else:
+ if model.state_dict()['patch_embed.proj.weight'].size()[1] > state_dict['patch_embed.proj.weight'].size()[1]:
+ model.state_dict()['patch_embed.proj.weight'][:, :state_dict['patch_embed.proj.weight'].size()[1], :, :] = state_dict['patch_embed.proj.weight']
+ model.state_dict()['patch_embed.proj.weight'][:, state_dict['patch_embed.proj.weight'].size()[1]:, :, :] = 0
+ state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight']
+ else:
+ model.state_dict()['patch_embed.proj.weight'][:, :, :, :] = state_dict['patch_embed.proj.weight'][:, :model.state_dict()['patch_embed.proj.weight'].size()[1], :, :]
+ state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight']
+
+ tmp_state_dict = {}
+ for key in state_dict:
+ if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size():
+ tmp_state_dict[key] = state_dict[key]
+ else:
+ print(key, "Size don't match, skip")
+ state_dict = tmp_state_dict
+
+ m, u = model.load_state_dict(state_dict, strict=False)
+ print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
+ print(m)
+
+ params = [p.numel() if "mamba" in n else 0 for n, p in model.named_parameters()]
+ print(f"### Mamba Parameters: {sum(params) / 1e6} M")
+
+ params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()]
+ print(f"### attn1 Parameters: {sum(params) / 1e6} M")
+
+ return model
\ No newline at end of file
diff --git a/cogvideox_fun/pipeline_cogvideox_inpaint.py b/cogvideox_fun/pipeline_cogvideox_inpaint.py
index 7437d03..5420762 100644
--- a/cogvideox_fun/pipeline_cogvideox_inpaint.py
+++ b/cogvideox_fun/pipeline_cogvideox_inpaint.py
@@ -33,6 +33,10 @@ from diffusers.video_processor import VideoProcessor
from diffusers.image_processor import VaeImageProcessor
from einops import rearrange
+from ..videosys.core.pipeline import VideoSysPipeline
+from ..videosys.cogvideox_transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelPAB
+from ..videosys.core.pab_mgr import set_pab_manager
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@@ -191,7 +195,7 @@ class CogVideoX_Fun_PipelineOutput(BaseOutput):
videos: torch.Tensor
-class CogVideoX_Fun_Pipeline_Inpaint(DiffusionPipeline):
+class CogVideoX_Fun_Pipeline_Inpaint(VideoSysPipeline):
r"""
Pipeline for text-to-video generation using CogVideoX.
@@ -221,6 +225,7 @@ class CogVideoX_Fun_Pipeline_Inpaint(DiffusionPipeline):
vae: AutoencoderKLCogVideoX,
transformer: CogVideoXTransformer3DModel,
scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler],
+ pab_config = None
):
super().__init__()
@@ -242,6 +247,9 @@ class CogVideoX_Fun_Pipeline_Inpaint(DiffusionPipeline):
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
)
+ if pab_config is not None:
+ set_pab_manager(pab_config)
+
def prepare_latents(
self,
batch_size,
diff --git a/nodes.py b/nodes.py
index bd4c79c..b17751b 100644
--- a/nodes.py
+++ b/nodes.py
@@ -36,6 +36,7 @@ from .pipeline_cogvideox import CogVideoXPipeline
from contextlib import nullcontext
from .cogvideox_fun.transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelFun
+from .cogvideox_fun.fun_pab_transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelFunPAB
from .cogvideox_fun.autoencoder_magvit import AutoencoderKLCogVideoX as AutoencoderKLCogVideoXFun
from .cogvideox_fun.utils import get_image_to_video_latent, get_video_to_video_latent, ASPECT_RATIO_512, get_closest_ratio, to_pil
from .cogvideox_fun.pipeline_cogvideox_inpaint import CogVideoX_Fun_Pipeline_Inpaint
@@ -241,7 +242,10 @@ class DownloadAndLoadCogVideoModel:
# transformer
if "Fun" in model:
- transformer = CogVideoXTransformer3DModelFun.from_pretrained(base_path, subfolder="transformer")
+ if pab_config is not None:
+ transformer = CogVideoXTransformer3DModelFunPAB.from_pretrained(base_path, subfolder="transformer")
+ else:
+ transformer = CogVideoXTransformer3DModelFun.from_pretrained(base_path, subfolder="transformer")
else:
if pab_config is not None:
transformer = CogVideoXTransformer3DModelPAB.from_pretrained(base_path, subfolder="transformer")
@@ -273,7 +277,7 @@ class DownloadAndLoadCogVideoModel:
# VAE
if "Fun" in model:
vae = AutoencoderKLCogVideoXFun.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device)
- pipe = CogVideoX_Fun_Pipeline_Inpaint(vae, transformer, scheduler)
+ pipe = CogVideoX_Fun_Pipeline_Inpaint(vae, transformer, scheduler, pab_config=pab_config)
else:
vae = AutoencoderKLCogVideoX.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device)
pipe = CogVideoXPipeline(vae, transformer, scheduler, pab_config=pab_config)
@@ -383,7 +387,10 @@ class DownloadAndLoadCogVideoGGUFModel:
with mz_gguf_loader.quantize_lazy_load():
if "fun" in model:
transformer_config["in_channels"] = 33
- transformer = CogVideoXTransformer3DModelFun.from_config(transformer_config)
+ if pab_config is not None:
+ transformer = CogVideoXTransformer3DModelFunPAB.from_config(transformer_config)
+ else:
+ transformer = CogVideoXTransformer3DModelFun.from_config(transformer_config)
elif "I2V" in model:
transformer_config["in_channels"] = 32
transformer = CogVideoXTransformer3DModel.from_config(transformer_config)
@@ -438,7 +445,7 @@ class DownloadAndLoadCogVideoGGUFModel:
if "fun" in model:
vae = AutoencoderKLCogVideoXFun.from_config(vae_config).to(vae_dtype).to(offload_device)
vae.load_state_dict(vae_sd)
- pipe = CogVideoX_Fun_Pipeline_Inpaint(vae, transformer, scheduler)
+ pipe = CogVideoX_Fun_Pipeline_Inpaint(vae, transformer, scheduler, pab_config=pab_config)
else:
vae = AutoencoderKLCogVideoX.from_config(vae_config).to(vae_dtype).to(offload_device)
vae.load_state_dict(vae_sd)
diff --git a/pipeline_cogvideox.py b/pipeline_cogvideox.py
index 3f460a6..276a64f 100644
--- a/pipeline_cogvideox.py
+++ b/pipeline_cogvideox.py
@@ -161,7 +161,6 @@ class CogVideoXPipeline(VideoSysPipeline):
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
if pab_config is not None:
- print(pab_config)
set_pab_manager(pab_config)
def prepare_latents(