Deprecate CogVideoXFunVid2VidSampler and move it's functionality to CogVideoXFunSampler

too many nodes
This commit is contained in:
kijai 2024-10-29 19:18:19 +02:00
parent 5b4819ba65
commit 3f97f07275
2 changed files with 45 additions and 110 deletions

View File

@ -349,7 +349,7 @@ class CogVideoX_Fun_Pipeline_Inpaint(VideoSysPipeline):
noise[:, place_idx:place_idx + delta, :, :, :] = noise[:, list_idx, :, :, :]
# if strength is 1. then initialise the latents to noise, else initial to image + noise
latents = noise if is_strength_max else self.scheduler.add_noise(video_latents, noise, timestep)
latents = noise if is_strength_max else self.scheduler.add_noise(video_latents.to(noise), noise, timestep)
# if pure noise then scale the initial latents by the Scheduler's init sigma
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
latents = latents.to(device)

153
nodes.py
View File

@ -469,7 +469,7 @@ class DownloadAndLoadCogVideoGGUFModel:
"optional": {
"pab_config": ("PAB_CONFIG", {"default": None}),
"block_edit": ("TRANSFORMERBLOCKS", {"default": None}),
"compile": (["disabled","onediff","torch"], {"tooltip": "compile the model for faster inference, these are advanced options only available on Linux, see readme for more info"}),
"compile": (["disabled","torch"], {"tooltip": "compile the model for faster inference, these are advanced options only available on Linux, see readme for more info"}),
}
}
@ -569,9 +569,10 @@ class DownloadAndLoadCogVideoGGUFModel:
from .fp8_optimization import convert_fp8_linear
convert_fp8_linear(transformer, vae_dtype)
# compilation
for i, block in enumerate(transformer.transformer_blocks):
transformer.transformer_blocks[i] = torch.compile(block, fullgraph=False, dynamic=False, backend="inductor")
if compile == "torch":
# compilation
for i, block in enumerate(transformer.transformer_blocks):
transformer.transformer_blocks[i] = torch.compile(block, fullgraph=False, dynamic=False, backend="inductor")
with open(scheduler_path) as f:
scheduler_config = json.load(f)
@ -1107,7 +1108,7 @@ class ToraEncodeTrajectory:
"coordinates": ("STRING", {"forceInput": True}),
"width": ("INT", {"default": 720, "min": 128, "max": 2048, "step": 8}),
"height": ("INT", {"default": 480, "min": 128, "max": 2048, "step": 8}),
"num_frames": ("INT", {"default": 49, "min": 16, "max": 1024, "step": 1}),
"num_frames": ("INT", {"default": 49, "min": 2, "max": 1024, "step": 1}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
@ -1482,6 +1483,8 @@ class CogVideoXFunSampler:
"context_options": ("COGCONTEXT", ),
"tora_trajectory": ("TORAFEATURES", ),
"fastercache": ("FASTERCACHEARGS",),
"vid2vid_images": ("IMAGE",),
"vid2vid_denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
},
}
@ -1491,7 +1494,8 @@ class CogVideoXFunSampler:
CATEGORY = "CogVideoWrapper"
def process(self, pipeline, positive, negative, video_length, base_resolution, seed, steps, cfg, scheduler,
start_img=None, end_img=None, opt_empty_latent=None, noise_aug_strength=0.0563, context_options=None, fastercache=None, tora_trajectory=None):
start_img=None, end_img=None, opt_empty_latent=None, noise_aug_strength=0.0563, context_options=None, fastercache=None,
tora_trajectory=None, vid2vid_images=None, vid2vid_denoise=1.0):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
pipe = pipeline["pipe"]
@ -1506,8 +1510,12 @@ class CogVideoXFunSampler:
mm.soft_empty_cache()
aspect_ratio_sample_size = {key : [x / 512 * base_resolution for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()}
if start_img is not None:
#vid2vid
if vid2vid_images is not None:
validation_video = np.array(vid2vid_images.cpu().numpy() * 255, np.uint8)
original_width, original_height = Image.fromarray(validation_video[0]).size
#img2vid
elif start_img is not None:
start_img = [to_pil(_start_img) for _start_img in start_img] if start_img is not None else None
end_img = [to_pil(_end_img) for _end_img in end_img] if end_img is not None else None
# Count most suitable height and width
@ -1560,28 +1568,34 @@ class CogVideoXFunSampler:
autocast_context = torch.autocast(mm.get_autocast_device(device)) if autocastcondition else nullcontext()
with autocast_context:
video_length = int((video_length - 1) // pipe.vae.config.temporal_compression_ratio * pipe.vae.config.temporal_compression_ratio) + 1 if video_length != 1 else 1
input_video, input_video_mask, clip_image = get_image_to_video_latent(start_img, end_img, video_length=video_length, sample_size=(height, width))
if vid2vid_images is not None:
input_video, input_video_mask, clip_image = get_video_to_video_latent(validation_video, video_length=video_length, sample_size=(height, width))
else:
input_video, input_video_mask, clip_image = get_image_to_video_latent(start_img, end_img, video_length=video_length, sample_size=(height, width))
common_params = {
"prompt_embeds": positive.to(dtype).to(device),
"negative_prompt_embeds": negative.to(dtype).to(device),
"num_frames": video_length,
"height": height,
"width": width,
"generator": generator,
"guidance_scale": cfg,
"num_inference_steps": steps,
"comfyui_progressbar": True,
"context_schedule":context_options["context_schedule"] if context_options is not None else None,
