mirror of
https://git.datalinker.icu/kijai/ComfyUI-CogVideoXWrapper.git
synced 2025-12-09 04:44:22 +08:00
refactor
- unify all pipelines into one - unify transformer model into one - separate VAE - add single file model loading
This commit is contained in:
parent
6f9e4ff647
commit
a7646c0d6f
3
.gitignore
vendored
3
.gitignore
vendored
@ -7,4 +7,5 @@ master_ip
|
||||
logs/
|
||||
*.DS_Store
|
||||
.idea
|
||||
*.pt
|
||||
*.pt
|
||||
tools/
|
||||
File diff suppressed because it is too large
Load Diff
@ -1,866 +0,0 @@
|
||||
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
|
||||
# All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
|
||||
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
||||
from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel
|
||||
from diffusers.models.embeddings import get_3d_rotary_pos_embed
|
||||
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
||||
from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
|
||||
from diffusers.utils import BaseOutput, logging, replace_example_docstring
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
from diffusers.video_processor import VideoProcessor
|
||||
from diffusers.image_processor import VaeImageProcessor
|
||||
from einops import rearrange
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```python
|
||||
>>> import torch
|
||||
>>> from diffusers import CogVideoX_Fun_Pipeline
|
||||
>>> from diffusers.utils import export_to_video
|
||||
|
||||
>>> # Models: "THUDM/CogVideoX-2b" or "THUDM/CogVideoX-5b"
|
||||
>>> pipe = CogVideoX_Fun_Pipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=torch.float16).to("cuda")
|
||||
>>> prompt = (
|
||||
... "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. "
|
||||
... "The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other "
|
||||
... "pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, "
|
||||
... "casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. "
|
||||
... "The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical "
|
||||
... "atmosphere of this unique musical performance."
|
||||
... )
|
||||
>>> video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]
|
||||
>>> export_to_video(video, "output.mp4", fps=8)
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
# Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid
|
||||
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
|
||||
tw = tgt_width
|
||||
th = tgt_height
|
||||
h, w = src
|
||||
r = h / w
|
||||
if r > (th / tw):
|
||||
resize_height = th
|
||||
resize_width = int(round(th / h * w))
|
||||
else:
|
||||
resize_width = tw
|
||||
resize_height = int(round(tw / w * h))
|
||||
|
||||
crop_top = int(round((th - resize_height) / 2.0))
|
||||
crop_left = int(round((tw - resize_width) / 2.0))
|
||||
|
||||
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||
def retrieve_timesteps(
|
||||
scheduler,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
||||
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
||||
|
||||
Args:
|
||||
scheduler (`SchedulerMixin`):
|
||||
The scheduler to get timesteps from.
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
||||
must be `None`.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
||||
`num_inference_steps` and `sigmas` must be `None`.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
||||
`num_inference_steps` and `timesteps` must be `None`.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
||||
second element is the number of inference steps.
|
||||
"""
|
||||
if timesteps is not None and sigmas is not None:
|
||||
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
||||
if timesteps is not None:
|
||||
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accepts_timesteps:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" timestep schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
elif sigmas is not None:
|
||||
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accept_sigmas:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
else:
|
||||
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
return timesteps, num_inference_steps
|
||||
|
||||
|
||||
@dataclass
|
||||
class CogVideoX_Fun_PipelineOutput(BaseOutput):
|
||||
r"""
|
||||
Output class for CogVideo pipelines.
|
||||
|
||||
Args:
|
||||
video (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
|
||||
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
|
||||
denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
|
||||
`(batch_size, num_frames, channels, height, width)`.
|
||||
"""
|
||||
|
||||
videos: torch.Tensor
|
||||
|
||||
|
||||
class CogVideoX_Fun_Pipeline_Control(DiffusionPipeline):
|
||||
r"""
|
||||
Pipeline for text-to-video generation using CogVideoX.
|
||||
|
||||
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
||||
|
||||
Args:
|
||||
vae ([`AutoencoderKL`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
|
||||
transformer ([`CogVideoXTransformer3DModel`]):
|
||||
A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents.
|
||||
scheduler ([`SchedulerMixin`]):
|
||||
A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
|
||||
"""
|
||||
|
||||
_optional_components = []
|
||||
model_cpu_offload_seq = "vae->transformer->vae"
|
||||
|
||||
_callback_tensor_inputs = [
|
||||
"latents",
|
||||
"prompt_embeds",
|
||||
"negative_prompt_embeds",
|
||||
]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vae: AutoencoderKLCogVideoX,
|
||||
transformer: CogVideoXTransformer3DModel,
|
||||
scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler],
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
vae=vae, transformer=transformer, scheduler=scheduler
|
||||
)
|
||||
self.vae_scale_factor_spatial = (
|
||||
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
||||
)
|
||||
self.vae_scale_factor_temporal = (
|
||||
self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4
|
||||
)
|
||||
|
||||
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
|
||||
|
||||
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
||||
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
||||
self.mask_processor = VaeImageProcessor(
|
||||
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
|
||||
)
|
||||
|
||||
def prepare_latents(
|
||||
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, timesteps, denoise_strength, num_inference_steps,
|
||||
latents=None, freenoise=True, context_size=None, context_overlap=None
|
||||
):
|
||||
shape = (
|
||||
batch_size,
|
||||
(num_frames - 1) // self.vae_scale_factor_temporal + 1,
|
||||
num_channels_latents,
|
||||
height // self.vae_scale_factor_spatial,
|
||||
width // self.vae_scale_factor_spatial,
|
||||
)
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||
)
|
||||
noise = randn_tensor(shape, generator=generator, device=torch.device("cpu"), dtype=self.vae.dtype)
|
||||
if freenoise:
|
||||
print("Applying FreeNoise")
|
||||
# code and comments from AnimateDiff-Evolved by Kosinkadink (https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved)
|
||||
video_length = num_frames // 4
|
||||
delta = context_size - context_overlap
|
||||
for start_idx in range(0, video_length-context_size, delta):
|
||||
# start_idx corresponds to the beginning of a context window
|
||||
# goal: place shuffled in the delta region right after the end of the context window
|
||||
# if space after context window is not enough to place the noise, adjust and finish
|
||||
place_idx = start_idx + context_size
|
||||
# if place_idx is outside the valid indexes, we are already finished
|
||||
if place_idx >= video_length:
|
||||
break
|
||||
end_idx = place_idx - 1
|
||||
#print("video_length:", video_length, "start_idx:", start_idx, "end_idx:", end_idx, "place_idx:", place_idx, "delta:", delta)
|
||||
|
||||
# if there is not enough room to copy delta amount of indexes, copy limited amount and finish
|
||||
if end_idx + delta >= video_length:
|
||||
final_delta = video_length - place_idx
|
||||
# generate list of indexes in final delta region
|
||||
list_idx = torch.tensor(list(range(start_idx,start_idx+final_delta)), device=torch.device("cpu"), dtype=torch.long)
|
||||
# shuffle list
|
||||
list_idx = list_idx[torch.randperm(final_delta, generator=generator)]
|
||||
# apply shuffled indexes
|
||||
noise[:, place_idx:place_idx + final_delta, :, :, :] = noise[:, list_idx, :, :, :]
|
||||
break
|
||||
# otherwise, do normal behavior
|
||||
# generate list of indexes in delta region
|
||||
list_idx = torch.tensor(list(range(start_idx,start_idx+delta)), device=torch.device("cpu"), dtype=torch.long)
|
||||
# shuffle list
|
||||
list_idx = list_idx[torch.randperm(delta, generator=generator)]
|
||||
# apply shuffled indexes
|
||||
#print("place_idx:", place_idx, "delta:", delta, "list_idx:", list_idx)
|
||||
noise[:, place_idx:place_idx + delta, :, :, :] = noise[:, list_idx, :, :, :]
|
||||
if latents is None:
|
