diff --git a/model_loading.py b/model_loading.py index 780295f..695804a 100644 --- a/model_loading.py +++ b/model_loading.py @@ -36,8 +36,6 @@ except: import torch import torch.nn as nn -from .utils import check_diffusers_version, remove_specific_blocks, log -check_diffusers_version() from diffusers.models import AutoencoderKLCogVideoX from diffusers.schedulers import CogVideoXDDIMScheduler @@ -45,15 +43,6 @@ from .custom_cogvideox_transformer_3d import CogVideoXTransformer3DModel from .pipeline_cogvideox import CogVideoXPipeline from contextlib import nullcontext -from .cogvideox_fun.transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelFun -from .cogvideox_fun.fun_pab_transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelFunPAB -from .cogvideox_fun.autoencoder_magvit import AutoencoderKLCogVideoX as AutoencoderKLCogVideoXFun - -from .cogvideox_fun.pipeline_cogvideox_inpaint import CogVideoX_Fun_Pipeline_Inpaint -from .cogvideox_fun.pipeline_cogvideox_control import CogVideoX_Fun_Pipeline_Control - -from .videosys.cogvideox_transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelPAB - from accelerate import init_empty_weights from accelerate.utils import set_module_tensor_to_device @@ -231,8 +220,6 @@ class DownloadAndLoadCogVideoModel: if block_edit is not None: transformer = remove_specific_blocks(transformer, block_edit) - - with open(scheduler_path) as f: scheduler_config = json.load(f) @@ -274,22 +261,6 @@ class DownloadAndLoadCogVideoModel: for l in lora: pipe.set_adapters(adapter_list, adapter_weights=adapter_weights) if fuse: - pipe.fuse_lora(lora_scale=lora[-1]["strength"] / lora_rank, components=["transformer"]) - - #fp8 - if fp8_transformer == "enabled" or fp8_transformer == "fastmode": - for name, param in pipe.transformer.named_parameters(): - params_to_keep = {"patch_embed", "lora", "pos_embedding"} - if not any(keyword in name for keyword in params_to_keep): - param.data = param.data.to(torch.float8_e4m3fn) - - if fp8_transformer == "fastmode": - from .fp8_optimization import convert_fp8_linear - convert_fp8_linear(pipe.transformer, dtype) - - if enable_sequential_cpu_offload: - pipe.enable_sequential_cpu_offload() - lora_scale = 1 dimension_loras = ["orbit", "dimensionx"] # for now dimensionx loras need scaling if any(item in lora[-1]["path"].lower() for item in dimension_loras): @@ -1057,4 +1028,4 @@ NODE_DISPLAY_NAME_MAPPINGS = { "CogVideoLoraSelect": "CogVideo LoraSelect", "CogVideoXVAELoader": "CogVideoX VAE Loader", "CogVideoXModelLoader": "CogVideoX Model Loader", - } + } \ No newline at end of file