code cleanup

This commit is contained in:
kijai 2024-10-30 21:30:03 +02:00
parent dccc8bdcb7
commit 5ba9b1d634
8 changed files with 668 additions and 660 deletions

View File

@ -1,3 +1,7 @@
from .nodes import NODE_CLASS_MAPPINGS, NODE_DISPLAY_NAME_MAPPINGS
from .nodes import NODE_CLASS_MAPPINGS as NODES_CLASS, NODE_DISPLAY_NAME_MAPPINGS as NODES_DISPLAY
from .model_loading import NODE_CLASS_MAPPINGS as MODEL_CLASS, NODE_DISPLAY_NAME_MAPPINGS as MODEL_DISPLAY
NODE_CLASS_MAPPINGS = {**NODES_CLASS, **MODEL_CLASS}
NODE_DISPLAY_NAME_MAPPINGS = {**NODES_DISPLAY, **MODEL_DISPLAY}
__all__ = ["NODE_CLASS_MAPPINGS", "NODE_DISPLAY_NAME_MAPPINGS"]

View File

@ -378,12 +378,6 @@ class CogVideoXBlock(nn.Module):
elif fastercache_counter > fastercache_start_step:
self.cached_hidden_states[-1].copy_(attn_hidden_states.to(fastercache_device))
self.cached_encoder_hidden_states[-1].copy_(attn_encoder_hidden_states.to(fastercache_device))
# attention
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
)
hidden_states = hidden_states + gate_msa * attn_hidden_states
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states

567
model_loading.py Normal file
View File

@ -0,0 +1,567 @@
import os
import torch
import torch.nn as nn
import json
import folder_paths
import comfy.model_management as mm
from diffusers.models import AutoencoderKLCogVideoX
from diffusers.schedulers import CogVideoXDDIMScheduler
from .custom_cogvideox_transformer_3d import CogVideoXTransformer3DModel
from .pipeline_cogvideox import CogVideoXPipeline
from contextlib import nullcontext
from .cogvideox_fun.transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelFun
from .cogvideox_fun.fun_pab_transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelFunPAB
from .cogvideox_fun.autoencoder_magvit import AutoencoderKLCogVideoX as AutoencoderKLCogVideoXFun
from .cogvideox_fun.pipeline_cogvideox_inpaint import CogVideoX_Fun_Pipeline_Inpaint
from .cogvideox_fun.pipeline_cogvideox_control import CogVideoX_Fun_Pipeline_Control
from .videosys.cogvideox_transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelPAB
from .utils import check_diffusers_version, remove_specific_blocks, log
from comfy.utils import load_torch_file
script_directory = os.path.dirname(os.path.abspath(__file__))
class DownloadAndLoadCogVideoModel:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": (
[
"THUDM/CogVideoX-2b",
"THUDM/CogVideoX-5b",
"THUDM/CogVideoX-5b-I2V",
"bertjiazheng/KoolCogVideoX-5b",
"kijai/CogVideoX-Fun-2b",
"kijai/CogVideoX-Fun-5b",
"kijai/CogVideoX-5b-Tora",
"alibaba-pai/CogVideoX-Fun-V1.1-2b-InP",
"alibaba-pai/CogVideoX-Fun-V1.1-5b-InP",
"alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose",
"alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose",
"feizhengcong/CogvideoX-Interpolation",
"NimVideo/cogvideox-2b-img2vid"
],
),
},
"optional": {
"precision": (["fp16", "fp32", "bf16"],
{"default": "bf16", "tooltip": "official recommendation is that 2b model should be fp16, 5b model should be bf16"}
),
"fp8_transformer": (['disabled', 'enabled', 'fastmode'], {"default": 'disabled', "tooltip": "enabled casts the transformer to torch.float8_e4m3fn, fastmode is only for latest nvidia GPUs and requires torch 2.4.0 and cu124 minimum"}),
"compile": (["disabled","onediff","torch"], {"tooltip": "compile the model for faster inference, these are advanced options only available on Linux, see readme for more info"}),
"enable_sequential_cpu_offload": ("BOOLEAN", {"default": False, "tooltip": "significantly reducing memory usage and slows down the inference"}),
"pab_config": ("PAB_CONFIG", {"default": None}),
"block_edit": ("TRANSFORMERBLOCKS", {"default": None}),
"lora": ("COGLORA", {"default": None}),
}
}
RETURN_TYPES = ("COGVIDEOPIPE",)
RETURN_NAMES = ("cogvideo_pipe", )
FUNCTION = "loadmodel"
CATEGORY = "CogVideoWrapper"
DESCRIPTION = "Downloads and loads the selected CogVideo model from Huggingface to 'ComfyUI/models/CogVideo'"
def loadmodel(self, model, precision, fp8_transformer="disabled", compile="disabled", enable_sequential_cpu_offload=False, pab_config=None, block_edit=None, lora=None):
check_diffusers_version()
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
mm.soft_empty_cache()
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
download_path = folder_paths.get_folder_paths("CogVideo")[0]
if "Fun" in model:
if not "1.1" in model:
repo_id = "kijai/CogVideoX-Fun-pruned"
if "2b" in model:
base_path = os.path.join(folder_paths.models_dir, "CogVideoX_Fun", "CogVideoX-Fun-2b-InP") # location of the official model
if not os.path.exists(base_path):
base_path = os.path.join(download_path, "CogVideoX-Fun-2b-InP")
elif "5b" in model:
base_path = os.path.join(folder_paths.models_dir, "CogVideoX_Fun", "CogVideoX-Fun-5b-InP") # location of the official model
if not os.path.exists(base_path):
base_path = os.path.join(download_path, "CogVideoX-Fun-5b-InP")
elif "1.1" in model:
repo_id = model
base_path = os.path.join(folder_paths.models_dir, "CogVideoX_Fun", (model.split("/")[-1])) # location of the official model
if not os.path.exists(base_path):
base_path = os.path.join(download_path, (model.split("/")[-1]))
download_path = base_path
elif "2b" in model:
if 'img2vid' in model:
base_path = os.path.join(download_path, "cogvideox-2b-img2vid")
download_path = base_path
repo_id = model
else:
base_path = os.path.join(download_path, "CogVideo2B")
download_path = base_path
repo_id = model
else:
base_path = os.path.join(download_path, (model.split("/")[-1]))
download_path = base_path
repo_id = model
if "2b" in model:
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_2b.json')
else:
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_5b.json')
if not os.path.exists(base_path) or not os.path.exists(os.path.join(base_path, "transformer")):
log.info(f"Downloading model to: {base_path}")
from huggingface_hub import snapshot_download
snapshot_download(
repo_id=repo_id,
ignore_patterns=["*text_encoder*", "*tokenizer*"],
local_dir=download_path,
local_dir_use_symlinks=False,
)
# transformer
if "Fun" in model:
if pab_config is not None:
transformer = CogVideoXTransformer3DModelFunPAB.from_pretrained(base_path, subfolder="transformer")
else:
transformer = CogVideoXTransformer3DModelFun.from_pretrained(base_path, subfolder="transformer")
else:
if pab_config is not None:
transformer = CogVideoXTransformer3DModelPAB.from_pretrained(base_path, subfolder="transformer")
else:
transformer = CogVideoXTransformer3DModel.from_pretrained(base_path, subfolder="transformer")
transformer = transformer.to(dtype).to(offload_device)
#LoRAs
if lora is not None:
from .lora_utils import merge_lora, load_lora_into_transformer
if "fun" in model.lower():
for l in lora:
log.info(f"Merging LoRA weights from {l['path']} with strength {l['strength']}")
transformer = merge_lora(transformer, l["path"], l["strength"])
else:
transformer = load_lora_into_transformer(lora, transformer)
if block_edit is not None:
transformer = remove_specific_blocks(transformer, block_edit)
#fp8
if fp8_transformer == "enabled" or fp8_transformer == "fastmode":
for name, param in transformer.named_parameters():
params_to_keep = {"patch_embed", "lora", "pos_embedding"}
if not any(keyword in name for keyword in params_to_keep):
param.data = param.data.to(torch.float8_e4m3fn)
if fp8_transformer == "fastmode":
from .fp8_optimization import convert_fp8_linear
convert_fp8_linear(transformer, dtype)
with open(scheduler_path) as f:
scheduler_config = json.load(f)
scheduler = CogVideoXDDIMScheduler.from_config(scheduler_config)
# VAE
if "Fun" in model:
vae = AutoencoderKLCogVideoXFun.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device)
if "Pose" in model:
pipe = CogVideoX_Fun_Pipeline_Control(vae, transformer, scheduler, pab_config=pab_config)
else:
pipe = CogVideoX_Fun_Pipeline_Inpaint(vae, transformer, scheduler, pab_config=pab_config)
else:
vae = AutoencoderKLCogVideoX.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device)
pipe = CogVideoXPipeline(vae, transformer, scheduler, pab_config=pab_config)
if "cogvideox-2b-img2vid" in model:
pipe.input_with_padding = False
if enable_sequential_cpu_offload:
pipe.enable_sequential_cpu_offload()
# compilation
if compile == "torch":
torch._dynamo.config.suppress_errors = True
pipe.transformer.to(memory_format=torch.channels_last)
#pipe.transformer = torch.compile(pipe.transformer, mode="default", fullgraph=False, backend="inductor")
for i, block in enumerate(pipe.transformer.transformer_blocks):
if "CogVideoXBlock" in str(block):
pipe.transformer.transformer_blocks[i] = torch.compile(block, fullgraph=False, dynamic=False, backend="inductor")
elif compile == "onediff":
from onediffx import compile_pipe
os.environ['NEXFORT_FX_FORCE_TRITON_SDPA'] = '1'
pipe = compile_pipe(
pipe,
backend="nexfort",
options= {"mode": "max-optimize:max-autotune:max-autotune", "memory_format": "channels_last", "options": {"inductor.optimize_linear_epilogue": False, "triton.fuse_attention_allow_fp16_reduction": False}},
ignores=["vae"],
fuse_qkv_projections=True if pab_config is None else False,
)
pipeline = {
"pipe": pipe,
"dtype": dtype,
"base_path": base_path,
"onediff": True if compile == "onediff" else False,
"cpu_offloading": enable_sequential_cpu_offload,
"scheduler_config": scheduler_config,
"model_name": model
}
return (pipeline,)
class DownloadAndLoadCogVideoGGUFModel:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": (
[
"CogVideoX_5b_GGUF_Q4_0.safetensors",
"CogVideoX_5b_I2V_GGUF_Q4_0.safetensors",
"CogVideoX_5b_fun_GGUF_Q4_0.safetensors",
"CogVideoX_5b_fun_1_1_GGUF_Q4_0.safetensors",
"CogVideoX_5b_fun_1_1_Pose_GGUF_Q4_0.safetensors",
"CogVideoX_5b_Interpolation_GGUF_Q4_0.safetensors",
"CogVideoX_5b_Tora_GGUF_Q4_0.safetensors",
],
),
"vae_precision": (["fp16", "fp32", "bf16"], {"default": "bf16", "tooltip": "VAE dtype"}),
"fp8_fastmode": ("BOOLEAN", {"default": False, "tooltip": "only supported on 4090 and later GPUs, also requires torch 2.4.0 with cu124 minimum"}),
"load_device": (["main_device", "offload_device"], {"default": "main_device"}),
"enable_sequential_cpu_offload": ("BOOLEAN", {"default": False, "tooltip": "significantly reducing memory usage and slows down the inference"}),
},
"optional": {
"pab_config": ("PAB_CONFIG", {"default": None}),
"block_edit": ("TRANSFORMERBLOCKS", {"default": None}),
"compile": (["disabled","torch"], {"tooltip": "compile the model for faster inference, these are advanced options only available on Linux, see readme for more info"}),
}
}
RETURN_TYPES = ("COGVIDEOPIPE",)
RETURN_NAMES = ("cogvideo_pipe", )
FUNCTION = "loadmodel"
CATEGORY = "CogVideoWrapper"
def loadmodel(self, model, vae_precision, fp8_fastmode, load_device, enable_sequential_cpu_offload, pab_config=None, block_edit=None, compile="disabled"):
check_diffusers_version()
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
mm.soft_empty_cache()
vae_dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[vae_precision]
download_path = os.path.join(folder_paths.models_dir, 'CogVideo', 'GGUF')
gguf_path = os.path.join(folder_paths.models_dir, 'diffusion_models', model) # check MinusZone's model path first
if not os.path.exists(gguf_path):
gguf_path = os.path.join(download_path, model)
if not os.path.exists(gguf_path):
if "I2V" in model or "1_1" in model or "Interpolation" in model or "Tora" in model:
repo_id = "Kijai/CogVideoX_GGUF"
else:
repo_id = "MinusZoneAI/ComfyUI-CogVideoX-MZ"
log.info(f"Downloading model to: {gguf_path}")
from huggingface_hub import snapshot_download
snapshot_download(
repo_id=repo_id,
allow_patterns=[f"*{model}*"],
local_dir=download_path,
local_dir_use_symlinks=False,
)
if "5b" in model:
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_5b.json')
transformer_path = os.path.join(script_directory, 'configs', 'transformer_config_5b.json')
elif "2b" in model:
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_2b.json')
transformer_path = os.path.join(script_directory, 'configs', 'transformer_config_2b.json')
with open(transformer_path) as f:
transformer_config = json.load(f)
sd = load_torch_file(gguf_path)
from .nodes import mz_gguf_loader
import importlib
importlib.reload(mz_gguf_loader)
with mz_gguf_loader.quantize_lazy_load():
if "fun" in model:
if "Pose" in model:
transformer_config["in_channels"] = 32
else:
transformer_config["in_channels"] = 33
if pab_config is not None:
transformer = CogVideoXTransformer3DModelFunPAB.from_config(transformer_config)
else:
transformer = CogVideoXTransformer3DModelFun.from_config(transformer_config)
elif "I2V" in model or "Interpolation" in model:
transformer_config["in_channels"] = 32
if pab_config is not None:
transformer = CogVideoXTransformer3DModelPAB.from_config(transformer_config)
else:
transformer = CogVideoXTransformer3DModel.from_config(transformer_config)
else:
transformer_config["in_channels"] = 16
if pab_config is not None:
transformer = CogVideoXTransformer3DModelPAB.from_config(transformer_config)
else:
transformer = CogVideoXTransformer3DModel.from_config(transformer_config)
if "2b" in model:
for name, param in transformer.named_parameters():
if name != "pos_embedding":
param.data = param.data.to(torch.float8_e4m3fn)
else:
param.data = param.data.to(torch.float16)
else:
transformer.to(torch.float8_e4m3fn)
if block_edit is not None:
transformer = remove_specific_blocks(transformer, block_edit)
transformer = mz_gguf_loader.quantize_load_state_dict(transformer, sd, device="cpu")
if load_device == "offload_device":
transformer.to(offload_device)
else:
transformer.to(device)
if fp8_fastmode:
from .fp8_optimization import convert_fp8_linear
convert_fp8_linear(transformer, vae_dtype)
if compile == "torch":
# compilation
for i, block in enumerate(transformer.transformer_blocks):
transformer.transformer_blocks[i] = torch.compile(block, fullgraph=False, dynamic=False, backend="inductor")
with open(scheduler_path) as f:
scheduler_config = json.load(f)
scheduler = CogVideoXDDIMScheduler.from_config(scheduler_config, subfolder="scheduler")
# VAE
vae_dl_path = os.path.join(folder_paths.models_dir, 'CogVideo', 'VAE')
vae_path = os.path.join(vae_dl_path, "cogvideox_vae.safetensors")
if not os.path.exists(vae_path):
log.info(f"Downloading VAE model to: {vae_path}")
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="Kijai/CogVideoX-Fun-pruned",
allow_patterns=["*cogvideox_vae.safetensors*"],
local_dir=vae_dl_path,
local_dir_use_symlinks=False,
)
with open(os.path.join(script_directory, 'configs', 'vae_config.json')) as f:
vae_config = json.load(f)
vae_sd = load_torch_file(vae_path)
if "fun" in model:
vae = AutoencoderKLCogVideoXFun.from_config(vae_config).to(vae_dtype).to(offload_device)
vae.load_state_dict(vae_sd)
if "Pose" in model:
pipe = CogVideoX_Fun_Pipeline_Control(vae, transformer, scheduler, pab_config=pab_config)
else:
pipe = CogVideoX_Fun_Pipeline_Inpaint(vae, transformer, scheduler, pab_config=pab_config)
else:
vae = AutoencoderKLCogVideoX.from_config(vae_config).to(vae_dtype).to(offload_device)
vae.load_state_dict(vae_sd)
pipe = CogVideoXPipeline(vae, transformer, scheduler, pab_config=pab_config)
if enable_sequential_cpu_offload:
pipe.enable_sequential_cpu_offload()
pipeline = {
"pipe": pipe,
"dtype": vae_dtype,
"base_path": model,
"onediff": False,
"cpu_offloading": enable_sequential_cpu_offload,
"scheduler_config": scheduler_config,
"model_name": model
}
return (pipeline,)
class DownloadAndLoadToraModel:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": (
[
"kijai/CogVideoX-5b-Tora",
],
),
},
}
RETURN_TYPES = ("TORAMODEL",)
RETURN_NAMES = ("tora_model", )
FUNCTION = "loadmodel"
CATEGORY = "CogVideoWrapper"
DESCRIPTION = "Downloads and loads the the Tora model from Huggingface to 'ComfyUI/models/CogVideo/CogVideoX-5b-Tora'"
def loadmodel(self, model):
check_diffusers_version()
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
mm.soft_empty_cache()
download_path = folder_paths.get_folder_paths("CogVideo")[0]
from .tora.traj_module import MGF
try:
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
is_accelerate_available = True
except:
is_accelerate_available = False
pass
download_path = os.path.join(folder_paths.models_dir, 'CogVideo', "CogVideoX-5b-Tora")
fuser_path = os.path.join(download_path, "fuser", "fuser.safetensors")
if not os.path.exists(fuser_path):
log.info(f"Downloading Fuser model to: {fuser_path}")
from huggingface_hub import snapshot_download
snapshot_download(
repo_id=model,
allow_patterns=["*fuser.safetensors*"],
local_dir=download_path,
local_dir_use_symlinks=False,
)
hidden_size = 3072
num_layers = 42
with (init_empty_weights() if is_accelerate_available else nullcontext()):
fuser_list = nn.ModuleList([MGF(128, hidden_size) for _ in range(num_layers)])
fuser_sd = load_torch_file(fuser_path)
if is_accelerate_available:
for key in fuser_sd:
set_module_tensor_to_device(fuser_list, key, dtype=torch.float16, device=device, value=fuser_sd[key])
else:
fuser_list.load_state_dict(fuser_sd)
for module in fuser_list:
for param in module.parameters():
param.data = param.data.to(torch.bfloat16).to(device)
del fuser_sd
traj_extractor_path = os.path.join(download_path, "traj_extractor", "traj_extractor.safetensors")
if not os.path.exists(traj_extractor_path):
log.info(f"Downloading trajectory extractor model to: {traj_extractor_path}")
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="kijai/CogVideoX-5b-Tora",
allow_patterns=["*traj_extractor.safetensors*"],
local_dir=download_path,
local_dir_use_symlinks=False,
)
from .tora.traj_module import TrajExtractor
with (init_empty_weights() if is_accelerate_available else nullcontext()):
traj_extractor = TrajExtractor(
vae_downsize=(4, 8, 8),
patch_size=2,
nums_rb=2,
cin=16,
channels=[128] * 42,
sk=True,
use_conv=False,
)
traj_sd = load_torch_file(traj_extractor_path)
if is_accelerate_available:
for key in traj_sd:
set_module_tensor_to_device(traj_extractor, key, dtype=torch.float32, device=device, value=traj_sd[key])
else:
traj_extractor.load_state_dict(traj_sd)
traj_extractor.to(torch.float32).to(device)
toramodel = {
"fuser_list": fuser_list,
"traj_extractor": traj_extractor,
}
return (toramodel,)
class DownloadAndLoadCogVideoControlNet:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": (
[
"TheDenk/cogvideox-2b-controlnet-hed-v1",
"TheDenk/cogvideox-2b-controlnet-canny-v1",
"TheDenk/cogvideox-5b-controlnet-hed-v1",
"TheDenk/cogvideox-5b-controlnet-canny-v1"
],
),
},
}
RETURN_TYPES = ("COGVIDECONTROLNETMODEL",)
RETURN_NAMES = ("cogvideo_controlnet", )
FUNCTION = "loadmodel"
CATEGORY = "CogVideoWrapper"
def loadmodel(self, model):
from .cogvideo_controlnet import CogVideoXControlnet
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
mm.soft_empty_cache()
download_path = os.path.join(folder_paths.models_dir, 'CogVideo', 'ControlNet')
base_path = os.path.join(download_path, (model.split("/")[-1]))
if not os.path.exists(base_path):
log.info(f"Downloading model to: {base_path}")
from huggingface_hub import snapshot_download
snapshot_download(
repo_id=model,
ignore_patterns=["*text_encoder*", "*tokenizer*"],
local_dir=base_path,
local_dir_use_symlinks=False,
)
controlnet = CogVideoXControlnet.from_pretrained(base_path)
return (controlnet,)
NODE_CLASS_MAPPINGS = {
"DownloadAndLoadCogVideoModel": DownloadAndLoadCogVideoModel,
"DownloadAndLoadCogVideoGGUFModel": DownloadAndLoadCogVideoGGUFModel,
"DownloadAndLoadCogVideoControlNet": DownloadAndLoadCogVideoControlNet,
"DownloadAndLoadToraModel": DownloadAndLoadToraModel,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"DownloadAndLoadCogVideoModel": "(Down)load CogVideo Model",
"DownloadAndLoadCogVideoGGUFModel": "(Down)load CogVideo GGUF Model",
"DownloadAndLoadCogVideoControlNet": "(Down)load CogVideo ControlNet",
"DownloadAndLoadToraModel": "(Down)load Tora Model",
}

646
nodes.py
View File

@ -1,20 +1,9 @@
import os
import torch
import torch.nn as nn
import folder_paths
import comfy.model_management as mm
from comfy.utils import ProgressBar, load_torch_file
from einops import rearrange
import importlib.metadata
def check_diffusers_version():
try:
version = importlib.metadata.version('diffusers')
required_version = '0.30.3'
if version < required_version:
raise AssertionError(f"diffusers version {version} is installed, but version {required_version} or higher is required.")
except importlib.metadata.PackageNotFoundError:
raise AssertionError("diffusers is not installed.")
from contextlib import nullcontext
from diffusers.schedulers import (
CogVideoXDDIMScheduler,
@ -47,26 +36,13 @@ scheduler_mapping = {
}
available_schedulers = list(scheduler_mapping.keys())
from diffusers.models import AutoencoderKLCogVideoX
from .custom_cogvideox_transformer_3d import CogVideoXTransformer3DModel
from .pipeline_cogvideox import CogVideoXPipeline
from contextlib import nullcontext
from .cogvideox_fun.transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelFun
from .cogvideox_fun.fun_pab_transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelFunPAB
from .cogvideox_fun.autoencoder_magvit import AutoencoderKLCogVideoX as AutoencoderKLCogVideoXFun
from .cogvideox_fun.utils import get_image_to_video_latent, get_video_to_video_latent, ASPECT_RATIO_512, get_closest_ratio, to_pil
from .cogvideox_fun.pipeline_cogvideox_inpaint import CogVideoX_Fun_Pipeline_Inpaint
from .cogvideox_fun.pipeline_cogvideox_control import CogVideoX_Fun_Pipeline_Control
from PIL import Image
import numpy as np
import json
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
log = logging.getLogger(__name__)
from .utils import log, check_diffusers_version
script_directory = os.path.dirname(os.path.abspath(__file__))
@ -75,72 +51,8 @@ if not "CogVideo" in folder_paths.folder_names_and_paths:
if not "cogvideox_loras" in folder_paths.folder_names_and_paths:
folder_paths.add_model_folder_path("cogvideox_loras", os.path.join(folder_paths.models_dir, "CogVideo", "loras"))
class PABConfig:
def __init__(
self,
steps: int,
cross_broadcast: bool = False,
cross_threshold: list = None,
cross_range: int = None,
spatial_broadcast: bool = False,
spatial_threshold: list = None,
spatial_range: int = None,
temporal_broadcast: bool = False,
temporal_threshold: list = None,
temporal_range: int = None,
mlp_broadcast: bool = False,
mlp_spatial_broadcast_config: dict = None,
mlp_temporal_broadcast_config: dict = None,
):
self.steps = steps
self.cross_broadcast = cross_broadcast
self.cross_threshold = cross_threshold
self.cross_range = cross_range
self.spatial_broadcast = spatial_broadcast
self.spatial_threshold = spatial_threshold
self.spatial_range = spatial_range
self.temporal_broadcast = temporal_broadcast
self.temporal_threshold = temporal_threshold
self.temporal_range = temporal_range
self.mlp_broadcast = mlp_broadcast
self.mlp_spatial_broadcast_config = mlp_spatial_broadcast_config
self.mlp_temporal_broadcast_config = mlp_temporal_broadcast_config
self.mlp_temporal_outputs = {}
self.mlp_spatial_outputs = {}
class CogVideoXPABConfig(PABConfig):
def __init__(
self,
steps: int = 50,
spatial_broadcast: bool = True,
spatial_threshold: list = [100, 850],
spatial_range: int = 2,
temporal_broadcast: bool = False,
temporal_threshold: list = [100, 850],
temporal_range: int = 4,
cross_broadcast: bool = False,
cross_threshold: list = [100, 850],
cross_range: int = 6,
):
super().__init__(
steps=steps,
spatial_broadcast=spatial_broadcast,
spatial_threshold=spatial_threshold,
spatial_range=spatial_range,
temporal_broadcast=temporal_broadcast,
temporal_threshold=temporal_threshold,
temporal_range=temporal_range,
cross_broadcast=cross_broadcast,
cross_threshold=cross_threshold,
cross_range=cross_range
)
from .videosys.cogvideox_transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelPAB
#PAB
from .videosys.pab import CogVideoXPABConfig
class CogVideoPABConfig:
@classmethod
@ -189,13 +101,7 @@ class CogVideoPABConfig:
return (pab_config, )
def remove_specific_blocks(model, block_indices_to_remove):
import torch.nn as nn
transformer_blocks = model.transformer_blocks
new_blocks = [block for i, block in enumerate(transformer_blocks) if i not in block_indices_to_remove]
model.transformer_blocks = nn.ModuleList(new_blocks)
return model
class CogVideoTransformerEdit:
@classmethod
@ -250,534 +156,6 @@ class CogVideoLoraSelect:
print(cog_loras_list)
return (cog_loras_list,)
class DownloadAndLoadCogVideoModel:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": (
[
"THUDM/CogVideoX-2b",
"THUDM/CogVideoX-5b",
"THUDM/CogVideoX-5b-I2V",
"bertjiazheng/KoolCogVideoX-5b",
"kijai/CogVideoX-Fun-2b",
"kijai/CogVideoX-Fun-5b",
"kijai/CogVideoX-5b-Tora",
"alibaba-pai/CogVideoX-Fun-V1.1-2b-InP",
"alibaba-pai/CogVideoX-Fun-V1.1-5b-InP",
"alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose",
"alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose",
"feizhengcong/CogvideoX-Interpolation",
"NimVideo/cogvideox-2b-img2vid"
],
),
},
"optional": {
"precision": (["fp16", "fp32", "bf16"],
{"default": "bf16", "tooltip": "official recommendation is that 2b model should be fp16, 5b model should be bf16"}
),
"fp8_transformer": (['disabled', 'enabled', 'fastmode'], {"default": 'disabled', "tooltip": "enabled casts the transformer to torch.float8_e4m3fn, fastmode is only for latest nvidia GPUs and requires torch 2.4.0 and cu124 minimum"}),
"compile": (["disabled","onediff","torch"], {"tooltip": "compile the model for faster inference, these are advanced options only available on Linux, see readme for more info"}),
"enable_sequential_cpu_offload": ("BOOLEAN", {"default": False, "tooltip": "significantly reducing memory usage and slows down the inference"}),
"pab_config": ("PAB_CONFIG", {"default": None}),
"block_edit": ("TRANSFORMERBLOCKS", {"default": None}),
"lora": ("COGLORA", {"default": None}),
}
}
RETURN_TYPES = ("COGVIDEOPIPE",)
RETURN_NAMES = ("cogvideo_pipe", )
FUNCTION = "loadmodel"
CATEGORY = "CogVideoWrapper"
DESCRIPTION = "Downloads and loads the selected CogVideo model from Huggingface to 'ComfyUI/models/CogVideo'"
def loadmodel(self, model, precision, fp8_transformer="disabled", compile="disabled", enable_sequential_cpu_offload=False, pab_config=None, block_edit=None, lora=None):
check_diffusers_version()
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
mm.soft_empty_cache()
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
download_path = folder_paths.get_folder_paths("CogVideo")[0]
if "Fun" in model:
if not "1.1" in model:
repo_id = "kijai/CogVideoX-Fun-pruned"
if "2b" in model:
base_path = os.path.join(folder_paths.models_dir, "CogVideoX_Fun", "CogVideoX-Fun-2b-InP") # location of the official model
if not os.path.exists(base_path):
base_path = os.path.join(download_path, "CogVideoX-Fun-2b-InP")
elif "5b" in model:
base_path = os.path.join(folder_paths.models_dir, "CogVideoX_Fun", "CogVideoX-Fun-5b-InP") # location of the official model
if not os.path.exists(base_path):
base_path = os.path.join(download_path, "CogVideoX-Fun-5b-InP")
elif "1.1" in model:
repo_id = model
base_path = os.path.join(folder_paths.models_dir, "CogVideoX_Fun", (model.split("/")[-1])) # location of the official model
if not os.path.exists(base_path):
base_path = os.path.join(download_path, (model.split("/")[-1]))
download_path = base_path
elif "2b" in model:
if 'img2vid' in model:
base_path = os.path.join(download_path, "cogvideox-2b-img2vid")
download_path = base_path
repo_id = model
else:
base_path = os.path.join(download_path, "CogVideo2B")
download_path = base_path
repo_id = model
else:
base_path = os.path.join(download_path, (model.split("/")[-1]))
download_path = base_path
repo_id = model
if "2b" in model:
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_2b.json')
else:
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_5b.json')
if not os.path.exists(base_path) or not os.path.exists(os.path.join(base_path, "transformer")):
log.info(f"Downloading model to: {base_path}")
from huggingface_hub import snapshot_download
snapshot_download(
repo_id=repo_id,
ignore_patterns=["*text_encoder*", "*tokenizer*"],
local_dir=download_path,
local_dir_use_symlinks=False,
)
# transformer
if "Fun" in model:
if pab_config is not None:
transformer = CogVideoXTransformer3DModelFunPAB.from_pretrained(base_path, subfolder="transformer")
else:
transformer = CogVideoXTransformer3DModelFun.from_pretrained(base_path, subfolder="transformer")
else:
if pab_config is not None:
transformer = CogVideoXTransformer3DModelPAB.from_pretrained(base_path, subfolder="transformer")
else:
transformer = CogVideoXTransformer3DModel.from_pretrained(base_path, subfolder="transformer")
transformer = transformer.to(dtype).to(offload_device)
#LoRAs
if lora is not None:
from .lora_utils import merge_lora, load_lora_into_transformer
if "fun" in model.lower():
for l in lora:
logging.info(f"Merging LoRA weights from {l['path']} with strength {l['strength']}")
transformer = merge_lora(transformer, l["path"], l["strength"])
else:
transformer = load_lora_into_transformer(lora, transformer)
if block_edit is not None:
transformer = remove_specific_blocks(transformer, block_edit)
#fp8
if fp8_transformer == "enabled" or fp8_transformer == "fastmode":
for name, param in transformer.named_parameters():
params_to_keep = {"patch_embed", "lora", "pos_embedding"}
if not any(keyword in name for keyword in params_to_keep):
param.data = param.data.to(torch.float8_e4m3fn)
if fp8_transformer == "fastmode":
from .fp8_optimization import convert_fp8_linear
convert_fp8_linear(transformer, dtype)
with open(scheduler_path) as f:
scheduler_config = json.load(f)
scheduler = CogVideoXDDIMScheduler.from_config(scheduler_config)
# VAE
if "Fun" in model:
vae = AutoencoderKLCogVideoXFun.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device)
if "Pose" in model:
pipe = CogVideoX_Fun_Pipeline_Control(vae, transformer, scheduler, pab_config=pab_config)
else:
pipe = CogVideoX_Fun_Pipeline_Inpaint(vae, transformer, scheduler, pab_config=pab_config)
else:
vae = AutoencoderKLCogVideoX.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device)
pipe = CogVideoXPipeline(vae, transformer, scheduler, pab_config=pab_config)
if "cogvideox-2b-img2vid" in model:
pipe.input_with_padding = False
if enable_sequential_cpu_offload:
pipe.enable_sequential_cpu_offload()
# compilation
if compile == "torch":
torch._dynamo.config.suppress_errors = True
pipe.transformer.to(memory_format=torch.channels_last)
#pipe.transformer = torch.compile(pipe.transformer, mode="default", fullgraph=False, backend="inductor")
for i, block in enumerate(pipe.transformer.transformer_blocks):
if "CogVideoXBlock" in str(block):
pipe.transformer.transformer_blocks[i] = torch.compile(block, fullgraph=False, dynamic=False, backend="inductor")
elif compile == "onediff":
from onediffx import compile_pipe
os.environ['NEXFORT_FX_FORCE_TRITON_SDPA'] = '1'
pipe = compile_pipe(
pipe,
backend="nexfort",
options= {"mode": "max-optimize:max-autotune:max-autotune", "memory_format": "channels_last", "options": {"inductor.optimize_linear_epilogue": False, "triton.fuse_attention_allow_fp16_reduction": False}},
ignores=["vae"],
fuse_qkv_projections=True if pab_config is None else False,
)
pipeline = {
"pipe": pipe,
"dtype": dtype,
"base_path": base_path,
"onediff": True if compile == "onediff" else False,
"cpu_offloading": enable_sequential_cpu_offload,
"scheduler_config": scheduler_config,
"model_name": model
}
return (pipeline,)
class DownloadAndLoadCogVideoGGUFModel:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": (
[
"CogVideoX_5b_GGUF_Q4_0.safetensors",
"CogVideoX_5b_I2V_GGUF_Q4_0.safetensors",
"CogVideoX_5b_fun_GGUF_Q4_0.safetensors",
"CogVideoX_5b_fun_1_1_GGUF_Q4_0.safetensors",
"CogVideoX_5b_fun_1_1_Pose_GGUF_Q4_0.safetensors",
"CogVideoX_5b_Interpolation_GGUF_Q4_0.safetensors",
"CogVideoX_5b_Tora_GGUF_Q4_0.safetensors",
],
),
"vae_precision": (["fp16", "fp32", "bf16"], {"default": "bf16", "tooltip": "VAE dtype"}),
"fp8_fastmode": ("BOOLEAN", {"default": False, "tooltip": "only supported on 4090 and later GPUs, also requires torch 2.4.0 with cu124 minimum"}),
"load_device": (["main_device", "offload_device"], {"default": "main_device"}),
"enable_sequential_cpu_offload": ("BOOLEAN", {"default": False, "tooltip": "significantly reducing memory usage and slows down the inference"}),
},
"optional": {
"pab_config": ("PAB_CONFIG", {"default": None}),
"block_edit": ("TRANSFORMERBLOCKS", {"default": None}),
"compile": (["disabled","torch"], {"tooltip": "compile the model for faster inference, these are advanced options only available on Linux, see readme for more info"}),
}
}
RETURN_TYPES = ("COGVIDEOPIPE",)
RETURN_NAMES = ("cogvideo_pipe", )
FUNCTION = "loadmodel"
CATEGORY = "CogVideoWrapper"
def loadmodel(self, model, vae_precision, fp8_fastmode, load_device, enable_sequential_cpu_offload, pab_config=None, block_edit=None, compile="disabled"):
check_diffusers_version()
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
mm.soft_empty_cache()
vae_dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[vae_precision]
download_path = os.path.join(folder_paths.models_dir, 'CogVideo', 'GGUF')
gguf_path = os.path.join(folder_paths.models_dir, 'diffusion_models', model) # check MinusZone's model path first
if not os.path.exists(gguf_path):
gguf_path = os.path.join(download_path, model)
if not os.path.exists(gguf_path):
if "I2V" in model or "1_1" in model or "Interpolation" in model or "Tora" in model:
repo_id = "Kijai/CogVideoX_GGUF"
else:
repo_id = "MinusZoneAI/ComfyUI-CogVideoX-MZ"
log.info(f"Downloading model to: {gguf_path}")
from huggingface_hub import snapshot_download
snapshot_download(
repo_id=repo_id,
allow_patterns=[f"*{model}*"],
local_dir=download_path,
local_dir_use_symlinks=False,
)
if "5b" in model:
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_5b.json')
transformer_path = os.path.join(script_directory, 'configs', 'transformer_config_5b.json')
elif "2b" in model:
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_2b.json')
transformer_path = os.path.join(script_directory, 'configs', 'transformer_config_2b.json')
with open(transformer_path) as f:
transformer_config = json.load(f)
sd = load_torch_file(gguf_path)
from . import mz_gguf_loader
import importlib
importlib.reload(mz_gguf_loader)
with mz_gguf_loader.quantize_lazy_load():
if "fun" in model:
if "Pose" in model:
transformer_config["in_channels"] = 32
else:
transformer_config["in_channels"] = 33
if pab_config is not None:
transformer = CogVideoXTransformer3DModelFunPAB.from_config(transformer_config)
else:
transformer = CogVideoXTransformer3DModelFun.from_config(transformer_config)
elif "I2V" in model or "Interpolation" in model:
transformer_config["in_channels"] = 32
if pab_config is not None:
transformer = CogVideoXTransformer3DModelPAB.from_config(transformer_config)
else:
transformer = CogVideoXTransformer3DModel.from_config(transformer_config)
else:
transformer_config["in_channels"] = 16
if pab_config is not None:
transformer = CogVideoXTransformer3DModelPAB.from_config(transformer_config)
else:
transformer = CogVideoXTransformer3DModel.from_config(transformer_config)
if "2b" in model:
for name, param in transformer.named_parameters():
if name != "pos_embedding":
param.data = param.data.to(torch.float8_e4m3fn)
else:
param.data = param.data.to(torch.float16)
else:
transformer.to(torch.float8_e4m3fn)
if block_edit is not None:
transformer = remove_specific_blocks(transformer, block_edit)
transformer = mz_gguf_loader.quantize_load_state_dict(transformer, sd, device="cpu")
if load_device == "offload_device":
transformer.to(offload_device)
else:
transformer.to(device)
if fp8_fastmode:
from .fp8_optimization import convert_fp8_linear
convert_fp8_linear(transformer, vae_dtype)
if compile == "torch":
# compilation
for i, block in enumerate(transformer.transformer_blocks):
transformer.transformer_blocks[i] = torch.compile(block, fullgraph=False, dynamic=False, backend="inductor")
with open(scheduler_path) as f:
scheduler_config = json.load(f)
scheduler = CogVideoXDDIMScheduler.from_config(scheduler_config, subfolder="scheduler")
# VAE
vae_dl_path = os.path.join(folder_paths.models_dir, 'CogVideo', 'VAE')
vae_path = os.path.join(vae_dl_path, "cogvideox_vae.safetensors")
if not os.path.exists(vae_path):
log.info(f"Downloading VAE model to: {vae_path}")
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="Kijai/CogVideoX-Fun-pruned",
allow_patterns=["*cogvideox_vae.safetensors*"],
local_dir=vae_dl_path,
local_dir_use_symlinks=False,
)
with open(os.path.join(script_directory, 'configs', 'vae_config.json')) as f:
vae_config = json.load(f)
vae_sd = load_torch_file(vae_path)
if "fun" in model:
vae = AutoencoderKLCogVideoXFun.from_config(vae_config).to(vae_dtype).to(offload_device)
vae.load_state_dict(vae_sd)
if "Pose" in model:
pipe = CogVideoX_Fun_Pipeline_Control(vae, transformer, scheduler, pab_config=pab_config)
else:
pipe = CogVideoX_Fun_Pipeline_Inpaint(vae, transformer, scheduler, pab_config=pab_config)
else:
vae = AutoencoderKLCogVideoX.from_config(vae_config).to(vae_dtype).to(offload_device)
vae.load_state_dict(vae_sd)
pipe = CogVideoXPipeline(vae, transformer, scheduler, pab_config=pab_config)
if enable_sequential_cpu_offload:
pipe.enable_sequential_cpu_offload()
pipeline = {
"pipe": pipe,
"dtype": vae_dtype,
"base_path": model,
"onediff": False,
"cpu_offloading": enable_sequential_cpu_offload,
"scheduler_config": scheduler_config,
"model_name": model
}
return (pipeline,)
class DownloadAndLoadToraModel:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": (
[
"kijai/CogVideoX-5b-Tora",
],
),
},
}
RETURN_TYPES = ("TORAMODEL",)
RETURN_NAMES = ("tora_model", )
FUNCTION = "loadmodel"
CATEGORY = "CogVideoWrapper"
DESCRIPTION = "Downloads and loads the the Tora model from Huggingface to 'ComfyUI/models/CogVideo/CogVideoX-5b-Tora'"
def loadmodel(self, model):
check_diffusers_version()
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
mm.soft_empty_cache()
download_path = folder_paths.get_folder_paths("CogVideo")[0]
from .tora.traj_module import MGF
try:
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
is_accelerate_available = True
except:
is_accelerate_available = False
pass
download_path = os.path.join(folder_paths.models_dir, 'CogVideo', "CogVideoX-5b-Tora")
fuser_path = os.path.join(download_path, "fuser", "fuser.safetensors")
if not os.path.exists(fuser_path):
log.info(f"Downloading Fuser model to: {fuser_path}")
from huggingface_hub import snapshot_download
snapshot_download(
repo_id=model,
allow_patterns=["*fuser.safetensors*"],
local_dir=download_path,
local_dir_use_symlinks=False,
)
hidden_size = 3072
num_layers = 42
with (init_empty_weights() if is_accelerate_available else nullcontext()):
fuser_list = nn.ModuleList([MGF(128, hidden_size) for _ in range(num_layers)])
fuser_sd = load_torch_file(fuser_path)
if is_accelerate_available:
for key in fuser_sd:
set_module_tensor_to_device(fuser_list, key, dtype=torch.float16, device=device, value=fuser_sd[key])
else:
fuser_list.load_state_dict(fuser_sd)
for module in fuser_list:
for param in module.parameters():
param.data = param.data.to(torch.bfloat16).to(device)
del fuser_sd
traj_extractor_path = os.path.join(download_path, "traj_extractor", "traj_extractor.safetensors")
if not os.path.exists(traj_extractor_path):
log.info(f"Downloading trajectory extractor model to: {traj_extractor_path}")
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="kijai/CogVideoX-5b-Tora",
allow_patterns=["*traj_extractor.safetensors*"],
local_dir=download_path,
local_dir_use_symlinks=False,
)
from .tora.traj_module import TrajExtractor
with (init_empty_weights() if is_accelerate_available else nullcontext()):
traj_extractor = TrajExtractor(
vae_downsize=(4, 8, 8),
patch_size=2,
nums_rb=2,
cin=16,
channels=[128] * 42,
sk=True,
use_conv=False,
)
traj_sd = load_torch_file(traj_extractor_path)
if is_accelerate_available:
for key in traj_sd:
set_module_tensor_to_device(traj_extractor, key, dtype=torch.float32, device=device, value=traj_sd[key])
else:
traj_extractor.load_state_dict(traj_sd)
traj_extractor.to(torch.float32).to(device)
toramodel = {
"fuser_list": fuser_list,
"traj_extractor": traj_extractor,
}
return (toramodel,)
class DownloadAndLoadCogVideoControlNet:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": (
[
"TheDenk/cogvideox-2b-controlnet-hed-v1",
"TheDenk/cogvideox-2b-controlnet-canny-v1",
"TheDenk/cogvideox-5b-controlnet-hed-v1",
"TheDenk/cogvideox-5b-controlnet-canny-v1"
],
),
},
}
RETURN_TYPES = ("COGVIDECONTROLNETMODEL",)
RETURN_NAMES = ("cogvideo_controlnet", )
FUNCTION = "loadmodel"
CATEGORY = "CogVideoWrapper"
def loadmodel(self, model):
from .cogvideo_controlnet import CogVideoXControlnet
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
mm.soft_empty_cache()
download_path = os.path.join(folder_paths.models_dir, 'CogVideo', 'ControlNet')
base_path = os.path.join(download_path, (model.split("/")[-1]))
if not os.path.exists(base_path):
log.info(f"Downloading model to: {base_path}")
from huggingface_hub import snapshot_download
snapshot_download(
repo_id=model,
ignore_patterns=["*text_encoder*", "*tokenizer*"],
local_dir=base_path,
local_dir_use_symlinks=False,
)
controlnet = CogVideoXControlnet.from_pretrained(base_path)
return (controlnet,)
class CogVideoEncodePrompt:
@classmethod
def INPUT_TYPES(s):
@ -1179,7 +557,7 @@ class ToraEncodeTrajectory:
video_flow_features = video_flow_features * strength
logging.info(f"video_flow shape: {video_flow.shape}")
log.info(f"video_flow shape: {video_flow.shape}")
tora = {
"video_flow_features" : video_flow_features,
@ -1241,7 +619,7 @@ class ToraEncodeOpticalFlow:
video_flow_features = video_flow_features * strength
logging.info(f"video_flow shape: {video_flow.shape}")
log.info(f"video_flow shape: {video_flow.shape}")
tora = {
"video_flow_features" : video_flow_features,
@ -1529,7 +907,7 @@ class CogVideoXFunSampler:
# Load Sampler
if context_options is not None and context_options["context_schedule"] == "temporal_tiling":
logging.info("Temporal tiling enabled, changing scheduler to CogVideoXDDIM")
log.info("Temporal tiling enabled, changing scheduler to CogVideoXDDIM")
scheduler="CogVideoXDDIM"
scheduler_config = pipeline["scheduler_config"]
if scheduler in scheduler_mapping:
@ -1824,7 +1202,7 @@ class CogVideoXFunControlSampler:
# Load Sampler
scheduler_config = pipeline["scheduler_config"]
if context_options is not None and context_options["context_schedule"] == "temporal_tiling":
logging.info("Temporal tiling enabled, changing scheduler to CogVideoXDDIM")
log.info("Temporal tiling enabled, changing scheduler to CogVideoXDDIM")
scheduler="CogVideoXDDIM"
if scheduler in scheduler_mapping:
noise_scheduler = scheduler_mapping[scheduler].from_config(scheduler_config)
@ -1870,7 +1248,6 @@ class CogVideoXFunControlSampler:
return (pipeline, {"samples": latents})
NODE_CLASS_MAPPINGS = {
"DownloadAndLoadCogVideoModel": DownloadAndLoadCogVideoModel,
"CogVideoSampler": CogVideoSampler,
"CogVideoDecode": CogVideoDecode,
"CogVideoTextEncode": CogVideoTextEncode,
@ -1881,21 +1258,17 @@ NODE_CLASS_MAPPINGS = {
"CogVideoXFunVid2VidSampler": CogVideoXFunVid2VidSampler,
"CogVideoXFunControlSampler": CogVideoXFunControlSampler,
"CogVideoTextEncodeCombine": CogVideoTextEncodeCombine,
"DownloadAndLoadCogVideoGGUFModel": DownloadAndLoadCogVideoGGUFModel,
"CogVideoPABConfig": CogVideoPABConfig,
"CogVideoTransformerEdit": CogVideoTransformerEdit,
"CogVideoControlImageEncode": CogVideoControlImageEncode,
"CogVideoLoraSelect": CogVideoLoraSelect,
"CogVideoContextOptions": CogVideoContextOptions,
"CogVideoControlNet": CogVideoControlNet,
"DownloadAndLoadCogVideoControlNet": DownloadAndLoadCogVideoControlNet,
"ToraEncodeTrajectory": ToraEncodeTrajectory,
"ToraEncodeOpticalFlow": ToraEncodeOpticalFlow,
"DownloadAndLoadToraModel": DownloadAndLoadToraModel,
"CogVideoXFasterCache": CogVideoXFasterCache
}
NODE_DISPLAY_NAME_MAPPINGS = {
"DownloadAndLoadCogVideoModel": "(Down)load CogVideo Model",
"CogVideoSampler": "CogVideo Sampler",
"CogVideoDecode": "CogVideo Decode",
"CogVideoTextEncode": "CogVideo TextEncode",
@ -1906,15 +1279,12 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"CogVideoXFunVid2VidSampler": "CogVideoXFun Vid2Vid Sampler",
"CogVideoXFunControlSampler": "CogVideoXFun Control Sampler",
"CogVideoTextEncodeCombine": "CogVideo TextEncode Combine",
"DownloadAndLoadCogVideoGGUFModel": "(Down)load CogVideo GGUF Model",
"CogVideoPABConfig": "CogVideo PABConfig",
"CogVideoTransformerEdit": "CogVideo TransformerEdit",
"CogVideoControlImageEncode": "CogVideo Control ImageEncode",
"CogVideoLoraSelect": "CogVideo LoraSelect",
"CogVideoContextOptions": "CogVideo Context Options",
"DownloadAndLoadCogVideoControlNet": "(Down)load CogVideo ControlNet",
"ToraEncodeTrajectory": "Tora Encode Trajectory",
"ToraEncodeOpticalFlow": "Tora Encode OpticalFlow",
"DownloadAndLoadToraModel": "(Down)load Tora Model",
"CogVideoXFasterCache": "CogVideoX FasterCache"
}

View File

@ -21,7 +21,7 @@ New features:
- Initial context windowing with FreeNoise noise shuffling mainly for vid2vid and pose2vid pipelines for longer generations, haven't figured it out for img2vid yet
- GGUF models and tiled encoding for I2V and pose pipelines (thanks to MinusZoneAI)
- [sageattention](https://github.com/thu-ml/SageAttention) support (Linux only) for a speed boost, I experienced ~20-30% increase with it, stacks with fp8 fast mode, doesn't need compiling
- Support CogVideoX-Fun 1.1 and it's pose models with additional control strenght and application step settings, this model's input does NOT have to be just dwpose skeletons, just about anything can work
- Support CogVideoX-Fun 1.1 and it's pose models with additional control strength and application step settings, this model's input does NOT have to be just dwpose skeletons, just about anything can work
- Support LoRAs
https://github.com/user-attachments/assets/ddeb8f38-a647-42b3-a4b1-c6936f961deb

22
utils.py Normal file
View File

@ -0,0 +1,22 @@
import importlib.metadata
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
log = logging.getLogger(__name__)
def check_diffusers_version():
try:
version = importlib.metadata.version('diffusers')
required_version = '0.30.3'
if version < required_version:
raise AssertionError(f"diffusers version {version} is installed, but version {required_version} or higher is required.")
except importlib.metadata.PackageNotFoundError:
raise AssertionError("diffusers is not installed.")
def remove_specific_blocks(model, block_indices_to_remove):
import torch.nn as nn
transformer_blocks = model.transformer_blocks
new_blocks = [block for i, block in enumerate(transformer_blocks) if i not in block_indices_to_remove]
model.transformer_blocks = nn.ModuleList(new_blocks)
return model

View File

@ -67,16 +67,6 @@ class CogVideoXAttnProcessor2_0:
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
# if attn.parallel_manager.sp_size > 1:
# assert (
# attn.heads % attn.parallel_manager.sp_size == 0
# ), f"Number of heads {attn.heads} must be divisible by sequence parallel size {attn.parallel_manager.sp_size}"
# attn_heads = attn.heads // attn.parallel_manager.sp_size
# query, key, value = map(
# lambda x: all_to_all_comm(x, attn.parallel_manager.sp_group, scatter_dim=2, gather_dim=1),
# [query, key, value],
# )
attn_heads = attn.heads
inner_dim = key.shape[-1]
@ -111,9 +101,6 @@ class CogVideoXAttnProcessor2_0:
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn_heads * head_dim)
#if attn.parallel_manager.sp_size > 1:
# hidden_states = all_to_all_comm(hidden_states, attn.parallel_manager.sp_group, scatter_dim=1, gather_dim=2)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout

64
videosys/pab.py Normal file
View File

@ -0,0 +1,64 @@
class PABConfig:
def __init__(
self,
steps: int,
cross_broadcast: bool = False,
cross_threshold: list = None,
cross_range: int = None,
spatial_broadcast: bool = False,
spatial_threshold: list = None,
spatial_range: int = None,
temporal_broadcast: bool = False,
temporal_threshold: list = None,
temporal_range: int = None,
mlp_broadcast: bool = False,
mlp_spatial_broadcast_config: dict = None,
mlp_temporal_broadcast_config: dict = None,
):
self.steps = steps
self.cross_broadcast = cross_broadcast
self.cross_threshold = cross_threshold
self.cross_range = cross_range
self.spatial_broadcast = spatial_broadcast
self.spatial_threshold = spatial_threshold
self.spatial_range = spatial_range
self.temporal_broadcast = temporal_broadcast
self.temporal_threshold = temporal_threshold
self.temporal_range = temporal_range
self.mlp_broadcast = mlp_broadcast
self.mlp_spatial_broadcast_config = mlp_spatial_broadcast_config
self.mlp_temporal_broadcast_config = mlp_temporal_broadcast_config
self.mlp_temporal_outputs = {}
self.mlp_spatial_outputs = {}
class CogVideoXPABConfig(PABConfig):
def __init__(
self,
steps: int = 50,
spatial_broadcast: bool = True,
spatial_threshold: list = [100, 850],
spatial_range: int = 2,
temporal_broadcast: bool = False,
temporal_threshold: list = [100, 850],
temporal_range: int = 4,
cross_broadcast: bool = False,
cross_threshold: list = [100, 850],
cross_range: int = 6,
):
super().__init__(
steps=steps,
spatial_broadcast=spatial_broadcast,
spatial_threshold=spatial_threshold,
spatial_range=spatial_range,
temporal_broadcast=temporal_broadcast,
temporal_threshold=temporal_threshold,
temporal_range=temporal_range,
cross_broadcast=cross_broadcast,
cross_threshold=cross_threshold,
cross_range=cross_range
)