"context_frames":context_frames,
"context_stride": context_stride,
"context_overlap": context_overlap,
"freenoise":context_options["freenoise"] if context_options is not None else None,
"tora":tora_trajectory if tora_trajectory is not None else None,
}
latents = pipe(
prompt_embeds=positive.to(dtype).to(device),
negative_prompt_embeds=negative.to(dtype).to(device),
num_frames = video_length,
height = height,
width = width,
generator = generator,
guidance_scale = cfg,
num_inference_steps = steps,
**common_params,
video = input_video,
mask_video = input_video_mask,
comfyui_progressbar = True,
noise_aug_strength = noise_aug_strength,
context_schedule=context_options["context_schedule"] if context_options is not None else None,
context_frames=context_frames,
context_stride= context_stride,
context_overlap= context_overlap,
freenoise=context_options["freenoise"] if context_options is not None else None,
tora=tora_trajectory if tora_trajectory is not None else None,
strength = vid2vid_denoise,
)
#if not pipeline["cpu_offloading"]:
# pipe.transformer.to(offload_device)
@ -1594,95 +1608,16 @@ class CogVideoXFunVid2VidSampler:
def INPUT_TYPES(s):
return {
"required": {
"pipeline": ("COGVIDEOPIPE",),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"video_length": ("INT", {"default": 49, "min": 5, "max": 49, "step": 4}),
"base_resolution": ("INT", {"min": 64, "max": 1280, "step": 64, "default": 512, "tooltip": "Base resolution, closest training data bucket resolution is chosen based on the selection."}),
"seed": ("INT", {"default": 42, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 25, "min": 1, "max": 200, "step": 1}),
"cfg": ("FLOAT", {"default": 6.0, "min": 1.0, "max": 20.0, "step": 0.01}),
"scheduler": (available_schedulers,
{
"default": 'DDIM'
}
),
"denoise_strength": ("FLOAT", {"default": 0.70, "min": 0.05, "max": 1.00, "step": 0.01}),
"validation_video": ("IMAGE",),
"note": ("STRING", {"default": "This node is deprecated, functionality moved to 'CogVideoXFunSampler' node instead.", "multiline": True}),
},
}
RETURN_TYPES = ("COGVIDEOPIPE", "LATENT",)
RETURN_NAMES = ("cogvideo_pipe", "samples",)
RETURN_TYPES = ()
FUNCTION = "process"
CATEGORY = "CogVideoWrapper"
def process(self, pipeline, positive, negative, video_length, base_resolution, seed, steps, cfg, denoise_strength, scheduler,
validation_video):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
pipe = pipeline["pipe"]
dtype = pipeline["dtype"]
base_path = pipeline["base_path"]
assert "fun" in base_path.lower(), "'Unfun' models not supported in 'CogVideoXFunSampler', use the 'CogVideoSampler'"
assert "pose" not in base_path.lower(), "'Pose' models not supported in 'CogVideoXFunVid2VidSampler', use the 'CogVideoXFunControlSampler'"
if not pipeline["cpu_offloading"]:
pipe.enable_model_cpu_offload(device=device)
mm.soft_empty_cache()
# Count most suitable height and width
aspect_ratio_sample_size = {key : [x / 512 * base_resolution for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()}
validation_video = np.array(validation_video.cpu().numpy() * 255, np.uint8)
original_width, original_height = Image.fromarray(validation_video[0]).size
closest_size, closest_ratio = get_closest_ratio(original_height, original_width, ratios=aspect_ratio_sample_size)
height, width = [int(x / 16) * 16 for x in closest_size]
# Load Sampler
scheduler_config = pipeline["scheduler_config"]
if scheduler in scheduler_mapping:
noise_scheduler = scheduler_mapping[scheduler].from_config(scheduler_config)
pipe.scheduler = noise_scheduler
else:
raise ValueError(f"Unknown scheduler: {scheduler}")
generator = torch.Generator(device=torch.device("cpu")).manual_seed(seed)
autocastcondition = not pipeline["onediff"] or not dtype == torch.float32
autocast_context = torch.autocast(mm.get_autocast_device(device)) if autocastcondition else nullcontext()
with autocast_context:
video_length = int((video_length - 1) // pipe.vae.config.temporal_compression_ratio * pipe.vae.config.temporal_compression_ratio) + 1 if video_length != 1 else 1
input_video, input_video_mask, clip_image = get_video_to_video_latent(validation_video, video_length=video_length, sample_size=(height, width))
# for _lora_path, _lora_weight in zip(cogvideoxfun_model.get("loras", []), cogvideoxfun_model.get("strength_model", [])):
# pipeline = merge_lora(pipeline, _lora_path, _lora_weight)
common_params = {
"prompt_embeds": positive.to(dtype).to(device),
"negative_prompt_embeds": negative.to(dtype).to(device),
"num_frames": video_length,
"height": height,
"width": width,
"generator": generator,
"guidance_scale": cfg,
"num_inference_steps": steps,
"comfyui_progressbar": True,
}
latents = pipe(
**common_params,
video=input_video,
mask_video=input_video_mask,
strength=float(denoise_strength)
)
# for _lora_path, _lora_weight in zip(cogvideoxfun_model.get("loras", []), cogvideoxfun_model.get("strength_model", [])):
# pipeline = unmerge_lora(pipeline, _lora_path, _lora_weight)
return (pipeline, {"samples": latents})
DEPRECATED = True
def process(self):
return ()
def add_noise_to_reference_video(image, ratio=None):
if ratio is None: