Support CogVideoX-Fun lora loading

This commit is contained in:
kijai 2024-10-04 01:53:40 +03:00
parent 4fb602cad5
commit 3efe90ba35
2 changed files with 522 additions and 8 deletions

477
cogvideox_fun/lora_utils.py Normal file
View File

@ -0,0 +1,477 @@
# LoRA network module
# reference:
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
# https://github.com/bmaltais/kohya_ss
import hashlib
import math
import os
from collections import defaultdict
from io import BytesIO
from typing import List, Optional, Type, Union
import safetensors.torch
import torch
import torch.utils.checkpoint
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
from safetensors.torch import load_file
from transformers import T5EncoderModel
class LoRAModule(torch.nn.Module):
"""
replaces forward method of the original Linear, instead of replacing the original Linear module.
"""
def __init__(
self,
lora_name,
org_module: torch.nn.Module,
multiplier=1.0,
lora_dim=4,
alpha=1,
dropout=None,
rank_dropout=None,
module_dropout=None,
):
"""if alpha == 0 or None, alpha is rank (no scaling)."""
super().__init__()
self.lora_name = lora_name
if org_module.__class__.__name__ == "Conv2d":
in_dim = org_module.in_channels
out_dim = org_module.out_channels
else:
in_dim = org_module.in_features
out_dim = org_module.out_features
self.lora_dim = lora_dim
if org_module.__class__.__name__ == "Conv2d":
kernel_size = org_module.kernel_size
stride = org_module.stride
padding = org_module.padding
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
else:
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)
if type(alpha) == torch.Tensor:
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
self.scale = alpha / self.lora_dim
self.register_buffer("alpha", torch.tensor(alpha))
# same as microsoft's
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
torch.nn.init.zeros_(self.lora_up.weight)
self.multiplier = multiplier
self.org_module = org_module # remove in applying
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
def apply_to(self):
self.org_forward = self.org_module.forward
self.org_module.forward = self.forward
del self.org_module
def forward(self, x, *args, **kwargs):
weight_dtype = x.dtype
org_forwarded = self.org_forward(x)
# module dropout
if self.module_dropout is not None and self.training:
if torch.rand(1) < self.module_dropout:
return org_forwarded
lx = self.lora_down(x.to(self.lora_down.weight.dtype))
# normal dropout
if self.dropout is not None and self.training:
lx = torch.nn.functional.dropout(lx, p=self.dropout)
# rank dropout
if self.rank_dropout is not None and self.training:
mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout
if len(lx.size()) == 3:
mask = mask.unsqueeze(1) # for Text Encoder
elif len(lx.size()) == 4:
mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d
lx = lx * mask
# scaling for rank dropout: treat as if the rank is changed
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability
else:
scale = self.scale
lx = self.lora_up(lx)
return org_forwarded.to(weight_dtype) + lx.to(weight_dtype) * self.multiplier * scale
def addnet_hash_legacy(b):
"""Old model hash used by sd-webui-additional-networks for .safetensors format files"""
m = hashlib.sha256()
b.seek(0x100000)
m.update(b.read(0x10000))
return m.hexdigest()[0:8]
def addnet_hash_safetensors(b):
"""New model hash used by sd-webui-additional-networks for .safetensors format files"""
hash_sha256 = hashlib.sha256()
blksize = 1024 * 1024
b.seek(0)
header = b.read(8)
n = int.from_bytes(header, "little")
offset = n + 8
b.seek(offset)
for chunk in iter(lambda: b.read(blksize), b""):
hash_sha256.update(chunk)
return hash_sha256.hexdigest()
def precalculate_safetensors_hashes(tensors, metadata):
"""Precalculate the model hashes needed by sd-webui-additional-networks to
save time on indexing the model later."""
# Because writing user metadata to the file can change the result of
# sd_models.model_hash(), only retain the training metadata for purposes of
# calculating the hash, as they are meant to be immutable
metadata = {k: v for k, v in metadata.items() if k.startswith("ss_")}
bytes = safetensors.torch.save(tensors, metadata)
b = BytesIO(bytes)
model_hash = addnet_hash_safetensors(b)
legacy_hash = addnet_hash_legacy(b)
return model_hash, legacy_hash
class LoRANetwork(torch.nn.Module):
TRANSFORMER_TARGET_REPLACE_MODULE = ["CogVideoXTransformer3DModel"]
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["T5LayerSelfAttention", "T5LayerFF", "BertEncoder"]
LORA_PREFIX_TRANSFORMER = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
def __init__(
self,
text_encoder: Union[List[T5EncoderModel], T5EncoderModel],
unet,
multiplier: float = 1.0,
lora_dim: int = 4,
alpha: float = 1,
dropout: Optional[float] = None,
module_class: Type[object] = LoRAModule,
add_lora_in_attn_temporal: bool = False,
varbose: Optional[bool] = False,
) -> None:
super().__init__()
self.multiplier = multiplier
self.lora_dim = lora_dim
self.alpha = alpha
self.dropout = dropout
print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}")
print(f"neuron dropout: p={self.dropout}")
# create module instances
def create_modules(
is_unet: bool,
root_module: torch.nn.Module,
target_replace_modules: List[torch.nn.Module],
) -> List[LoRAModule]:
prefix = (
self.LORA_PREFIX_TRANSFORMER
if is_unet
else self.LORA_PREFIX_TEXT_ENCODER
)
loras = []
skipped = []
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
is_linear = child_module.__class__.__name__ == "Linear" or child_module.__class__.__name__ == "LoRACompatibleLinear"
is_conv2d = child_module.__class__.__name__ == "Conv2d" or child_module.__class__.__name__ == "LoRACompatibleConv"
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
if not add_lora_in_attn_temporal:
if "attn_temporal" in child_name:
continue
if is_linear or is_conv2d:
lora_name = prefix + "." + name + "." + child_name
lora_name = lora_name.replace(".", "_")
dim = None
alpha = None
if is_linear or is_conv2d_1x1:
dim = self.lora_dim
alpha = self.alpha
if dim is None or dim == 0:
if is_linear or is_conv2d_1x1:
skipped.append(lora_name)
continue
lora = module_class(
lora_name,
child_module,
self.multiplier,
dim,
alpha,
dropout=dropout,
)
loras.append(lora)
return loras, skipped
text_encoders = text_encoder if type(text_encoder) == list else [text_encoder]
self.text_encoder_loras = []
skipped_te = []
for i, text_encoder in enumerate(text_encoders):
if text_encoder is not None:
text_encoder_loras, skipped = create_modules(False, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
self.text_encoder_loras.extend(text_encoder_loras)
skipped_te += skipped
print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
self.unet_loras, skipped_un = create_modules(True, unet, LoRANetwork.TRANSFORMER_TARGET_REPLACE_MODULE)
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
# assertion
names = set()
for lora in self.text_encoder_loras + self.unet_loras:
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def apply_to(self, text_encoder, unet, apply_text_encoder=True, apply_unet=True):
if apply_text_encoder:
print("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
print("enable LoRA for U-Net")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
lora.apply_to()
self.add_module(lora.lora_name, lora)
def set_multiplier(self, multiplier):
self.multiplier = multiplier
for lora in self.text_encoder_loras + self.unet_loras:
lora.multiplier = self.multiplier
def load_weights(self, file):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
info = self.load_state_dict(weights_sd, False)
return info
def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr):
self.requires_grad_(True)
all_params = []
def enumerate_params(loras):
params = []
for lora in loras:
params.extend(lora.parameters())
return params
if self.text_encoder_loras:
param_data = {"params": enumerate_params(self.text_encoder_loras)}
if text_encoder_lr is not None:
param_data["lr"] = text_encoder_lr
all_params.append(param_data)
if self.unet_loras:
param_data = {"params": enumerate_params(self.unet_loras)}