||||
latents = noise.to(device)
|
||||
else:
|
||||
latents = latents.to(device)
|
||||
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, denoise_strength, device)
|
||||
latent_timestep = timesteps[:1]
|
||||
|
||||
noise = randn_tensor(shape, generator=generator, device=device, dtype=self.vae.dtype)
|
||||
frames_needed = noise.shape[1]
|
||||
current_frames = latents.shape[1]
|
||||
|
||||
if frames_needed > current_frames:
|
||||
repeat_factor = frames_needed // current_frames
|
||||
additional_frame = torch.randn((latents.size(0), repeat_factor, latents.size(2), latents.size(3), latents.size(4)), dtype=latents.dtype, device=latents.device)
|
||||
latents = torch.cat((latents, additional_frame), dim=1)
|
||||
elif frames_needed < current_frames:
|
||||
latents = latents[:, :frames_needed, :, :, :]
|
||||
|
||||
latents = self.scheduler.add_noise(latents, noise, latent_timestep)
|
||||
latents = latents * self.scheduler.init_noise_sigma # scale the initial noise by the standard deviation required by the scheduler
|
||||
return latents, timesteps, noise
|
||||
|
||||
def prepare_control_latents(
|
||||
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
||||
):
|
||||
# resize the mask to latents shape as we concatenate the mask to the latents
|
||||
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
||||
# and half precision
|
||||
|
||||
if mask is not None:
|
||||
mask = mask.to(device=device, dtype=self.vae.dtype)
|
||||
bs = 1
|
||||
new_mask = []
|
||||
for i in range(0, mask.shape[0], bs):
|
||||
mask_bs = mask[i : i + bs]
|
||||
mask_bs = self.vae.encode(mask_bs)[0]
|
||||
mask_bs = mask_bs.mode()
|
||||
new_mask.append(mask_bs)
|
||||
mask = torch.cat(new_mask, dim = 0)
|
||||
mask = mask * self.vae.config.scaling_factor
|
||||
|
||||
if masked_image is not None:
|
||||
masked_image = masked_image.to(device=device, dtype=self.vae.dtype)
|
||||
bs = 1
|
||||
new_mask_pixel_values = []
|
||||
for i in range(0, masked_image.shape[0], bs):
|
||||
mask_pixel_values_bs = masked_image[i : i + bs]
|
||||
mask_pixel_values_bs = self.vae.encode(mask_pixel_values_bs)[0]
|
||||
mask_pixel_values_bs = mask_pixel_values_bs.mode()
|
||||
new_mask_pixel_values.append(mask_pixel_values_bs)
|
||||
masked_image_latents = torch.cat(new_mask_pixel_values, dim = 0)
|
||||
masked_image_latents = masked_image_latents * self.vae.config.scaling_factor
|
||||
else:
|
||||
masked_image_latents = None
|
||||
|
||||
return mask, masked_image_latents
|
||||
|
||||
def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
|
||||
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
|
||||
latents = 1 / self.vae.config.scaling_factor * latents
|
||||
|
||||
frames = self.vae.decode(latents).sample
|
||||
frames = (frames / 2 + 0.5).clamp(0, 1)
|
||||
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
||||
frames = frames.cpu().float().numpy()
|
||||
return frames
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
||||
def prepare_extra_step_kwargs(self, generator, eta):
|
||||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||||
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||||
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
||||
# and should be between [0, 1]
|
||||
|
||||
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
extra_step_kwargs = {}
|
||||
if accepts_eta:
|
||||
extra_step_kwargs["eta"] = eta
|
||||
|
||||
# check if the scheduler accepts generator
|
||||
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
if accepts_generator:
|
||||
extra_step_kwargs["generator"] = generator
|
||||
return extra_step_kwargs
|
||||
|
||||
# Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
negative_prompt,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
):
|
||||
if height % 8 != 0 or width % 8 != 0:
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
||||
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt is None and prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
||||
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
||||
raise ValueError(
|
||||
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
||||
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
||||
f" {negative_prompt_embeds.shape}."
|
||||
)
|
||||
|
||||
def fuse_qkv_projections(self) -> None:
|
||||
r"""Enables fused QKV projections."""
|
||||
self.fusing_transformer = True
|
||||
self.transformer.fuse_qkv_projections()
|
||||
|
||||
def unfuse_qkv_projections(self) -> None:
|
||||
r"""Disable QKV projection fusion if enabled."""
|
||||
if not self.fusing_transformer:
|
||||
logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.")
|
||||
else:
|
||||
self.transformer.unfuse_qkv_projections()
|
||||
self.fusing_transformer = False
|
||||
|
||||
def _prepare_rotary_positional_embeddings(
|
||||
self,
|
||||
height: int,
|
||||
width: int,
|
||||
num_frames: int,
|
||||
device: torch.device,
|
||||
start_frame: Optional[int] = None,
|
||||
end_frame: Optional[int] = None,
|
||||
context_frames: Optional[int] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
||||
grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
||||
base_size_width = 720 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
||||
base_size_height = 480 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
||||
|
||||
grid_crops_coords = get_resize_crop_region_for_grid(
|
||||
(grid_height, grid_width), base_size_width, base_size_height
|
||||
)
|
||||
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
|
||||
embed_dim=self.transformer.config.attention_head_dim,
|
||||
crops_coords=grid_crops_coords,
|
||||
grid_size=(grid_height, grid_width),
|
||||
temporal_size=num_frames,
|
||||
use_real=True,
|
||||
)
|
||||
|
||||
if start_frame is not None or context_frames is not None:
|
||||
freqs_cos = freqs_cos.view(num_frames, grid_height * grid_width, -1)
|
||||
freqs_sin = freqs_sin.view(num_frames, grid_height * grid_width, -1)
|
||||
if context_frames is not None:
|
||||
freqs_cos = freqs_cos[context_frames]
|
||||
freqs_sin = freqs_sin[context_frames]
|
||||
else:
|
||||
freqs_cos = freqs_cos[start_frame:end_frame]
|
||||
freqs_sin = freqs_sin[start_frame:end_frame]
|
||||
|
||||
freqs_cos = freqs_cos.view(-1, freqs_cos.shape[-1])
|
||||
freqs_sin = freqs_sin.view(-1, freqs_sin.shape[-1])
|
||||
|
||||
freqs_cos = freqs_cos.to(device=device)
|
||||
freqs_sin = freqs_sin.to(device=device)
|
||||
return freqs_cos, freqs_sin
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
||||
def get_timesteps(self, num_inference_steps, strength, device):
|
||||
# get the original timestep using init_timestep
|
||||
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
||||
|
||||
t_start = max(num_inference_steps - init_timestep, 0)
|
||||
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
||||
|
||||
return timesteps, num_inference_steps - t_start
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Optional[Union[str, List[str]]] = None,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
height: int = 480,
|
||||
width: int = 720,
|
||||
video: Union[torch.FloatTensor] = None,
|
||||
control_video: Union[torch.FloatTensor] = None,
|
||||
num_frames: int = 49,
|
||||
num_inference_steps: int = 50,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
guidance_scale: float = 6,
|
||||
use_dynamic_cfg: bool = False,
|
||||
denoise_strength: float = 1.0,
|
||||
num_videos_per_prompt: int = 1,
|
||||
eta: float = 0.0,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
output_type: str = "numpy",
|
||||
return_dict: bool = False,
|
||||
callback_on_step_end: Optional[
|
||||
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
||||
] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
max_sequence_length: int = 226,
|
||||
comfyui_progressbar: bool = False,
|
||||
control_strength: float = 1.0,
|
||||
control_start_percent: float = 0.0,
|
||||
control_end_percent: float = 1.0,
|
||||
scheduler_name: str = "DPM",
|
||||
context_schedule: Optional[str] = None,
|
||||
context_frames: Optional[int] = None,
|
||||
context_stride: Optional[int] = None,
|
||||
context_overlap: Optional[int] = None,
|
||||
freenoise: Optional[bool] = True,
|
||||
tora: Optional[dict] = None,
|
||||
) -> Union[CogVideoX_Fun_PipelineOutput, Tuple]:
|
||||
"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
||||
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
||||
num_frames (`int`, defaults to `48`):
|
||||
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will
|
||||
contain 1 extra frame because CogVideoX_Fun is conditioned with (num_seconds * fps + 1) frames where
|
||||
num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that
|
||||
needs to be satisfied is that of divisibility mentioned above.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
||||
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
||||
passed will be used. Must be in descending order.
|
||||
guidance_scale (`float`, *optional*, defaults to 7.0):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of videos to generate per prompt.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
latents (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will ge generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
||||
of a plain tuple.
|
||||
callback_on_step_end (`Callable`, *optional*):
|
||||
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
||||
`callback_on_step_end_tensor_inputs`.
|
||||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
max_sequence_length (`int`, defaults to `226`):
|
||||
Maximum sequence length in encoded prompt. Must be consistent with
|
||||
`self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.cogvideo.pipeline_cogvideox.CogVideoX_Fun_PipelineOutput`] or `tuple`:
|
||||
[`~pipelines.cogvideo.pipeline_cogvideox.CogVideoX_Fun_PipelineOutput`] if `return_dict` is True, otherwise a
|
||||
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
||||
"""
|
||||
|
||||
# if num_frames > 49:
|
||||
# raise ValueError(
|
||||
# "The number of frames must be less than 49 for now due to static positional embeddings. This will be updated in the future to remove this limitation."
|
||||
# )
|
||||
|
||||
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
||||
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
||||
|
||||
height = height or self.transformer.config.sample_size * self.vae_scale_factor_spatial
|
||||
width = width or self.transformer.config.sample_size * self.vae_scale_factor_spatial
|
||||
num_videos_per_prompt = 1
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
negative_prompt,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
)
|
||||
self._guidance_scale = guidance_scale
|
||||
self._interrupt = False
|
||||
|
||||
# 2. Default call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
||||
|
||||
# 4. Prepare timesteps
|
||||
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
||||
self._num_timesteps = len(timesteps)
|
||||
if comfyui_progressbar:
|
||||
from comfy.utils import ProgressBar
|
||||
pbar = ProgressBar(num_inference_steps + 2)
|
||||
|
||||
# 5. Prepare latents.
|
||||
latent_channels = self.vae.config.latent_channels
|
||||
latents, timesteps, noise = self.prepare_latents(
|
||||
batch_size * num_videos_per_prompt,
|
||||
latent_channels,
|
||||
num_frames,
|
||||
height,
|
||||
width,
|
||||
self.vae.dtype,
|
||||
device,
|
||||
generator,
|
||||
timesteps,
|
||||
denoise_strength,
|
||||
num_inference_steps,
|
||||
latents,
|
||||
context_size=context_frames,
|
||||
context_overlap=context_overlap,
|
||||
freenoise=freenoise,
|
||||
)
|
||||
if comfyui_progressbar:
|
||||
pbar.update(1)
|
||||
|
||||
|
||||
control_video_latents_input = (
|
||||
torch.cat([control_video] * 2) if do_classifier_free_guidance else control_video
|
||||
)
|
||||
control_latents = rearrange(control_video_latents_input, "b c f h w -> b f c h w")
|
||||
|
||||
control_latents = control_latents * control_strength
|
||||
|
||||
if comfyui_progressbar:
|
||||
pbar.update(1)
|
||||
|
||||
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||||
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||||
|
||||
|
||||
|
||||
# 8. Denoising loop
|
||||
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
||||
|
||||
if context_schedule is not None:
|
||||
print(f"Context schedule enabled: {context_frames} frames, {context_stride} stride, {context_overlap} overlap")
|
||||
use_context_schedule = True
|
||||
from .context import get_context_scheduler
|
||||
context = get_context_scheduler(context_schedule)
|
||||
|
||||
else:
|
||||
use_context_schedule = False
|
||||
print(" context schedule disabled")
|
||||
# 7. Create rotary embeds if required
|
||||
image_rotary_emb = (
|
||||
self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device)
|
||||
if self.transformer.config.use_rotary_positional_embeddings
|
||||
else None
|
||||
)
|
||||
if tora is not None and do_classifier_free_guidance:
|
||||
video_flow_features = tora["video_flow_features"].repeat(1, 2, 1, 1, 1).contiguous()
|
||||
|
||||
if tora is not None:
|
||||
for module in self.transformer.fuser_list:
|
||||
for param in module.parameters():
|
||||
param.data = param.data.to(device)
|
||||
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
# for DPM-solver++
|
||||
old_pred_original_sample = None
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
if use_context_schedule:
|
||||
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
# Calculate the current step percentage
|
||||
current_step_percentage = i / num_inference_steps
|
||||
|
||||
# Determine if control_latents should be applied
|
||||
apply_control = control_start_percent <= current_step_percentage <= control_end_percent
|
||||
current_control_latents = control_latents if apply_control else torch.zeros_like(control_latents)
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latent_model_input.shape[0])
|
||||
|
||||
context_queue = list(context(
|
||||
i, num_inference_steps, latents.shape[1], context_frames, context_stride, context_overlap,
|
||||
))
|
||||
counter = torch.zeros_like(latent_model_input)
|
||||
noise_pred = torch.zeros_like(latent_model_input)
|
||||
|
||||
image_rotary_emb = (
|
||||
self._prepare_rotary_positional_embeddings(height, width, context_frames, device)
|
||||
if self.transformer.config.use_rotary_positional_embeddings
|
||||
else None
|
||||
)
|
||||
|
||||
for c in context_queue:
|
||||
partial_latent_model_input = latent_model_input[:, c, :, :, :]
|
||||
partial_control_latents = current_control_latents[:, c, :, :, :]
|
||||
|
||||
# predict noise model_output
|
||||
noise_pred[:, c, :, :, :] += self.transformer(
|
||||
hidden_states=partial_latent_model_input,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
timestep=timestep,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
return_dict=False,
|
||||
control_latents=partial_control_latents,
|
||||
)[0]
|
||||
|
||||
counter[:, c, :, :, :] += 1
|
||||
noise_pred = noise_pred.float()
|
||||
|
||||
noise_pred /= counter
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
if not isinstance(self.scheduler, CogVideoXDPMScheduler):
|
||||
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
||||
else:
|
||||
latents, old_pred_original_sample = self.scheduler.step(
|
||||
noise_pred,
|
||||
old_pred_original_sample,
|
||||
t,
|
||||
timesteps[i - 1] if i > 0 else None,
|
||||
latents,
|
||||
**extra_step_kwargs,
|
||||
return_dict=False,
|
||||
)
|
||||
latents = latents.to(prompt_embeds.dtype)
|
||||
|
||||
# call the callback, if provided
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
||||
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
if comfyui_progressbar:
|
||||
pbar.update(1)
|
||||
else:
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
# Calculate the current step percentage
|
||||
current_step_percentage = i / num_inference_steps
|
||||
|
||||
# Determine if control_latents should be applied
|
||||
apply_control = control_start_percent <= current_step_percentage <= control_end_percent
|
||||
current_control_latents = control_latents if apply_control else torch.zeros_like(control_latents)
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latent_model_input.shape[0])
|
||||
|
||||
# predict noise model_output
|
||||
noise_pred = self.transformer(
|
||||
hidden_states=latent_model_input,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
timestep=timestep,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
return_dict=False,
|
||||
control_latents=current_control_latents,
|
||||
video_flow_features=video_flow_features if (tora is not None and tora["start_percent"] <= current_step_percentage <= tora["end_percent"]) else None,
|
||||
|
||||
)[0]
|
||||
noise_pred = noise_pred.float()
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
if not isinstance(self.scheduler, CogVideoXDPMScheduler):
|
||||
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
||||
else:
|
||||
latents, old_pred_original_sample = self.scheduler.step(
|
||||
noise_pred,
|
||||
old_pred_original_sample,
|
||||
t,
|
||||
timesteps[i - 1] if i > 0 else None,
|
||||
latents,
|
||||
**extra_step_kwargs,
|
||||
return_dict=False,
|
||||
)
|
||||
latents = latents.to(prompt_embeds.dtype)
|
||||
|
||||
# call the callback, if provided
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
||||
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
if comfyui_progressbar:
|
||||
pbar.update(1)
|
||||
|
||||
# if output_type == "numpy":
|
||||
# video = self.decode_latents(latents)
|
||||
# elif not output_type == "latent":
|
||||
# video = self.decode_latents(latents)
|
||||
# video = self.video_processor.postprocess_video(video=video, output_type=output_type)
|
||||
# else:
|
||||
# video = latents
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
# if not return_dict:
|
||||
# video = torch.from_numpy(video)
|
||||
|
||||
return latents
|
||||
File diff suppressed because it is too large
Load Diff
@ -1,823 +0,0 @@
|
||||
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
|
||||
# All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import os
|
||||
import json
|
||||
import torch
|
||||
import glob
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
from diffusers.utils import is_torch_version, logging
|
||||
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
||||
from diffusers.models.attention import Attention, FeedForward
|
||||
from diffusers.models.attention_processor import AttentionProcessor#, CogVideoXAttnProcessor2_0, FusedCogVideoXAttnProcessor2_0
|
||||
from diffusers.models.embeddings import TimestepEmbedding, Timesteps, get_3d_sincos_pos_embed
|
||||
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
||||
from diffusers.models.modeling_utils import ModelMixin
|
||||
from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
from einops import rearrange
|
||||
try:
|
||||
from sageattention import sageattn
|
||||
SAGEATTN_IS_AVAILABLE = True
|
||||
except:
|
||||
SAGEATTN_IS_AVAILABLE = False
|
||||
|
||||
def fft(tensor):
|
||||
tensor_fft = torch.fft.fft2(tensor)
|
||||
tensor_fft_shifted = torch.fft.fftshift(tensor_fft)
|
||||
B, C, H, W = tensor.size()
|
||||
radius = min(H, W) // 5
|
||||
|
||||
Y, X = torch.meshgrid(torch.arange(H), torch.arange(W))
|
||||
center_x, center_y = W // 2, H // 2
|
||||
mask = (X - center_x) ** 2 + (Y - center_y) ** 2 <= radius ** 2
|
||||
low_freq_mask = mask.unsqueeze(0).unsqueeze(0).to(tensor.device)
|
||||
high_freq_mask = ~low_freq_mask
|
||||
|
||||
low_freq_fft = tensor_fft_shifted * low_freq_mask
|
||||
high_freq_fft = tensor_fft_shifted * high_freq_mask
|
||||
|
||||
return low_freq_fft, high_freq_fft
|
||||
|
||||
class CogVideoXAttnProcessor2_0:
|
||||
r"""
|
||||
Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on
|
||||
query and key vectors, but does not include spatial normalization.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
attention_mode: Optional[str] = None,
|
||||
) -> torch.Tensor:
|
||||
text_seq_length = encoder_hidden_states.size(1)
|
||||
|
||||
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
||||
|
||||
batch_size, sequence_length, _ = (
|
||||
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
||||
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
||||
|
||||
query = attn.to_q(hidden_states)
|
||||
key = attn.to_k(hidden_states)
|
||||
value = attn.to_v(hidden_states)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
# Apply RoPE if needed
|
||||
if image_rotary_emb is not None:
|
||||
from diffusers.models.embeddings import apply_rotary_emb
|
||||
|
||||
query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb)
|
||||
if not attn.is_cross_attention:
|
||||
key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb)
|
||||
|
||||
if attention_mode == "sageattn":
|
||||
if SAGEATTN_IS_AVAILABLE:
|
||||
hidden_states = sageattn(query, key, value, attn_mask=attention_mask, dropout_p=0.0,is_causal=False)
|
||||
else:
|
||||
raise ImportError("sageattn not found")
|
||||
else:
|
||||
hidden_states = F.scaled_dot_product_attention(
|
||||
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
encoder_hidden_states, hidden_states = hidden_states.split(
|
||||
[text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
|
||||
)
|
||||
return hidden_states, encoder_hidden_states
|
||||
|
||||
class CogVideoXPatchEmbed(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
patch_size: int = 2,
|
||||
in_channels: int = 16,
|
||||
embed_dim: int = 1920,
|
||||
text_embed_dim: int = 4096,
|
||||
bias: bool = True,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.patch_size = patch_size
|
||||
|
||||
self.proj = nn.Conv2d(
|
||||
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
|
||||
)
|
||||
self.text_proj = nn.Linear(text_embed_dim, embed_dim)
|
||||
|
||||
def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
|
||||
r"""
|
||||
Args:
|
||||
text_embeds (`torch.Tensor`):
|
||||
Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim).
|
||||
image_embeds (`torch.Tensor`):
|
||||
Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width).
|
||||
"""
|
||||
text_embeds = self.text_proj(text_embeds)
|
||||
|
||||
batch, num_frames, channels, height, width = image_embeds.shape
|
||||
image_embeds = image_embeds.reshape(-1, channels, height, width)
|
||||
image_embeds = self.proj(image_embeds)
|
||||
image_embeds = image_embeds.view(batch, num_frames, *image_embeds.shape[1:])
|
||||
image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels]
|
||||
image_embeds = image_embeds.flatten(1, 2) # [batch, num_frames x height x width, channels]
|
||||
|
||||
embeds = torch.cat(
|
||||
[text_embeds, image_embeds], dim=1
|
||||
).contiguous() # [batch, seq_length + num_frames x height x width, channels]
|
||||
return embeds
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class CogVideoXBlock(nn.Module):
|
||||
r"""
|
||||
Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model.
|
||||
|
||||
Parameters:
|
||||
dim (`int`):
|
||||
The number of channels in the input and output.
|
||||
num_attention_heads (`int`):
|
||||
The number of heads to use for multi-head attention.
|
||||
attention_head_dim (`int`):
|
||||
The number of channels in each head.
|
||||
time_embed_dim (`int`):
|
||||
The number of channels in timestep embedding.
|
||||
dropout (`float`, defaults to `0.0`):
|
||||
The dropout probability to use.
|
||||
activation_fn (`str`, defaults to `"gelu-approximate"`):
|
||||
Activation function to be used in feed-forward.
|
||||
attention_bias (`bool`, defaults to `False`):
|
||||
Whether or not to use bias in attention projection layers.
|
||||
qk_norm (`bool`, defaults to `True`):
|
||||
Whether or not to use normalization after query and key projections in Attention.
|
||||
norm_elementwise_affine (`bool`, defaults to `True`):
|
||||
Whether to use learnable elementwise affine parameters for normalization.
|
||||
norm_eps (`float`, defaults to `1e-5`):
|
||||
Epsilon value for normalization layers.
|
||||
final_dropout (`bool` defaults to `False`):
|
||||
Whether to apply a final dropout after the last feed-forward layer.
|
||||
ff_inner_dim (`int`, *optional*, defaults to `None`):
|
||||
Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used.
|
||||
ff_bias (`bool`, defaults to `True`):
|
||||
Whether or not to use bias in Feed-forward layer.
|
||||
attention_out_bias (`bool`, defaults to `True`):
|
||||
Whether or not to use bias in Attention output projection layer.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
time_embed_dim: int,
|
||||
dropout: float = 0.0,
|
||||
activation_fn: str = "gelu-approximate",
|
||||
attention_bias: bool = False,
|
||||
qk_norm: bool = True,
|
||||
norm_elementwise_affine: bool = True,
|
||||
norm_eps: float = 1e-5,
|
||||
final_dropout: bool = True,
|
||||
ff_inner_dim: Optional[int] = None,
|
||||
ff_bias: bool = True,
|
||||
attention_out_bias: bool = True,
|
||||
attention_mode: Optional[str] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# 1. Self Attention
|
||||
self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
|
||||
|
||||
self.attn1 = Attention(
|
||||
query_dim=dim,
|
||||
dim_head=attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
qk_norm="layer_norm" if qk_norm else None,
|
||||
eps=1e-6,
|
||||
bias=attention_bias,
|
||||
out_bias=attention_out_bias,
|
||||
processor=CogVideoXAttnProcessor2_0(),
|
||||
)
|
||||
|
||||
# 2. Feed Forward
|
||||
self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
|
||||
|
||||
self.ff = FeedForward(
|
||||
dim,
|
||||
dropout=dropout,
|
||||
activation_fn=activation_fn,
|
||||
final_dropout=final_dropout,
|
||||
inner_dim=ff_inner_dim,
|
||||
bias=ff_bias,
|
||||
)
|
||||
self.cached_hidden_states = []
|
||||
self.cached_encoder_hidden_states = []
|
||||
self.attention_mode = attention_mode
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
temb: torch.Tensor,
|
||||
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
video_flow_feature: Optional[torch.Tensor] = None,
|
||||
fuser=None,
|
||||
block_use_fastercache=False,
|
||||
fastercache_counter=0,
|
||||
fastercache_start_step=15,
|
||||
fastercache_device="cuda:0",
|
||||
) -> torch.Tensor:
|
||||
text_seq_length = encoder_hidden_states.size(1)
|
||||
|
||||
# norm & modulate
|
||||
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
|
||||
hidden_states, encoder_hidden_states, temb
|
||||
)
|
||||
# Tora Motion-guidance Fuser
|
||||
if video_flow_feature is not None:
|
||||
H, W = video_flow_feature.shape[-2:]
|
||||
T = norm_hidden_states.shape[1] // H // W
|
||||
h = rearrange(norm_hidden_states, "B (T H W) C -> (B T) C H W", H=H, W=W)
|
||||
h = fuser(h, video_flow_feature.to(h), T=T)
|
||||
norm_hidden_states = rearrange(h, "(B T) C H W -> B (T H W) C", T=T)
|
||||
del h, fuser
|
||||
|
||||
#region fastercache
|
||||
if block_use_fastercache:
|
||||
B = norm_hidden_states.shape[0]
|
||||
if fastercache_counter >= fastercache_start_step + 3 and fastercache_counter%3!=0 and self.cached_hidden_states[-1].shape[0] >= B:
|
||||
attn_hidden_states = (
|
||||
self.cached_hidden_states[1][:B] +
|
||||
(self.cached_hidden_states[1][:B] - self.cached_hidden_states[0][:B])
|
||||
* 0.3
|
||||
).to(norm_hidden_states.device, non_blocking=True)
|
||||
attn_encoder_hidden_states = (
|
||||
self.cached_encoder_hidden_states[1][:B] +
|
||||
(self.cached_encoder_hidden_states[1][:B] - self.cached_encoder_hidden_states[0][:B])
|
||||
* 0.3
|
||||
).to(norm_hidden_states.device, non_blocking=True)
|
||||
else:
|
||||
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
|
||||
hidden_states=norm_hidden_states,
|
||||
encoder_hidden_states=norm_encoder_hidden_states,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
attention_mode=self.attention_mode,
|
||||
)
|
||||
if fastercache_counter == fastercache_start_step:
|
||||
self.cached_hidden_states = [attn_hidden_states.to(fastercache_device), attn_hidden_states.to(fastercache_device)]
|
||||
self.cached_encoder_hidden_states = [attn_encoder_hidden_states.to(fastercache_device), attn_encoder_hidden_states.to(fastercache_device)]
|
||||
elif fastercache_counter > fastercache_start_step:
|
||||
self.cached_hidden_states[-1].copy_(attn_hidden_states.to(fastercache_device))
|
||||
self.cached_encoder_hidden_states[-1].copy_(attn_encoder_hidden_states.to(fastercache_device))
|
||||
else:
|
||||
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
|
||||
hidden_states=norm_hidden_states,
|
||||
encoder_hidden_states=norm_encoder_hidden_states,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
attention_mode=self.attention_mode,
|
||||
)
|
||||
|
||||
hidden_states = hidden_states + gate_msa * attn_hidden_states
|
||||
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states
|
||||
|
||||
# norm & modulate
|
||||
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
|
||||
hidden_states, encoder_hidden_states, temb
|
||||
)
|
||||
|
||||
# feed-forward
|
||||
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
|
||||
ff_output = self.ff(norm_hidden_states)
|
||||
|
||||
hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:]
|
||||
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length]
|
||||
|
||||
return hidden_states, encoder_hidden_states
|
||||
|
||||
|
||||
class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin):
|
||||
"""
|
||||
A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo).
|
||||
|
||||
Parameters:
|
||||
num_attention_heads (`int`, defaults to `30`):
|
||||
The number of heads to use for multi-head attention.
|
||||
attention_head_dim (`int`, defaults to `64`):
|
||||
The number of channels in each head.
|
||||
in_channels (`int`, defaults to `16`):
|
||||
The number of channels in the input.
|
||||
out_channels (`int`, *optional*, defaults to `16`):
|
||||
The number of channels in the output.
|
||||
flip_sin_to_cos (`bool`, defaults to `True`):
|
||||
Whether to flip the sin to cos in the time embedding.
|
||||
time_embed_dim (`int`, defaults to `512`):
|
||||
Output dimension of timestep embeddings.
|
||||
text_embed_dim (`int`, defaults to `4096`):
|
||||
Input dimension of text embeddings from the text encoder.
|
||||
num_layers (`int`, defaults to `30`):
|
||||
The number of layers of Transformer blocks to use.
|
||||
dropout (`float`, defaults to `0.0`):
|
||||
The dropout probability to use.
|
||||
attention_bias (`bool`, defaults to `True`):
|
||||
Whether or not to use bias in the attention projection layers.
|
||||
sample_width (`int`, defaults to `90`):
|
||||
The width of the input latents.
|
||||
sample_height (`int`, defaults to `60`):
|
||||
The height of the input latents.
|
||||
sample_frames (`int`, defaults to `49`):
|
||||
The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49
|
||||
instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings,
|
||||
but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with
|
||||
K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1).
|
||||
patch_size (`int`, defaults to `2`):
|
||||
The size of the patches to use in the patch embedding layer.
|
||||
temporal_compression_ratio (`int`, defaults to `4`):
|
||||
The compression ratio across the temporal dimension. See documentation for `sample_frames`.
|
||||
max_text_seq_length (`int`, defaults to `226`):
|
||||
The maximum sequence length of the input text embeddings.
|
||||
activation_fn (`str`, defaults to `"gelu-approximate"`):
|
||||
Activation function to use in feed-forward.
|
||||
timestep_activation_fn (`str`, defaults to `"silu"`):
|
||||
Activation function to use when generating the timestep embeddings.
|
||||
norm_elementwise_affine (`bool`, defaults to `True`):
|
||||
Whether or not to use elementwise affine in normalization layers.
|
||||
norm_eps (`float`, defaults to `1e-5`):
|
||||
The epsilon value to use in normalization layers.
|
||||
spatial_interpolation_scale (`float`, defaults to `1.875`):
|
||||
Scaling factor to apply in 3D positional embeddings across spatial dimensions.
|
||||
temporal_interpolation_scale (`float`, defaults to `1.0`):
|
||||
Scaling factor to apply in 3D positional embeddings across temporal dimensions.
|
||||
"""
|
||||
|
||||
_supports_gradient_checkpointing = True
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
num_attention_heads: int = 30,
|
||||
attention_head_dim: int = 64,
|
||||
in_channels: int = 16,
|
||||
out_channels: Optional[int] = 16,
|
||||
flip_sin_to_cos: bool = True,
|
||||
freq_shift: int = 0,
|
||||
time_embed_dim: int = 512,
|
||||
text_embed_dim: int = 4096,
|
||||
num_layers: int = 30,
|
||||
dropout: float = 0.0,
|
||||
attention_bias: bool = True,
|
||||
sample_width: int = 90,
|
||||
sample_height: int = 60,
|
||||
sample_frames: int = 49,
|
||||
patch_size: int = 2,
|
||||
temporal_compression_ratio: int = 4,
|
||||
max_text_seq_length: int = 226,
|
||||
activation_fn: str = "gelu-approximate",
|
||||
timestep_activation_fn: str = "silu",
|
||||
norm_elementwise_affine: bool = True,
|
||||
norm_eps: float = 1e-5,
|
||||
spatial_interpolation_scale: float = 1.875,
|
||||
temporal_interpolation_scale: float = 1.0,
|
||||
use_rotary_positional_embeddings: bool = False,
|
||||
add_noise_in_inpaint_model: bool = False,
|
||||
attention_mode: Optional[str] = None,
|
||||
):
|
||||
super().__init__()
|
||||
inner_dim = num_attention_heads * attention_head_dim
|
||||
|
||||
post_patch_height = sample_height // patch_size
|
||||
post_patch_width = sample_width // patch_size
|
||||
post_time_compression_frames = (sample_frames - 1) // temporal_compression_ratio + 1
|
||||
self.num_patches = post_patch_height * post_patch_width * post_time_compression_frames
|
||||
self.post_patch_height = post_patch_height
|
||||
self.post_patch_width = post_patch_width
|
||||
self.post_time_compression_frames = post_time_compression_frames
|
||||
self.patch_size = patch_size
|
||||
|
||||
# 1. Patch embedding
|
||||
self.patch_embed = CogVideoXPatchEmbed(patch_size, in_channels, inner_dim, text_embed_dim, bias=True)
|
||||
self.embedding_dropout = nn.Dropout(dropout)
|
||||
|
||||
# 2. 3D positional embeddings
|
||||
spatial_pos_embedding = get_3d_sincos_pos_embed(
|
||||
inner_dim,
|
||||
(post_patch_width, post_patch_height),
|
||||
post_time_compression_frames,
|
||||
spatial_interpolation_scale,
|
||||
temporal_interpolation_scale,
|
||||
)
|
||||
spatial_pos_embedding = torch.from_numpy(spatial_pos_embedding).flatten(0, 1)
|
||||
pos_embedding = torch.zeros(1, max_text_seq_length + self.num_patches, inner_dim, requires_grad=False)
|
||||
pos_embedding.data[:, max_text_seq_length:].copy_(spatial_pos_embedding)
|
||||
self.register_buffer("pos_embedding", pos_embedding, persistent=False)
|
||||
|
||||
# 3. Time embeddings
|
||||
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
|
||||
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)
|
||||
|
||||
# 4. Define spatio-temporal transformers blocks
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
CogVideoXBlock(
|
||||
dim=inner_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
activation_fn=activation_fn,
|
||||
attention_bias=attention_bias,
|
||||
norm_elementwise_affine=norm_elementwise_affine,
|
||||
norm_eps=norm_eps,
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
)
|
||||
self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine)
|
||||
|
||||
# 5. Output blocks
|
||||
self.norm_out = AdaLayerNorm(
|
||||
embedding_dim=time_embed_dim,
|
||||
output_dim=2 * inner_dim,
|
||||
norm_elementwise_affine=norm_elementwise_affine,
|
||||
norm_eps=norm_eps,
|
||||
chunk_dim=1,
|
||||
)
|
||||
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
self.fuser_list = None
|
||||
|
||||
self.use_fastercache = False
|
||||
self.fastercache_counter = 0
|
||||
self.fastercache_start_step = 15
|
||||
self.fastercache_lf_step = 40
|
||||
self.fastercache_hf_step = 30
|
||||
self.fastercache_device = "cuda"
|
||||
self.fastercache_num_blocks_to_cache = len(self.transformer_blocks)
|
||||
self.attention_mode = attention_mode
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
self.gradient_checkpointing = value
|
||||
|
||||
@property
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
||||
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
||||
r"""
|
||||
Returns:
|
||||
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
||||
indexed by its weight name.
|
||||
"""
|
||||
# set recursively
|
||||
processors = {}
|
||||
|
||||
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
||||
if hasattr(module, "get_processor"):
|
||||
processors[f"{name}.processor"] = module.get_processor()
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
||||
|
||||
return processors
|
||||
|
||||
for name, module in self.named_children():
|
||||
fn_recursive_add_processors(name, module, processors)
|
||||
|
||||
return processors
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
Parameters:
|
||||
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
||||
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
||||
for **all** `Attention` layers.
|
||||
|
||||
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
||||
processor. This is strongly recommended when setting trainable attention processors.
|
||||
|
||||
"""
|
||||
count = len(self.attn_processors.keys())
|
||||
|
||||
if isinstance(processor, dict) and len(processor) != count:
|
||||
raise ValueError(
|
||||
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
||||
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
||||
)
|
||||
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
|
||||
for name, module in self.named_children():
|
||||
fn_recursive_attn_processor(name, module, processor)
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedCogVideoXAttnProcessor2_0
|
||||
def fuse_qkv_projections(self):
|
||||
"""
|
||||
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
||||
are fused. For cross-attention modules, key and value projection matrices are fused.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This API is 🧪 experimental.
|
||||
|
||||
</Tip>
|
||||
"""
|
||||
self.original_attn_processors = None
|
||||
|
||||
for _, attn_processor in self.attn_processors.items():
|
||||
if "Added" in str(attn_processor.__class__.__name__):
|
||||
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
||||
|
||||
self.original_attn_processors = self.attn_processors
|
||||
|
||||
for module in self.modules():
|
||||
if isinstance(module, Attention):
|
||||
module.fuse_projections(fuse=True)
|
||||
|
||||
self.set_attn_processor(FusedCogVideoXAttnProcessor2_0())
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
||||
def unfuse_qkv_projections(self):
|
||||
"""Disables the fused QKV projection if enabled.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This API is 🧪 experimental.
|
||||
|
||||
</Tip>
|
||||
|
||||
"""
|
||||
if self.original_attn_processors is not None:
|
||||
self.set_attn_processor(self.original_attn_processors)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
timestep: Union[int, float, torch.LongTensor],
|
||||
timestep_cond: Optional[torch.Tensor] = None,
|
||||
inpaint_latents: Optional[torch.Tensor] = None,
|
||||
control_latents: Optional[torch.Tensor] = None,
|
||||
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
video_flow_features: Optional[torch.Tensor] = None,
|
||||
return_dict: bool = True,
|
||||
):
|
||||
batch_size, num_frames, channels, height, width = hidden_states.shape
|
||||
|
||||
# 1. Time embedding
|
||||
timesteps = timestep
|
||||
t_emb = self.time_proj(timesteps)
|
||||
|
||||
# timesteps does not contain any weights and will always return f32 tensors
|
||||
# but time_embedding might actually be running in fp16. so we need to cast here.
|
||||
# there might be better ways to encapsulate this.
|
||||
t_emb = t_emb.to(dtype=hidden_states.dtype)
|
||||
emb = self.time_embedding(t_emb, timestep_cond)
|
||||
|
||||
# 2. Patch embedding
|
||||
if inpaint_latents is not None:
|
||||
hidden_states = torch.concat([hidden_states, inpaint_latents], 2)
|
||||
if control_latents is not None:
|
||||
hidden_states = torch.concat([hidden_states, control_latents], 2)
|
||||
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
|
||||
|
||||
# 3. Position embedding
|
||||
text_seq_length = encoder_hidden_states.shape[1]
|
||||
if not self.config.use_rotary_positional_embeddings:
|
||||
seq_length = height * width * num_frames // (self.config.patch_size**2)
|
||||
# pos_embeds = self.pos_embedding[:, : text_seq_length + seq_length]
|
||||
pos_embeds = self.pos_embedding
|
||||
emb_size = hidden_states.size()[-1]
|
||||
pos_embeds_without_text = pos_embeds[:, text_seq_length: ].view(1, self.post_time_compression_frames, self.post_patch_height, self.post_patch_width, emb_size)
|
||||
pos_embeds_without_text = pos_embeds_without_text.permute([0, 4, 1, 2, 3])
|
||||
pos_embeds_without_text = F.interpolate(pos_embeds_without_text,size=[self.post_time_compression_frames, height // self.config.patch_size, width // self.config.patch_size],mode='trilinear',align_corners=False)
|
||||
pos_embeds_without_text = pos_embeds_without_text.permute([0, 2, 3, 4, 1]).view(1, -1, emb_size)
|
||||
pos_embeds = torch.cat([pos_embeds[:, :text_seq_length], pos_embeds_without_text], dim = 1)
|
||||
pos_embeds = pos_embeds[:, : text_seq_length + seq_length]
|
||||
hidden_states = hidden_states + pos_embeds
|
||||
hidden_states = self.embedding_dropout(hidden_states)
|
||||
|
||||
encoder_hidden_states = hidden_states[:, :text_seq_length]
|
||||
hidden_states = hidden_states[:, text_seq_length:]
|
||||
|
||||
if self.use_fastercache:
|
||||
self.fastercache_counter+=1
|
||||
if self.fastercache_counter >= self.fastercache_start_step + 3 and self.fastercache_counter % 5 !=0:
|
||||
# 4. Transformer blocks
|
||||
for i, block in enumerate(self.transformer_blocks):
|
||||
hidden_states, encoder_hidden_states = block(
|
||||
hidden_states=hidden_states[:1],
|
||||
encoder_hidden_states=encoder_hidden_states[:1],
|
||||
temb=emb[:1],
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
video_flow_feature=video_flow_features[i][:1] if video_flow_features is not None else None,
|
||||
fuser = self.fuser_list[i] if self.fuser_list is not None else None,
|
||||
block_use_fastercache = i <= self.fastercache_num_blocks_to_cache,
|
||||
fastercache_start_step = self.fastercache_start_step,
|
||||
fastercache_counter = self.fastercache_counter,
|
||||
fastercache_device = self.fastercache_device
|
||||
)
|
||||
|
||||
if not self.config.use_rotary_positional_embeddings:
|
||||
# CogVideoX-2B
|
||||
hidden_states = self.norm_final(hidden_states)
|
||||
else:
|
||||
# CogVideoX-5B
|
||||
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
||||
hidden_states = self.norm_final(hidden_states)
|
||||
hidden_states = hidden_states[:, text_seq_length:]
|
||||
|
||||
# 5. Final block
|
||||
hidden_states = self.norm_out(hidden_states, temb=emb[:1])
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
|
||||
# 6. Unpatchify
|
||||
p = self.config.patch_size
|
||||
output = hidden_states.reshape(1, num_frames, height // p, width // p, channels, p, p)
|
||||
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
|
||||
|
||||
(bb, tt, cc, hh, ww) = output.shape
|
||||
