mirror of
https://git.datalinker.icu/kijai/ComfyUI-CogVideoXWrapper.git
synced 2025-12-09 21:04:23 +08:00
initial CogVideoX-Fun 1.1 support
every possible model/workflow combination not tested yet
This commit is contained in:
parent
513a2ab090
commit
55325f97a7
@ -453,6 +453,7 @@ class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin):
|
||||
spatial_interpolation_scale: float = 1.875,
|
||||
temporal_interpolation_scale: float = 1.0,
|
||||
use_rotary_positional_embeddings: bool = False,
|
||||
add_noise_in_inpaint_model: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
inner_dim = num_attention_heads * attention_head_dim
|
||||
@ -568,6 +569,7 @@ class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin):
|
||||
timestep: Union[int, float, torch.LongTensor],
|
||||
timestep_cond: Optional[torch.Tensor] = None,
|
||||
inpaint_latents: Optional[torch.Tensor] = None,
|
||||
control_latents: Optional[torch.Tensor] = None,
|
||||
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
return_dict: bool = True,
|
||||
):
|
||||
@ -586,6 +588,8 @@ class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin):
|
||||
# 2. Patch embedding
|
||||
if inpaint_latents is not None:
|
||||
hidden_states = torch.concat([hidden_states, inpaint_latents], 2)
|
||||
if control_latents is not None:
|
||||
hidden_states = torch.concat([hidden_states, control_latents], 2)
|
||||
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
|
||||
|
||||
# 3. Position embedding
|
||||
|
||||
707
cogvideox_fun/pipeline_cogvideox_control.py
Normal file
707
cogvideox_fun/pipeline_cogvideox_control.py
Normal file
@ -0,0 +1,707 @@
|
||||
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
|
||||
# All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
|
||||
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
||||
from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel
|
||||
from diffusers.models.embeddings import get_3d_rotary_pos_embed
|
||||
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
||||
from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
|
||||
from diffusers.utils import BaseOutput, logging, replace_example_docstring
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
from diffusers.video_processor import VideoProcessor
|
||||
from diffusers.image_processor import VaeImageProcessor
|
||||
from einops import rearrange
|
||||
|
||||
from ..videosys.core.pipeline import VideoSysPipeline
|
||||
from ..videosys.cogvideox_transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelPAB
|
||||
from ..videosys.core.pab_mgr import set_pab_manager
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```python
|
||||
>>> import torch
|
||||
>>> from diffusers import CogVideoX_Fun_Pipeline
|
||||
>>> from diffusers.utils import export_to_video
|
||||
|
||||
>>> # Models: "THUDM/CogVideoX-2b" or "THUDM/CogVideoX-5b"
|
||||
>>> pipe = CogVideoX_Fun_Pipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=torch.float16).to("cuda")
|
||||
>>> prompt = (
|
||||
... "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. "
|
||||
... "The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other "
|
||||
... "pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, "
|
||||
... "casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. "
|
||||
... "The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical "
|
||||
... "atmosphere of this unique musical performance."
|
||||
... )
|
||||
>>> video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]
|
||||
>>> export_to_video(video, "output.mp4", fps=8)
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
# Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid
|
||||
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
|
||||
tw = tgt_width
|
||||
th = tgt_height
|
||||
h, w = src
|
||||
r = h / w
|
||||
if r > (th / tw):
|
||||
resize_height = th
|
||||
resize_width = int(round(th / h * w))
|
||||
else:
|
||||
resize_width = tw
|
||||
resize_height = int(round(tw / w * h))
|
||||
|
||||
crop_top = int(round((th - resize_height) / 2.0))
|
||||
crop_left = int(round((tw - resize_width) / 2.0))
|
||||
|
||||
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||
def retrieve_timesteps(
|
||||
scheduler,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
||||
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
||||
|
||||
Args:
|
||||
scheduler (`SchedulerMixin`):
|
||||
The scheduler to get timesteps from.
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
||||
must be `None`.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
||||
`num_inference_steps` and `sigmas` must be `None`.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
||||
`num_inference_steps` and `timesteps` must be `None`.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
||||
second element is the number of inference steps.
|
||||
"""
|
||||
if timesteps is not None and sigmas is not None:
|
||||
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
||||
if timesteps is not None:
|
||||
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accepts_timesteps:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" timestep schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
elif sigmas is not None:
|
||||
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accept_sigmas:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
else:
|
||||
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
return timesteps, num_inference_steps
|
||||
|
||||
|
||||
@dataclass
|
||||
class CogVideoX_Fun_PipelineOutput(BaseOutput):
|
||||
r"""
|
||||
Output class for CogVideo pipelines.
|
||||
|
||||
Args:
|
||||
video (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
|
||||
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
|
||||
denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
|
||||
`(batch_size, num_frames, channels, height, width)`.
|
||||
"""
|
||||
|
||||
videos: torch.Tensor
|
||||
|
||||
|
||||
class CogVideoX_Fun_Pipeline_Control(VideoSysPipeline):
|
||||
r"""
|
||||
Pipeline for text-to-video generation using CogVideoX.
|
||||
|
||||
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
||||
|
||||
Args:
|
||||
vae ([`AutoencoderKL`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
|
||||
transformer ([`CogVideoXTransformer3DModel`]):
|
||||
A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents.
|
||||
scheduler ([`SchedulerMixin`]):
|
||||
A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
|
||||
"""
|
||||
|
||||
_optional_components = []
|
||||
model_cpu_offload_seq = "vae->transformer->vae"
|
||||
|
||||
_callback_tensor_inputs = [
|
||||
"latents",
|
||||
"prompt_embeds",
|
||||
"negative_prompt_embeds",
|
||||
]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vae: AutoencoderKLCogVideoX,
|
||||
transformer: CogVideoXTransformer3DModel,
|
||||
scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler],
|
||||
pab_config = None
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
vae=vae, transformer=transformer, scheduler=scheduler
|
||||
)
|
||||
self.vae_scale_factor_spatial = (
|
||||
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
||||
)
|
||||
self.vae_scale_factor_temporal = (
|
||||
self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4
|
||||
)
|
||||
|
||||
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
|
||||
|
||||
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
||||
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
||||
self.mask_processor = VaeImageProcessor(
|
||||
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
|
||||
)
|
||||
|
||||
if pab_config is not None:
|
||||
set_pab_manager(pab_config)
|
||||
|
||||
def prepare_latents(
|
||||
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
|
||||
):
|
||||
shape = (
|
||||
batch_size,
|
||||
(num_frames - 1) // self.vae_scale_factor_temporal + 1,
|
||||
num_channels_latents,
|
||||
height // self.vae_scale_factor_spatial,
|
||||
width // self.vae_scale_factor_spatial,
|
||||
)
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||
)
|
||||
|
||||
if latents is None:
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
else:
|
||||
latents = latents.to(device)
|
||||
|
||||
# scale the initial noise by the standard deviation required by the scheduler
|
||||
latents = latents * self.scheduler.init_noise_sigma
|
||||
return latents
|
||||
|
||||
def prepare_control_latents(
|
||||
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
||||
):
|
||||
# resize the mask to latents shape as we concatenate the mask to the latents
|
||||
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
||||
# and half precision
|
||||
|
||||
if mask is not None:
|
||||
mask = mask.to(device=device, dtype=self.vae.dtype)
|
||||
bs = 1
|
||||
new_mask = []
|
||||
for i in range(0, mask.shape[0], bs):
|
||||
mask_bs = mask[i : i + bs]
|
||||
mask_bs = self.vae.encode(mask_bs)[0]
|
||||
mask_bs = mask_bs.mode()
|
||||
new_mask.append(mask_bs)
|
||||
mask = torch.cat(new_mask, dim = 0)
|
||||
mask = mask * self.vae.config.scaling_factor
|
||||
|
||||
if masked_image is not None:
|
||||
masked_image = masked_image.to(device=device, dtype=self.vae.dtype)
|
||||
bs = 1
|
||||
new_mask_pixel_values = []
|
||||
for i in range(0, masked_image.shape[0], bs):
|
||||
mask_pixel_values_bs = masked_image[i : i + bs]
|
||||
mask_pixel_values_bs = self.vae.encode(mask_pixel_values_bs)[0]
|
||||
mask_pixel_values_bs = mask_pixel_values_bs.mode()
|
||||
new_mask_pixel_values.append(mask_pixel_values_bs)
|
||||
masked_image_latents = torch.cat(new_mask_pixel_values, dim = 0)
|
||||
masked_image_latents = masked_image_latents * self.vae.config.scaling_factor
|
||||
else:
|
||||
masked_image_latents = None
|
||||
|
||||
return mask, masked_image_latents
|
||||
|
||||
def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
|
||||
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
|
||||
latents = 1 / self.vae.config.scaling_factor * latents
|
||||
|
||||
frames = self.vae.decode(latents).sample
|
||||
frames = (frames / 2 + 0.5).clamp(0, 1)
|
||||
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
||||
frames = frames.cpu().float().numpy()
|
||||
return frames
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
||||
def prepare_extra_step_kwargs(self, generator, eta):
|
||||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||||
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||||
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
||||
# and should be between [0, 1]
|
||||
|
||||
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
extra_step_kwargs = {}
|
||||
if accepts_eta:
|
||||
extra_step_kwargs["eta"] = eta
|
||||
|
||||
# check if the scheduler accepts generator
|
||||
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
if accepts_generator:
|
||||
extra_step_kwargs["generator"] = generator
|
||||
return extra_step_kwargs
|
||||
|
||||
# Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
negative_prompt,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
):
|
||||
if height % 8 != 0 or width % 8 != 0:
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
||||
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt is None and prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
||||
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
||||
raise ValueError(
|
||||
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
||||
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
||||
f" {negative_prompt_embeds.shape}."
|
||||
)
|
||||
|
||||
def fuse_qkv_projections(self) -> None:
|
||||
r"""Enables fused QKV projections."""
|
||||
self.fusing_transformer = True
|
||||
self.transformer.fuse_qkv_projections()
|
||||
|
||||
def unfuse_qkv_projections(self) -> None:
|
||||
r"""Disable QKV projection fusion if enabled."""
|
||||
if not self.fusing_transformer:
|
||||
logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.")
|
||||
else:
|
||||
self.transformer.unfuse_qkv_projections()
|
||||
self.fusing_transformer = False
|
||||
|
||||
def _prepare_rotary_positional_embeddings(
|
||||
self,
|
||||
height: int,
|
||||
width: int,
|
||||
num_frames: int,
|
||||
device: torch.device,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
||||
grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
||||
base_size_width = 720 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
||||
base_size_height = 480 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
||||
|
||||
grid_crops_coords = get_resize_crop_region_for_grid(
|
||||
(grid_height, grid_width), base_size_width, base_size_height
|
||||
)
|
||||
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
|
||||
embed_dim=self.transformer.config.attention_head_dim,
|
||||
crops_coords=grid_crops_coords,
|
||||
grid_size=(grid_height, grid_width),
|
||||
temporal_size=num_frames,
|
||||
use_real=True,
|
||||
)
|
||||
|
||||
freqs_cos = freqs_cos.to(device=device)
|
||||
freqs_sin = freqs_sin.to(device=device)
|
||||
return freqs_cos, freqs_sin
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
||||
def get_timesteps(self, num_inference_steps, strength, device):
|
||||
# get the original timestep using init_timestep
|
||||
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
||||
|
||||
t_start = max(num_inference_steps - init_timestep, 0)
|
||||
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
||||
|
||||
return timesteps, num_inference_steps - t_start
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Optional[Union[str, List[str]]] = None,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
height: int = 480,
|
||||
width: int = 720,
|
||||
video: Union[torch.FloatTensor] = None,
|
||||
control_video: Union[torch.FloatTensor] = None,
|
||||
num_frames: int = 49,
|
||||
num_inference_steps: int = 50,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
guidance_scale: float = 6,
|
||||
use_dynamic_cfg: bool = False,
|
||||
num_videos_per_prompt: int = 1,
|
||||
eta: float = 0.0,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
output_type: str = "numpy",
|
||||
return_dict: bool = False,
|
||||
callback_on_step_end: Optional[
|
||||
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
||||
] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
max_sequence_length: int = 226,
|
||||
comfyui_progressbar: bool = False,
|
||||
) -> Union[CogVideoX_Fun_PipelineOutput, Tuple]:
|
||||
"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
||||
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
||||
num_frames (`int`, defaults to `48`):
|
||||
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will
|
||||
contain 1 extra frame because CogVideoX_Fun is conditioned with (num_seconds * fps + 1) frames where
|
||||
num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that
|
||||
needs to be satisfied is that of divisibility mentioned above.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
||||
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
||||
passed will be used. Must be in descending order.
|
||||
guidance_scale (`float`, *optional*, defaults to 7.0):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of videos to generate per prompt.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
latents (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will ge generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
||||
of a plain tuple.
|
||||
callback_on_step_end (`Callable`, *optional*):
|
||||
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
||||
`callback_on_step_end_tensor_inputs`.
|
||||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
max_sequence_length (`int`, defaults to `226`):
|
||||
Maximum sequence length in encoded prompt. Must be consistent with
|
||||
`self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.cogvideo.pipeline_cogvideox.CogVideoX_Fun_PipelineOutput`] or `tuple`:
|
||||
[`~pipelines.cogvideo.pipeline_cogvideox.CogVideoX_Fun_PipelineOutput`] if `return_dict` is True, otherwise a
|
||||
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
||||
"""
|
||||
|
||||
if num_frames > 49:
|
||||
raise ValueError(
|
||||
"The number of frames must be less than 49 for now due to static positional embeddings. This will be updated in the future to remove this limitation."
|
||||
)
|
||||
|
||||
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
||||
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
||||
|
||||
height = height or self.transformer.config.sample_size * self.vae_scale_factor_spatial
|
||||
width = width or self.transformer.config.sample_size * self.vae_scale_factor_spatial
|
||||
num_videos_per_prompt = 1
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
negative_prompt,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
)
|
||||
self._guidance_scale = guidance_scale
|
||||
self._interrupt = False
|
||||
|
||||
# 2. Default call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
||||
|
||||
# 4. Prepare timesteps
|
||||
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
||||
self._num_timesteps = len(timesteps)
|
||||
if comfyui_progressbar:
|
||||
from comfy.utils import ProgressBar
|
||||
pbar = ProgressBar(num_inference_steps + 2)
|
||||
|
||||
# 5. Prepare latents.
|
||||
latent_channels = self.vae.config.latent_channels
|
||||
latents = self.prepare_latents(
|
||||
batch_size * num_videos_per_prompt,
|
||||
latent_channels,
|
||||
num_frames,
|
||||
height,
|
||||
width,
|
||||
self.vae.dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
if comfyui_progressbar:
|
||||
pbar.update(1)
|
||||
|
||||
if control_video is not None:
|
||||
video_length = control_video.shape[2]
|
||||
control_video = self.image_processor.preprocess(rearrange(control_video, "b c f h w -> (b f) c h w"), height=height, width=width)
|
||||
control_video = control_video.to(dtype=torch.float32)
|
||||
control_video = rearrange(control_video, "(b f) c h w -> b c f h w", f=video_length)
|
||||
else:
|
||||
control_video = None
|
||||
control_video_latents = self.prepare_control_latents(
|
||||
None,
|
||||
control_video,
|
||||
batch_size,
|
||||
height,
|
||||
width,
|
||||
self.vae.dtype,
|
||||
device,
|
||||
generator,
|
||||
do_classifier_free_guidance
|
||||
)[1]
|
||||
control_video_latents_input = (
|
||||
torch.cat([control_video_latents] * 2) if do_classifier_free_guidance else control_video_latents
|
||||
)
|
||||
control_latents = rearrange(control_video_latents_input, "b c f h w -> b f c h w")
|
||||
|
||||
if comfyui_progressbar:
|
||||
pbar.update(1)
|
||||
|
||||
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||||
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||||
|
||||
# 7. Create rotary embeds if required
|
||||
image_rotary_emb = (
|
||||
self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device)
|
||||
if self.transformer.config.use_rotary_positional_embeddings
|
||||
else None
|
||||
)
|
||||
|
||||
# 8. Denoising loop
|
||||
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
||||
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
# for DPM-solver++
|
||||
old_pred_original_sample = None
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latent_model_input.shape[0])
|
||||
|
||||
# predict noise model_output
|
||||
noise_pred = self.transformer(
|
||||
hidden_states=latent_model_input,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
timestep=timestep,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
return_dict=False,
|
||||
control_latents=control_latents,
|
||||
)[0]
|
||||
noise_pred = noise_pred.float()
|
||||
|
||||
# perform guidance
|
||||
if use_dynamic_cfg:
|
||||
self._guidance_scale = 1 + guidance_scale * (
|
||||
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
|
||||
)
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
if not isinstance(self.scheduler, CogVideoXDPMScheduler):
|
||||
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
||||
else:
|
||||
latents, old_pred_original_sample = self.scheduler.step(
|
||||
noise_pred,
|
||||
old_pred_original_sample,
|
||||
t,
|
||||
timesteps[i - 1] if i > 0 else None,
|
||||
latents,
|
||||
**extra_step_kwargs,
|
||||
return_dict=False,
|
||||
)
|
||||
latents = latents.to(prompt_embeds.dtype)
|
||||
|
||||
# call the callback, if provided
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
||||
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
if comfyui_progressbar:
|
||||
pbar.update(1)
|
||||
|
||||
# if output_type == "numpy":
|
||||
# video = self.decode_latents(latents)
|
||||
# elif not output_type == "latent":
|
||||
# video = self.decode_latents(latents)
|
||||
# video = self.video_processor.postprocess_video(video=video, output_type=output_type)
|
||||
# else:
|
||||
# video = latents
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
# if not return_dict:
|
||||
# video = torch.from_numpy(video)
|
||||
|
||||
return latents
|
||||
@ -179,6 +179,17 @@ def resize_mask(mask, latent, process_first_frame_only=True):
|
||||
)
|
||||
return resized_mask
|
||||
|
||||
def add_noise_to_reference_video(image, ratio=None):
|
||||
if ratio is None:
|
||||
sigma = torch.normal(mean=-3.0, std=0.5, size=(image.shape[0],)).to(image.device)
|
||||
sigma = torch.exp(sigma).to(image.dtype)
|
||||
else:
|
||||
sigma = torch.ones((image.shape[0],)).to(image.device, image.dtype) * ratio
|
||||
|
||||
image_noise = torch.randn_like(image) * sigma[:, None, None, None, None]
|
||||
image_noise = torch.where(image==-1, torch.zeros_like(image), image_noise)
|
||||
image = image + image_noise
|
||||
return image
|
||||
|
||||
@dataclass
|
||||
class CogVideoX_Fun_PipelineOutput(BaseOutput):
|
||||
@ -212,7 +223,7 @@ class CogVideoX_Fun_Pipeline_Inpaint(VideoSysPipeline):
|
||||
"""
|
||||
|
||||
_optional_components = []
|
||||
model_cpu_offload_seq = ">vae->transformer->vae"
|
||||
model_cpu_offload_seq = "vae->transformer->vae"
|
||||
|
||||
_callback_tensor_inputs = [
|
||||
"latents",
|
||||
@ -319,7 +330,7 @@ class CogVideoX_Fun_Pipeline_Inpaint(VideoSysPipeline):
|
||||
return outputs
|
||||
|
||||
def prepare_mask_latents(
|
||||
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
||||
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance, noise_aug_strength
|
||||
):
|
||||
# resize the mask to latents shape as we concatenate the mask to the latents
|
||||
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
||||
@ -338,6 +349,8 @@ class CogVideoX_Fun_Pipeline_Inpaint(VideoSysPipeline):
|
||||
mask = mask * self.vae.config.scaling_factor
|
||||
|
||||
if masked_image is not None:
|
||||
if self.transformer.config.add_noise_in_inpaint_model:
|
||||
masked_image = add_noise_to_reference_video(masked_image, ratio=noise_aug_strength)
|
||||
masked_image = masked_image.to(device=device, dtype=self.vae.dtype)
|
||||
bs = 1
|
||||
new_mask_pixel_values = []
|
||||
@ -525,6 +538,7 @@ class CogVideoX_Fun_Pipeline_Inpaint(VideoSysPipeline):
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
max_sequence_length: int = 226,
|
||||
strength: float = 1,
|
||||
noise_aug_strength: float = 0.0563,
|
||||
comfyui_progressbar: bool = False,
|
||||
) -> Union[CogVideoX_Fun_PipelineOutput, Tuple]:
|
||||
"""
|
||||
@ -732,6 +746,7 @@ class CogVideoX_Fun_Pipeline_Inpaint(VideoSysPipeline):
|
||||
device,
|
||||
generator,
|
||||
do_classifier_free_guidance,
|
||||
noise_aug_strength=noise_aug_strength,
|
||||
)
|
||||
mask_latents = resize_mask(1 - mask_condition, masked_video_latents)
|
||||
mask_latents = mask_latents.to(masked_video_latents.device) * self.vae.config.scaling_factor
|
||||
|
||||
@ -277,6 +277,7 @@ class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin):
|
||||
spatial_interpolation_scale: float = 1.875,
|
||||
temporal_interpolation_scale: float = 1.0,
|
||||
use_rotary_positional_embeddings: bool = False,
|
||||
add_noise_in_inpaint_model: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
inner_dim = num_attention_heads * attention_head_dim
|
||||
@ -452,6 +453,7 @@ class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin):
|
||||
timestep: Union[int, float, torch.LongTensor],
|
||||
timestep_cond: Optional[torch.Tensor] = None,
|
||||
inpaint_latents: Optional[torch.Tensor] = None,
|
||||
control_latents: Optional[torch.Tensor] = None,
|
||||
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
return_dict: bool = True,
|
||||
):
|
||||
@ -470,6 +472,8 @@ class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin):
|
||||
# 2. Patch embedding
|
||||
if inpaint_latents is not None:
|
||||
hidden_states = torch.concat([hidden_states, inpaint_latents], 2)
|
||||
if control_latents is not None:
|
||||
hidden_states = torch.concat([hidden_states, control_latents], 2)
|
||||
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
|
||||
|
||||
# 3. Position embedding
|
||||
|
||||
@ -159,13 +159,21 @@ def get_image_to_video_latent(validation_image_start, validation_image_end, vide
|
||||
|
||||
return input_video, input_video_mask, clip_image
|
||||
|
||||
def get_video_to_video_latent(input_video_path, video_length, sample_size):
|
||||
def get_video_to_video_latent(input_video_path, video_length, sample_size, validation_video_mask=None):
|
||||
input_video = input_video_path
|
||||
|
||||
input_video = torch.from_numpy(np.array(input_video))[:video_length]
|
||||
input_video = input_video.permute([3, 0, 1, 2]).unsqueeze(0) / 255
|
||||
|
||||
input_video_mask = torch.zeros_like(input_video[:, :1])
|
||||
input_video_mask[:, :, :] = 255
|
||||
if validation_video_mask is not None:
|
||||
validation_video_mask = Image.open(validation_video_mask).convert('L').resize((sample_size[1], sample_size[0]))
|
||||
input_video_mask = np.where(np.array(validation_video_mask) < 240, 0, 255)
|
||||
|
||||
input_video_mask = torch.from_numpy(np.array(input_video_mask)).unsqueeze(0).unsqueeze(-1).permute([3, 0, 1, 2]).unsqueeze(0)
|
||||
input_video_mask = torch.tile(input_video_mask, [1, 1, input_video.size()[2], 1, 1])
|
||||
input_video_mask = input_video_mask.to(input_video.device, input_video.dtype)
|
||||
else:
|
||||
input_video_mask = torch.zeros_like(input_video[:, :1])
|
||||
input_video_mask[:, :, :] = 255
|
||||
|
||||
return input_video, input_video_mask, None
|
||||
112
nodes.py
112
nodes.py
@ -52,6 +52,7 @@ from .cogvideox_fun.fun_pab_transformer_3d import CogVideoXTransformer3DModel as
|
||||
from .cogvideox_fun.autoencoder_magvit import AutoencoderKLCogVideoX as AutoencoderKLCogVideoXFun
|
||||
from .cogvideox_fun.utils import get_image_to_video_latent, get_video_to_video_latent, ASPECT_RATIO_512, get_closest_ratio, to_pil
|
||||
from .cogvideox_fun.pipeline_cogvideox_inpaint import CogVideoX_Fun_Pipeline_Inpaint
|
||||
from .cogvideox_fun.pipeline_cogvideox_control import CogVideoX_Fun_Pipeline_Control
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
import json
|
||||
@ -216,6 +217,10 @@ class DownloadAndLoadCogVideoModel:
|
||||
"bertjiazheng/KoolCogVideoX-5b",
|
||||
"kijai/CogVideoX-Fun-2b",
|
||||
"kijai/CogVideoX-Fun-5b",
|
||||
"alibaba-pai/CogVideoX-Fun-V1.1-2b-InP",
|
||||
"alibaba-pai/CogVideoX-Fun-V1.1-5b-InP",
|
||||
"alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose",
|
||||
"alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose",
|
||||
],
|
||||
),
|
||||
|
||||
@ -246,31 +251,38 @@ class DownloadAndLoadCogVideoModel:
|
||||
mm.soft_empty_cache()
|
||||
|
||||
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
|
||||
|
||||
download_path = os.path.join(folder_paths.models_dir, "CogVideo")
|
||||
if "Fun" in model:
|
||||
repo_id = "kijai/CogVideoX-Fun-pruned"
|
||||
download_path = os.path.join(folder_paths.models_dir, "CogVideo")
|
||||
if "2b" in model:
|
||||
base_path = os.path.join(folder_paths.models_dir, "CogVideoX_Fun", "CogVideoX-Fun-2b-InP") # location of the official model
|
||||
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_2b.json')
|
||||
if not "1.1" in model:
|
||||
repo_id = "kijai/CogVideoX-Fun-pruned"
|
||||
if "2b" in model:
|
||||
base_path = os.path.join(folder_paths.models_dir, "CogVideoX_Fun", "CogVideoX-Fun-2b-InP") # location of the official model
|
||||
if not os.path.exists(base_path):
|
||||
base_path = os.path.join(download_path, "CogVideoX-Fun-2b-InP")
|
||||
elif "5b" in model:
|
||||
base_path = os.path.join(folder_paths.models_dir, "CogVideoX_Fun", "CogVideoX-Fun-5b-InP") # location of the official model
|
||||
if not os.path.exists(base_path):
|
||||
base_path = os.path.join(download_path, "CogVideoX-Fun-5b-InP")
|
||||
elif "1.1" in model:
|
||||
repo_id = model
|
||||
base_path = os.path.join(folder_paths.models_dir, "CogVideoX_Fun", (model.split("/")[-1])) # location of the official model
|
||||
if not os.path.exists(base_path):
|
||||
base_path = os.path.join(download_path, "CogVideoX-Fun-2b-InP")
|
||||
elif "5b" in model:
|
||||
base_path = os.path.join(folder_paths.models_dir, "CogVideoX_Fun", "CogVideoX-Fun-5b-InP") # location of the official model
|
||||
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_5b.json')
|
||||
if not os.path.exists(base_path):
|
||||
base_path = os.path.join(download_path, "CogVideoX-Fun-5b-InP")
|
||||
|
||||
base_path = os.path.join(download_path, (model.split("/")[-1]))
|
||||
download_path = base_path
|
||||
|
||||
elif "2b" in model:
|
||||
base_path = os.path.join(folder_paths.models_dir, "CogVideo", "CogVideo2B")
|
||||
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_2b.json')
|
||||
download_path = base_path
|
||||
repo_id = model
|
||||
elif "5b" in model:
|
||||
base_path = os.path.join(folder_paths.models_dir, "CogVideo", (model.split("/")[-1]))
|
||||
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_5b.json')
|
||||
download_path = base_path
|
||||
repo_id = model
|
||||
|
||||
if "2b" in model:
|
||||
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_2b.json')
|
||||
elif "5b" in model:
|
||||
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_5b.json')
|
||||
|
||||
if not os.path.exists(base_path):
|
||||
log.info(f"Downloading model to: {base_path}")
|
||||
@ -323,7 +335,10 @@ class DownloadAndLoadCogVideoModel:
|
||||
# VAE
|
||||
if "Fun" in model:
|
||||
vae = AutoencoderKLCogVideoXFun.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device)
|
||||
pipe = CogVideoX_Fun_Pipeline_Inpaint(vae, transformer, scheduler, pab_config=pab_config)
|
||||
if "Pose" in model:
|
||||
pipe = CogVideoX_Fun_Pipeline_Control(vae, transformer, scheduler, pab_config=pab_config)
|
||||
else:
|
||||
pipe = CogVideoX_Fun_Pipeline_Inpaint(vae, transformer, scheduler, pab_config=pab_config)
|
||||
else:
|
||||
vae = AutoencoderKLCogVideoX.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device)
|
||||
pipe = CogVideoXPipeline(vae, transformer, scheduler, pab_config=pab_config)
|
||||
@ -369,7 +384,7 @@ class DownloadAndLoadCogVideoGGUFModel:
|
||||
"CogVideoX_5b_GGUF_Q4_0.safetensors",
|
||||
"CogVideoX_5b_I2V_GGUF_Q4_0.safetensors",
|
||||
"CogVideoX_5b_fun_GGUF_Q4_0.safetensors",
|
||||
#"CogVideoX_2b_fun_GGUF_Q4_0.safetensors"
|
||||
"CogVideoX_5b_fun_1_1_GGUF_Q4_0.safetensors"
|
||||
],
|
||||
),
|
||||
"vae_precision": (["fp16", "fp32", "bf16"], {"default": "bf16", "tooltip": "VAE dtype"}),
|
||||
@ -967,6 +982,7 @@ class CogVideoXFunSampler:
|
||||
"start_img": ("IMAGE",),
|
||||
"end_img": ("IMAGE",),
|
||||
"opt_empty_latent": ("LATENT",),
|
||||
"noise_aug_strength": ("FLOAT", {"default": 0.0563, "min": 0.0, "max": 1.0, "step": 0.001}),
|
||||
},
|
||||
}
|
||||
|
||||
@ -976,7 +992,7 @@ class CogVideoXFunSampler:
|
||||
CATEGORY = "CogVideoWrapper"
|
||||
|
||||
def process(self, pipeline, positive, negative, video_length, base_resolution, seed, steps, cfg, scheduler,
|
||||
start_img=None, end_img=None, opt_empty_latent=None):
|
||||
start_img=None, end_img=None, opt_empty_latent=None, noise_aug_strength=0.0563):
|
||||
device = mm.get_torch_device()
|
||||
offload_device = mm.unet_offload_device()
|
||||
pipe = pipeline["pipe"]
|
||||
@ -1034,6 +1050,7 @@ class CogVideoXFunSampler:
|
||||
video = input_video,
|
||||
mask_video = input_video_mask,
|
||||
comfyui_progressbar = True,
|
||||
noise_aug_strength = noise_aug_strength,
|
||||
)
|
||||
#if not pipeline["cpu_offloading"]:
|
||||
# pipe.transformer.to(offload_device)
|
||||
@ -1084,8 +1101,11 @@ class CogVideoXFunVid2VidSampler:
|
||||
}
|
||||
),
|
||||
"denoise_strength": ("FLOAT", {"default": 0.70, "min": 0.05, "max": 1.00, "step": 0.01}),
|
||||
},
|
||||
"optional":{
|
||||
"validation_video": ("IMAGE",),
|
||||
}
|
||||
"control_video": ("IMAGE",),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("COGVIDEOPIPE", "LATENT",)
|
||||
@ -1093,7 +1113,7 @@ class CogVideoXFunVid2VidSampler:
|
||||
FUNCTION = "process"
|
||||
CATEGORY = "CogVideoWrapper"
|
||||
|
||||
def process(self, pipeline, positive, negative, video_length, base_resolution, seed, steps, cfg, denoise_strength, scheduler, validation_video):
|
||||
def process(self, pipeline, positive, negative, video_length, base_resolution, seed, steps, cfg, denoise_strength, scheduler, validation_video=None, control_video=None):
|
||||
device = mm.get_torch_device()
|
||||
offload_device = mm.unet_offload_device()
|
||||
pipe = pipeline["pipe"]
|
||||
@ -1109,8 +1129,14 @@ class CogVideoXFunVid2VidSampler:
|
||||
|
||||
# Count most suitable height and width
|
||||
aspect_ratio_sample_size = {key : [x / 512 * base_resolution for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()}
|
||||
validation_video = np.array(validation_video.cpu().numpy() * 255, np.uint8)
|
||||
original_width, original_height = Image.fromarray(validation_video[0]).size
|
||||
|
||||
if validation_video is not None:
|
||||
validation_video = np.array(validation_video.cpu().numpy() * 255, np.uint8)
|
||||
original_width, original_height = Image.fromarray(validation_video[0]).size
|
||||
elif control_video is not None:
|
||||
control_video = np.array(control_video.cpu().numpy() * 255, np.uint8)
|
||||
original_width, original_height = Image.fromarray(control_video[0]).size
|
||||
|
||||
closest_size, closest_ratio = get_closest_ratio(original_height, original_width, ratios=aspect_ratio_sample_size)
|
||||
height, width = [int(x / 16) * 16 for x in closest_size]
|
||||
|
||||
@ -1128,26 +1154,38 @@ class CogVideoXFunVid2VidSampler:
|
||||
autocast_context = torch.autocast(mm.get_autocast_device(device)) if autocastcondition else nullcontext()
|
||||
with autocast_context:
|
||||
video_length = int((video_length - 1) // pipe.vae.config.temporal_compression_ratio * pipe.vae.config.temporal_compression_ratio) + 1 if video_length != 1 else 1
|
||||
input_video, input_video_mask, clip_image = get_video_to_video_latent(validation_video, video_length=video_length, sample_size=(height, width))
|
||||
if validation_video is not None:
|
||||
input_video, input_video_mask, clip_image = get_video_to_video_latent(validation_video, video_length=video_length, sample_size=(height, width))
|
||||
elif control_video is not None:
|
||||
input_video, input_video_mask, clip_image = get_video_to_video_latent(control_video, video_length=video_length, sample_size=(height, width))
|
||||
|
||||
# for _lora_path, _lora_weight in zip(cogvideoxfun_model.get("loras", []), cogvideoxfun_model.get("strength_model", [])):
|
||||
# pipeline = merge_lora(pipeline, _lora_path, _lora_weight)
|
||||
|
||||
latents = pipe(
|
||||
prompt_embeds=positive.to(dtype).to(device),
|
||||
negative_prompt_embeds=negative.to(dtype).to(device),
|
||||
num_frames = video_length,
|
||||
height = height,
|
||||
width = width,
|
||||
generator = generator,
|
||||
guidance_scale = cfg,
|
||||
num_inference_steps = steps,
|
||||
common_params = {
|
||||
"prompt_embeds": positive.to(dtype).to(device),
|
||||
"negative_prompt_embeds": negative.to(dtype).to(device),
|
||||
"num_frames": video_length,
|
||||
"height": height,
|
||||
"width": width,
|
||||
"generator": generator,
|
||||
"guidance_scale": cfg,
|
||||
"num_inference_steps": steps,
|
||||
"comfyui_progressbar": True,
|
||||
}
|
||||
|
||||
video = input_video,
|
||||
mask_video = input_video_mask,
|
||||
strength = float(denoise_strength),
|
||||
comfyui_progressbar = True,
|
||||
)
|
||||
if control_video is not None:
|
||||
latents = pipe(
|
||||
**common_params,
|
||||
control_video=input_video
|
||||
)
|
||||
else:
|
||||
latents = pipe(
|
||||
**common_params,
|
||||
video=input_video,
|
||||
mask_video=input_video_mask,
|
||||
strength=float(denoise_strength)
|
||||
)
|
||||
|
||||
# for _lora_path, _lora_weight in zip(cogvideoxfun_model.get("loras", []), cogvideoxfun_model.get("strength_model", [])):
|
||||
# pipeline = unmerge_lora(pipeline, _lora_path, _lora_weight)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user