if unet_lr is not None:
param_data["lr"] = unet_lr
all_params.append(param_data)
return all_params
def enable_gradient_checkpointing(self):
pass
def get_trainable_params(self):
return self.parameters()
def save_weights(self, file, dtype, metadata):
if metadata is not None and len(metadata) == 0:
metadata = None
state_dict = self.state_dict()
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
# Precalculate model hashes to save time on indexing
if metadata is None:
metadata = {}
model_hash, legacy_hash = precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)
def create_network(
multiplier: float,
network_dim: Optional[int],
network_alpha: Optional[float],
text_encoder: Union[T5EncoderModel, List[T5EncoderModel]],
transformer,
neuron_dropout: Optional[float] = None,
add_lora_in_attn_temporal: bool = False,
**kwargs,
):
if network_dim is None:
network_dim = 4 # default
if network_alpha is None:
network_alpha = 1.0
network = LoRANetwork(
text_encoder,
transformer,
multiplier=multiplier,
lora_dim=network_dim,
alpha=network_alpha,
dropout=neuron_dropout,
add_lora_in_attn_temporal=add_lora_in_attn_temporal,
varbose=True,
)
return network
def merge_lora(pipeline, lora_path, multiplier, device='cpu', dtype=torch.float32, state_dict=None, transformer_only=False):
LORA_PREFIX_TRANSFORMER = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
if state_dict is None:
state_dict = load_file(lora_path, device=device)
else:
state_dict = state_dict
updates = defaultdict(dict)
for key, value in state_dict.items():
layer, elem = key.split('.', 1)
updates[layer][elem] = value
for layer, elems in updates.items():
if "lora_te" in layer:
if transformer_only:
continue
else:
layer_infos = layer.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
curr_layer = pipeline.text_encoder
else:
layer_infos = layer.split(LORA_PREFIX_TRANSFORMER + "_")[-1].split("_")
curr_layer = pipeline.transformer
temp_name = layer_infos.pop(0)
while len(layer_infos) > -1:
try:
curr_layer = curr_layer.__getattr__(temp_name)
if len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
elif len(layer_infos) == 0:
break
except Exception:
if len(layer_infos) == 0:
print('Error loading layer')
if len(temp_name) > 0:
temp_name += "_" + layer_infos.pop(0)
else:
temp_name = layer_infos.pop(0)
weight_up = elems['lora_up.weight'].to(dtype)
weight_down = elems['lora_down.weight'].to(dtype)
if 'alpha' in elems.keys():
alpha = elems['alpha'].item() / weight_up.shape[1]
else:
alpha = 1.0
curr_layer.weight.data = curr_layer.weight.data.to(device)
if len(weight_up.shape) == 4:
curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up.squeeze(3).squeeze(2),
weight_down.squeeze(3).squeeze(2)).unsqueeze(
2).unsqueeze(3)
else:
curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up, weight_down)
return pipeline
# TODO: Refactor with merge_lora.
def unmerge_lora(pipeline, lora_path, multiplier=1, device="cpu", dtype=torch.float32):
"""Unmerge state_dict in LoRANetwork from the pipeline in diffusers."""
LORA_PREFIX_UNET = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
state_dict = load_file(lora_path, device=device)
updates = defaultdict(dict)
for key, value in state_dict.items():
layer, elem = key.split('.', 1)
updates[layer][elem] = value
for layer, elems in updates.items():
if "lora_te" in layer:
layer_infos = layer.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
curr_layer = pipeline.text_encoder
else:
layer_infos = layer.split(LORA_PREFIX_UNET + "_")[-1].split("_")
curr_layer = pipeline.transformer
temp_name = layer_infos.pop(0)
while len(layer_infos) > -1:
try:
curr_layer = curr_layer.__getattr__(temp_name)
if len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
elif len(layer_infos) == 0:
break
except Exception:
if len(layer_infos) == 0:
print('Error loading layer')
if len(temp_name) > 0:
temp_name += "_" + layer_infos.pop(0)
else:
temp_name = layer_infos.pop(0)
weight_up = elems['lora_up.weight'].to(dtype)
weight_down = elems['lora_down.weight'].to(dtype)
if 'alpha' in elems.keys():
alpha = elems['alpha'].item() / weight_up.shape[1]
else:
alpha = 1.0
curr_layer.weight.data = curr_layer.weight.data.to(device)
if len(weight_up.shape) == 4:
curr_layer.weight.data -= multiplier * alpha * torch.mm(weight_up.squeeze(3).squeeze(2),
weight_down.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
else:
curr_layer.weight.data -= multiplier * alpha * torch.mm(weight_up, weight_down)
return pipeline

View File

@ -47,6 +47,7 @@ scheduler_mapping = {
from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel
from .pipeline_cogvideox import CogVideoXPipeline from .pipeline_cogvideox import CogVideoXPipeline
from contextlib import nullcontext from contextlib import nullcontext
from pathlib import Path
from .cogvideox_fun.transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelFun from .cogvideox_fun.transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelFun
from .cogvideox_fun.fun_pab_transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelFunPAB from .cogvideox_fun.fun_pab_transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelFunPAB
@ -54,6 +55,7 @@ from .cogvideox_fun.autoencoder_magvit import AutoencoderKLCogVideoX as Autoenco
from .cogvideox_fun.utils import get_image_to_video_latent, get_video_to_video_latent, ASPECT_RATIO_512, get_closest_ratio, to_pil from .cogvideox_fun.utils import get_image_to_video_latent, get_video_to_video_latent, ASPECT_RATIO_512, get_closest_ratio, to_pil
from .cogvideox_fun.pipeline_cogvideox_inpaint import CogVideoX_Fun_Pipeline_Inpaint from .cogvideox_fun.pipeline_cogvideox_inpaint import CogVideoX_Fun_Pipeline_Inpaint
from .cogvideox_fun.pipeline_cogvideox_control import CogVideoX_Fun_Pipeline_Control from .cogvideox_fun.pipeline_cogvideox_control import CogVideoX_Fun_Pipeline_Control
from .cogvideox_fun.lora_utils import merge_lora, unmerge_lora
from PIL import Image from PIL import Image
import numpy as np import numpy as np
import json import json
@ -204,6 +206,34 @@ class CogVideoTransformerEdit:
blocks_to_remove = [int(x.strip()) for x in remove_blocks.split(',')] blocks_to_remove = [int(x.strip()) for x in remove_blocks.split(',')]
log.info(f"Blocks selected for removal: {blocks_to_remove}") log.info(f"Blocks selected for removal: {blocks_to_remove}")
return (blocks_to_remove,) return (blocks_to_remove,)
folder_paths.add_model_folder_path("cogvideox_loras", os.path.join(folder_paths.models_dir, "CogVideo", "loras"))
class CogVideoLoraSelect:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"lora": (folder_paths.get_filename_list("cogvideox_loras"),
{"tooltip": "LORA models are expected to be in ComfyUI/models/CogVideo/loras with .safetensors extension"}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01, "tooltip": "LORA strength, set to 0.0 to unmerge the LORA"}),
},
}
RETURN_TYPES = ("COGLORA",)
RETURN_NAMES = ("lora", )
FUNCTION = "getlorapath"
CATEGORY = "CogVideoWrapper"
def getlorapath(self, lora, strength):
cog_lora = {
"path": folder_paths.get_full_path("cogvideox_loras", lora),
"strength": strength
}
return (cog_lora,)
class DownloadAndLoadCogVideoModel: class DownloadAndLoadCogVideoModel:
@classmethod @classmethod
@ -235,6 +265,7 @@ class DownloadAndLoadCogVideoModel:
"enable_sequential_cpu_offload": ("BOOLEAN", {"default": False, "tooltip": "significantly reducing memory usage and slows down the inference"}), "enable_sequential_cpu_offload": ("BOOLEAN", {"default": False, "tooltip": "significantly reducing memory usage and slows down the inference"}),
"pab_config": ("PAB_CONFIG", {"default": None}), "pab_config": ("PAB_CONFIG", {"default": None}),
"block_edit": ("TRANSFORMERBLOCKS", {"default": None}), "block_edit": ("TRANSFORMERBLOCKS", {"default": None}),
"lora": ("COGLORA", {"default": None}),
} }
} }
@ -243,7 +274,7 @@ class DownloadAndLoadCogVideoModel:
FUNCTION = "loadmodel" FUNCTION = "loadmodel"
CATEGORY = "CogVideoWrapper" CATEGORY = "CogVideoWrapper"
def loadmodel(self, model, precision, fp8_transformer="disabled", compile="disabled", enable_sequential_cpu_offload=False, pab_config=None, block_edit=None): def loadmodel(self, model, precision, fp8_transformer="disabled", compile="disabled", enable_sequential_cpu_offload=False, pab_config=None, block_edit=None, lora=None):
check_diffusers_version() check_diffusers_version()
@ -344,6 +375,14 @@ class DownloadAndLoadCogVideoModel:
vae = AutoencoderKLCogVideoX.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device) vae = AutoencoderKLCogVideoX.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device)
pipe = CogVideoXPipeline(vae, transformer, scheduler, pab_config=pab_config) pipe = CogVideoXPipeline(vae, transformer, scheduler, pab_config=pab_config)
if lora is not None:
if lora['strength'] > 0:
logging.info(f"Merging LoRA weights from {lora['path']} with strength {lora['strength']}")
pipe = merge_lora(pipe, lora["path"], lora["strength"])
else:
logging.info(f"Removing LoRA weights from {lora['path']} with strength {lora['strength']}")
pipe = unmerge_lora(pipe, lora["path"], lora["strength"])
if enable_sequential_cpu_offload: if enable_sequential_cpu_offload:
pipe.enable_sequential_cpu_offload() pipe.enable_sequential_cpu_offload()
@ -1190,6 +1229,7 @@ class CogVideoControlImageEncode:
closest_size, closest_ratio = get_closest_ratio(original_height, original_width, ratios=aspect_ratio_sample_size) closest_size, closest_ratio = get_closest_ratio(original_height, original_width, ratios=aspect_ratio_sample_size)
height, width = [int(x / 16) * 16 for x in closest_size] height, width = [int(x / 16) * 16 for x in closest_size]
log.info(f"Closest bucket size: {width}x{height}")
video_length = int((B - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if B != 1 else 1 video_length = int((B - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if B != 1 else 1
input_video, input_video_mask, clip_image = get_video_to_video_latent(control_video, video_length=video_length, sample_size=(height, width)) input_video, input_video_mask, clip_image = get_video_to_video_latent(control_video, video_length=video_length, sample_size=(height, width))
@ -1294,9 +1334,6 @@ class CogVideoXFunControlSampler:
autocast_context = torch.autocast(mm.get_autocast_device(device)) if autocastcondition else nullcontext() autocast_context = torch.autocast(mm.get_autocast_device(device)) if autocastcondition else nullcontext()
with autocast_context: with autocast_context:
# for _lora_path, _lora_weight in zip(cogvideoxfun_model.get("loras", []), cogvideoxfun_model.get("strength_model", [])):
# pipeline = merge_lora(pipeline, _lora_path, _lora_weight)
common_params = { common_params = {
"prompt_embeds": positive.to(dtype).to(device), "prompt_embeds": positive.to(dtype).to(device),
"negative_prompt_embeds": negative.to(dtype).to(device), "negative_prompt_embeds": negative.to(dtype).to(device),
@ -1320,8 +1357,6 @@ class CogVideoXFunControlSampler:
scheduler_name=scheduler scheduler_name=scheduler
) )
# for _lora_path, _lora_weight in zip(cogvideoxfun_model.get("loras", []), cogvideoxfun_model.get("strength_model", [])):
# pipeline = unmerge_lora(pipeline, _lora_path, _lora_weight)
return (pipeline, {"samples": latents}) return (pipeline, {"samples": latents})
NODE_CLASS_MAPPINGS = { NODE_CLASS_MAPPINGS = {
@ -1338,7 +1373,8 @@ NODE_CLASS_MAPPINGS = {
"DownloadAndLoadCogVideoGGUFModel": DownloadAndLoadCogVideoGGUFModel, "DownloadAndLoadCogVideoGGUFModel": DownloadAndLoadCogVideoGGUFModel,
"CogVideoPABConfig": CogVideoPABConfig, "CogVideoPABConfig": CogVideoPABConfig,
"CogVideoTransformerEdit": CogVideoTransformerEdit, "CogVideoTransformerEdit": CogVideoTransformerEdit,
"CogVideoControlImageEncode": CogVideoControlImageEncode "CogVideoControlImageEncode": CogVideoControlImageEncode,
"CogVideoLoraSelect": CogVideoLoraSelect
} }
NODE_DISPLAY_NAME_MAPPINGS = { NODE_DISPLAY_NAME_MAPPINGS = {
"DownloadAndLoadCogVideoModel": "(Down)load CogVideo Model", "DownloadAndLoadCogVideoModel": "(Down)load CogVideo Model",
@ -1354,5 +1390,6 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"DownloadAndLoadCogVideoGGUFModel": "(Down)load CogVideo GGUF Model", "DownloadAndLoadCogVideoGGUFModel": "(Down)load CogVideo GGUF Model",
"CogVideoPABConfig": "CogVideo PABConfig", "CogVideoPABConfig": "CogVideo PABConfig",
"CogVideoTransformerEdit": "CogVideo TransformerEdit", "CogVideoTransformerEdit": "CogVideo TransformerEdit",
"CogVideoControlImageEncode": "CogVideo Control ImageEncode" "CogVideoControlImageEncode": "CogVideo Control ImageEncode",
"CogVideoLoraSelect": "CogVideo LoraSelect"
} }