fix fp8 for I2V

This commit is contained in:
kijai 2024-09-19 00:38:58 +03:00
parent f298ac84b5
commit 5a6bcfd612
2 changed files with 18 additions and 15 deletions

View File

@ -57,8 +57,8 @@ class DownloadAndLoadCogVideoModel:
offload_device = mm.unet_offload_device()
mm.soft_empty_cache()
if "I2V" in model and fp8_transformer != "disabled":
raise NotImplementedError("fp8_transformer is not implemented yet for I2V -model")
#if "I2V" in model and fp8_transformer != "disabled":
# raise NotImplementedError("fp8_transformer is not implemented yet for I2V -model")
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
@ -99,7 +99,15 @@ class DownloadAndLoadCogVideoModel:
if name != "pos_embedding":
param.data = param.data.to(torch.float8_e4m3fn)
else:
transformer.to(torch.float8_e4m3fn)
for name, param in transformer.named_parameters():
if "patch_embed" not in name:
param.data = param.data.to(torch.float8_e4m3fn)
else:
print(name)
print(param.data.dtype)
#transformer.to(torch.float8_e4m3fn)
if fp8_transformer == "fastmode":
from .fp8_optimization import convert_fp8_linear
@ -238,6 +246,9 @@ class CogVideoTextEncode:
return {"required": {
"clip": ("CLIP",),
"prompt": ("STRING", {"default": "", "multiline": True} ),
},
"optional": {
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}
}
@ -246,7 +257,7 @@ class CogVideoTextEncode:
FUNCTION = "process"
CATEGORY = "CogVideoWrapper"
def process(self, clip, prompt):
def process(self, clip, prompt, strength=1.0):
load_device = mm.text_encoder_device()
offload_device = mm.text_encoder_offload_device()
clip.tokenizer.t5xxl.pad_to_max_length = True
@ -255,6 +266,7 @@ class CogVideoTextEncode:
tokens = clip.tokenize(prompt, return_word_ids=True)
embeds = clip.encode_from_tokens(tokens, return_pooled=False, return_dict=False)
embeds *= strength
clip.cond_stage_model.to(offload_device)
return (embeds, )

View File

@ -412,7 +412,7 @@ class CogVideoXPipeline(DiffusionPipeline):
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
prompt_embeds = prompt_embeds.to(self.transformer.dtype)
prompt_embeds = prompt_embeds.to(self.vae.dtype)
# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
@ -442,14 +442,11 @@ class CogVideoXPipeline(DiffusionPipeline):
num_inference_steps,
latents
)
latents = latents.to(self.transformer.dtype)
latents = latents.to(self.vae.dtype)
print("latents", latents.shape)
# 5.5.
if image_cond_latents is not None:
print("image_cond_latents", image_cond_latents.shape)
#image_cond_latents = torch.cat(image_cond_latents, dim=0).to(self.transformer.dtype)#.permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
padding_shape = (
batch_size,
(latents.shape[1] - 1),
@ -457,10 +454,8 @@ class CogVideoXPipeline(DiffusionPipeline):
height // self.vae_scale_factor_spatial,
width // self.vae_scale_factor_spatial,
)
print("padding_shape", padding_shape)
latent_padding = torch.zeros(padding_shape, device=device, dtype=self.transformer.dtype)
image_cond_latents = torch.cat([image_cond_latents, latent_padding], dim=1)
print("image_cond_latents", image_cond_latents.shape)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
@ -602,11 +597,7 @@ class CogVideoXPipeline(DiffusionPipeline):
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
if image_cond_latents is not None:
latent_image_input = torch.cat([image_cond_latents] * 2) if do_classifier_free_guidance else image_cond_latents
print("latent_model_input",latent_model_input.shape)
print("image_cond_latents",image_cond_latents.shape)
latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML