Cleanup unused dependencies

This commit is contained in:
kijai 2024-09-21 16:37:54 +03:00
parent 33e67e0c98
commit 73fa4be48f

View File

@ -1,20 +1,10 @@
import os
import gc
import imageio
import numpy as np
import torch
import torchvision
import cv2
from einops import rearrange
from PIL import Image
# Copyright (c) OpenMMLab. All rights reserved.
import os
import cv2
import numpy as np
import torch
from PIL import Image
def tensor2pil(image):
return Image.fromarray(np.clip(255. * image.cpu().numpy(), 0, 255).astype(np.uint8))
@ -73,60 +63,6 @@ def get_width_and_height_from_image_and_base_resolution(image, base_resolution):
height_slider = round(original_height * ratio)
return height_slider, width_slider
def color_transfer(sc, dc):
"""
Transfer color distribution from of sc, referred to dc.
Args:
sc (numpy.ndarray): input image to be transfered.
dc (numpy.ndarray): reference image
Returns:
numpy.ndarray: Transferred color distribution on the sc.
"""
def get_mean_and_std(img):
x_mean, x_std = cv2.meanStdDev(img)
x_mean = np.hstack(np.around(x_mean, 2))
x_std = np.hstack(np.around(x_std, 2))
return x_mean, x_std
sc = cv2.cvtColor(sc, cv2.COLOR_RGB2LAB)
s_mean, s_std = get_mean_and_std(sc)
dc = cv2.cvtColor(dc, cv2.COLOR_RGB2LAB)
t_mean, t_std = get_mean_and_std(dc)
img_n = ((sc - s_mean) * (t_std / s_std)) + t_mean
np.putmask(img_n, img_n > 255, 255)
np.putmask(img_n, img_n < 0, 0)
dst = cv2.cvtColor(cv2.convertScaleAbs(img_n), cv2.COLOR_LAB2RGB)
return dst
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=12, imageio_backend=True, color_transfer_post_process=False):
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
outputs.append(Image.fromarray(x))
if color_transfer_post_process:
for i in range(1, len(outputs)):
outputs[i] = Image.fromarray(color_transfer(np.uint8(outputs[i]), np.uint8(outputs[0])))
os.makedirs(os.path.dirname(path), exist_ok=True)
if imageio_backend:
if path.endswith("mp4"):
imageio.mimsave(path, outputs, fps=fps)
else:
imageio.mimsave(path, outputs, duration=(1000 * 1/fps))
else:
if path.endswith("mp4"):
path = path.replace('.mp4', '.gif')
outputs[0].save(path, format='GIF', append_images=outputs, save_all=True, duration=100, loop=0)
def get_image_to_video_latent(validation_image_start, validation_image_end, video_length, sample_size):
if validation_image_start is not None and validation_image_end is not None:
if type(validation_image_start) is str and os.path.isfile(validation_image_start):
@ -224,18 +160,7 @@ def get_image_to_video_latent(validation_image_start, validation_image_end, vide
return input_video, input_video_mask, clip_image
def get_video_to_video_latent(input_video_path, video_length, sample_size):
if type(input_video_path) is str:
cap = cv2.VideoCapture(input_video_path)
input_video = []
while True:
ret, frame = cap.read()
if not ret:
break
frame = cv2.resize(frame, (sample_size[1], sample_size[0]))
input_video.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
cap.release()
else:
input_video = input_video_path
input_video = input_video_path
input_video = torch.from_numpy(np.array(input_video))[:video_length]
input_video = input_video.permute([3, 0, 1, 2]).unsqueeze(0) / 255