mirror of
https://git.datalinker.icu/kijai/ComfyUI-CogVideoXWrapper.git
synced 2025-12-08 20:34:23 +08:00
cleanup, fix vid2vid
This commit is contained in:
parent
97e89d596e
commit
2ae70dd82e
File diff suppressed because it is too large
Load Diff
7
nodes.py
7
nodes.py
@ -3,6 +3,7 @@ import torch
|
||||
import folder_paths
|
||||
import comfy.model_management as mm
|
||||
from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
|
||||
from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel
|
||||
from .pipeline_cogvideox import CogVideoXPipeline
|
||||
|
||||
import logging
|
||||
@ -52,8 +53,11 @@ class DownloadAndLoadCogVideoModel:
|
||||
local_dir=base_path,
|
||||
local_dir_use_symlinks=False,
|
||||
)
|
||||
transformer = CogVideoXTransformer3DModel.from_pretrained(base_path, subfolder="transformer").to(dtype).to(offload_device)
|
||||
vae = AutoencoderKLCogVideoX.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device)
|
||||
scheduler = CogVideoXDDIMScheduler.from_pretrained(base_path, subfolder="scheduler")
|
||||
|
||||
pipe = CogVideoXPipeline.from_pretrained(base_path, torch_dtype=dtype).to(offload_device)
|
||||
pipe = CogVideoXPipeline(vae, transformer, scheduler)
|
||||
|
||||
pipeline = {
|
||||
"pipe": pipe,
|
||||
@ -239,7 +243,6 @@ class CogVideoSampler:
|
||||
prompt_embeds=positive.to(dtype).to(device),
|
||||
negative_prompt_embeds=negative.to(dtype).to(device),
|
||||
generator=generator,
|
||||
output_type="latents",
|
||||
device=device
|
||||
)
|
||||
pipe.transformer.to(offload_device)
|
||||
|
||||
@ -14,16 +14,14 @@
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
from dataclasses import dataclass
|
||||
from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
||||
from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel
|
||||
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
||||
from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
|
||||
from diffusers.utils import BaseOutput, logging, replace_example_docstring
|
||||
from diffusers.utils import logging
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
from diffusers.video_processor import VideoProcessor
|
||||
|
||||
@ -31,30 +29,6 @@ from comfy.utils import ProgressBar
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```python
|
||||
>>> from diffusers import CogVideoXPipeline
|
||||
>>> from diffusers.utils import export_to_video
|
||||
|
||||
>>> pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=torch.bfloat16).to("cuda")
|
||||
>>> prompt = (
|
||||
... "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. "
|
||||
... "The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other "
|
||||
... "pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, "
|
||||
... "casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. "
|
||||
... "The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical "
|
||||
... "atmosphere of this unique musical performance."
|
||||
... )
|
||||
>>> video = pipe(
|
||||
... "a polar bear dancing, high quality, realistic", guidance_scale=6, num_inference_steps=20
|
||||
... ).frames[0]
|
||||
>>> export_to_video(video, "output.mp4", fps=8)
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||
def retrieve_timesteps(
|
||||
scheduler,
|
||||
@ -114,22 +88,6 @@ def retrieve_timesteps(
|
||||
timesteps = scheduler.timesteps
|
||||
return timesteps, num_inference_steps
|
||||
|
||||
|
||||
@dataclass
|
||||
class CogVideoXPipelineOutput(BaseOutput):
|
||||
r"""
|
||||
Output class for CogVideo pipelines.
|
||||
|
||||
Args:
|
||||
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
|
||||
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
|
||||
denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
|
||||
`(batch_size, num_frames, channels, height, width)`.
|
||||
"""
|
||||
|
||||
frames: torch.Tensor
|
||||
|
||||
|
||||
class CogVideoXPipeline(DiffusionPipeline):
|
||||
r"""
|
||||
Pipeline for text-to-video generation using CogVideoX.
|
||||
@ -156,12 +114,6 @@ class CogVideoXPipeline(DiffusionPipeline):
|
||||
_optional_components = ["tokenizer", "text_encoder"]
|
||||
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
||||
|
||||
_callback_tensor_inputs = [
|
||||
"latents",
|
||||
"prompt_embeds",
|
||||
"negative_prompt_embeds",
|
||||
]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vae: AutoencoderKLCogVideoX,
|
||||
@ -199,9 +151,7 @@ class CogVideoXPipeline(DiffusionPipeline):
|
||||
)
|
||||
|
||||
if latents is None:
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
# scale the initial noise by the standard deviation required by the scheduler
|
||||
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
else:
|
||||
latents = latents.to(device)
|
||||
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, denoise_strength, device)
|
||||
@ -219,7 +169,7 @@ class CogVideoXPipeline(DiffusionPipeline):
|
||||
latents = latents[:, :frames_needed, :, :, :]
|
||||
|
||||
latents = self.scheduler.add_noise(latents, noise, latent_timestep)
|
||||
latents = latents * self.scheduler.init_noise_sigma
|
||||
latents = latents * self.scheduler.init_noise_sigma # scale the initial noise by the standard deviation required by the scheduler
|
||||
return latents, timesteps
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
||||
@ -245,20 +195,12 @@ class CogVideoXPipeline(DiffusionPipeline):
|
||||
self,
|
||||
height,
|
||||
width,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
):
|
||||
if height % 8 != 0 or width % 8 != 0:
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
||||
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
|
||||
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
||||
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
||||
raise ValueError(
|
||||
@ -297,7 +239,6 @@ class CogVideoXPipeline(DiffusionPipeline):
|
||||
return self._interrupt
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
height: int = 480,
|
||||
@ -314,25 +255,12 @@ class CogVideoXPipeline(DiffusionPipeline):
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
output_type: str = "pil",
|
||||
return_dict: bool = True,
|
||||
callback_on_step_end: Optional[
|
||||
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
||||
] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
device = torch.device("cuda"),
|
||||
) -> Union[CogVideoXPipelineOutput, Tuple]:
|
||||
):
|
||||
"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
||||
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
@ -371,37 +299,12 @@ class CogVideoXPipeline(DiffusionPipeline):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
||||
of a plain tuple.
|
||||
callback_on_step_end (`Callable`, *optional*):
|
||||
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
||||
`callback_on_step_end_tensor_inputs`.
|
||||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] or `tuple`:
|
||||
[`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] if `return_dict` is True, otherwise a
|
||||
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
||||
"""
|
||||
|
||||
assert (
|
||||
num_frames <= 48 and num_frames % fps == 0 and fps == 8
|
||||
), f"The number of frames must be divisible by {fps=} and less than 48 frames (for now). Other values are not supported in CogVideoX."
|
||||
|
||||
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
||||
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
||||
|
||||
height = height or self.transformer.config.sample_size * self.vae_scale_factor_spatial
|
||||
width = width or self.transformer.config.sample_size * self.vae_scale_factor_spatial
|
||||
num_videos_per_prompt = 1
|
||||
@ -410,7 +313,6 @@ class CogVideoXPipeline(DiffusionPipeline):
|
||||
self.check_inputs(
|
||||
height,
|
||||
width,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
)
|
||||
@ -503,17 +405,6 @@ class CogVideoXPipeline(DiffusionPipeline):
|
||||
)
|
||||
latents = latents.to(prompt_embeds.dtype)
|
||||
|
||||
# call the callback, if provided
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
||||
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
comfy_pbar.update(1)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user