cond = rearrange(output, "B T C H W -> (B T) C H W", B=bb, C=cc, T=tt, H=hh, W=ww)
|
||||
lf_c, hf_c = fft(cond.float())
|
||||
#lf_step = 40
|
||||
#hf_step = 30
|
||||
if self.fastercache_counter <= self.fastercache_lf_step:
|
||||
self.delta_lf = self.delta_lf * 1.1
|
||||
if self.fastercache_counter >= self.fastercache_hf_step:
|
||||
self.delta_hf = self.delta_hf * 1.1
|
||||
|
||||
new_hf_uc = self.delta_hf + hf_c
|
||||
new_lf_uc = self.delta_lf + lf_c
|
||||
|
||||
combine_uc = new_lf_uc + new_hf_uc
|
||||
combined_fft = torch.fft.ifftshift(combine_uc)
|
||||
recovered_uncond = torch.fft.ifft2(combined_fft).real
|
||||
recovered_uncond = rearrange(recovered_uncond.to(output.dtype), "(B T) C H W -> B T C H W", B=bb, C=cc, T=tt, H=hh, W=ww)
|
||||
output = torch.cat([output, recovered_uncond])
|
||||
else:
|
||||
# 4. Transformer blocks
|
||||
for i, block in enumerate(self.transformer_blocks):
|
||||
hidden_states, encoder_hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
temb=emb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
video_flow_feature=video_flow_features[i] if video_flow_features is not None else None,
|
||||
fuser = self.fuser_list[i] if self.fuser_list is not None else None,
|
||||
block_use_fastercache = i <= self.fastercache_num_blocks_to_cache,
|
||||
fastercache_counter = self.fastercache_counter,
|
||||
fastercache_start_step = self.fastercache_start_step,
|
||||
fastercache_device = self.fastercache_device
|
||||
)
|
||||
|
||||
if not self.config.use_rotary_positional_embeddings:
|
||||
# CogVideoX-2B
|
||||
hidden_states = self.norm_final(hidden_states)
|
||||
else:
|
||||
# CogVideoX-5B
|
||||
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
||||
hidden_states = self.norm_final(hidden_states)
|
||||
hidden_states = hidden_states[:, text_seq_length:]
|
||||
|
||||
# 5. Final block
|
||||
hidden_states = self.norm_out(hidden_states, temb=emb)
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
|
||||
# 6. Unpatchify
|
||||
p = self.config.patch_size
|
||||
output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, channels, p, p)
|
||||
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
|
||||
|
||||
if self.fastercache_counter >= self.fastercache_start_step + 1:
|
||||
(bb, tt, cc, hh, ww) = output.shape
|
||||
cond = rearrange(output[0:1].float(), "B T C H W -> (B T) C H W", B=bb//2, C=cc, T=tt, H=hh, W=ww)
|
||||
uncond = rearrange(output[1:2].float(), "B T C H W -> (B T) C H W", B=bb//2, C=cc, T=tt, H=hh, W=ww)
|
||||
|
||||
lf_c, hf_c = fft(cond)
|
||||
lf_uc, hf_uc = fft(uncond)
|
||||
|
||||
self.delta_lf = lf_uc - lf_c
|
||||
self.delta_hf = hf_uc - hf_c
|
||||
|
||||
|
||||
if not return_dict:
|
||||
return (output,)
|
||||
return Transformer2DModelOutput(sample=output)
|
||||
|
||||
@classmethod
|
||||
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, transformer_additional_kwargs={}):
|
||||
if subfolder is not None:
|
||||
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
|
||||
print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...")
|
||||
|
||||
config_file = os.path.join(pretrained_model_path, 'config.json')
|
||||
if not os.path.isfile(config_file):
|
||||
raise RuntimeError(f"{config_file} does not exist")
|
||||
with open(config_file, "r") as f:
|
||||
config = json.load(f)
|
||||
|
||||
from diffusers.utils import WEIGHTS_NAME
|
||||
model = cls.from_config(config, **transformer_additional_kwargs)
|
||||
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
|
||||
model_file_safetensors = model_file.replace(".bin", ".safetensors")
|
||||
if os.path.exists(model_file):
|
||||
state_dict = torch.load(model_file, map_location="cpu")
|
||||
elif os.path.exists(model_file_safetensors):
|
||||
from safetensors.torch import load_file, safe_open
|
||||
state_dict = load_file(model_file_safetensors)
|
||||
else:
|
||||
from safetensors.torch import load_file, safe_open
|
||||
model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors"))
|
||||
state_dict = {}
|
||||
for model_file_safetensors in model_files_safetensors:
|
||||
_state_dict = load_file(model_file_safetensors)
|
||||
for key in _state_dict:
|
||||
state_dict[key] = _state_dict[key]
|
||||
|
||||
if model.state_dict()['patch_embed.proj.weight'].size() != state_dict['patch_embed.proj.weight'].size():
|
||||
new_shape = model.state_dict()['patch_embed.proj.weight'].size()
|
||||
if len(new_shape) == 5:
|
||||
state_dict['patch_embed.proj.weight'] = state_dict['patch_embed.proj.weight'].unsqueeze(2).expand(new_shape).clone()
|
||||
state_dict['patch_embed.proj.weight'][:, :, :-1] = 0
|
||||
else:
|
||||
if model.state_dict()['patch_embed.proj.weight'].size()[1] > state_dict['patch_embed.proj.weight'].size()[1]:
|
||||
model.state_dict()['patch_embed.proj.weight'][:, :state_dict['patch_embed.proj.weight'].size()[1], :, :] = state_dict['patch_embed.proj.weight']
|
||||
model.state_dict()['patch_embed.proj.weight'][:, state_dict['patch_embed.proj.weight'].size()[1]:, :, :] = 0
|
||||
state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight']
|
||||
else:
|
||||
model.state_dict()['patch_embed.proj.weight'][:, :, :, :] = state_dict['patch_embed.proj.weight'][:, :model.state_dict()['patch_embed.proj.weight'].size()[1], :, :]
|
||||
state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight']
|
||||
|
||||
tmp_state_dict = {}
|
||||
for key in state_dict:
|
||||
if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size():
|
||||
tmp_state_dict[key] = state_dict[key]
|
||||
else:
|
||||
print(key, "Size don't match, skip")
|
||||
state_dict = tmp_state_dict
|
||||
|
||||
m, u = model.load_state_dict(state_dict, strict=False)
|
||||
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
|
||||
print(m)
|
||||
|
||||
params = [p.numel() if "mamba" in n else 0 for n, p in model.named_parameters()]
|
||||
print(f"### Mamba Parameters: {sum(params) / 1e6} M")
|
||||
|
||||
params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()]
|
||||
print(f"### attn1 Parameters: {sum(params) / 1e6} M")
|
||||
|
||||
return model
|
||||
@ -1,26 +1,6 @@
|
||||
import os
|
||||
import gc
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
|
||||
def tensor2pil(image):
|
||||
return Image.fromarray(np.clip(255. * image.cpu().numpy(), 0, 255).astype(np.uint8))
|
||||
|
||||
def numpy2pil(image):
|
||||
return Image.fromarray(np.clip(255. * image, 0, 255).astype(np.uint8))
|
||||
|
||||
def to_pil(image):
|
||||
if isinstance(image, Image.Image):
|
||||
return image
|
||||
if isinstance(image, torch.Tensor):
|
||||
return tensor2pil(image)
|
||||
if isinstance(image, np.ndarray):
|
||||
return numpy2pil(image)
|
||||
raise ValueError(f"Cannot convert {type(image)} to PIL.Image")
|
||||
|
||||
ASPECT_RATIO_512 = {
|
||||
'0.25': [256.0, 1024.0], '0.26': [256.0, 992.0], '0.27': [256.0, 960.0], '0.28': [256.0, 928.0],
|
||||
'0.32': [288.0, 896.0], '0.33': [288.0, 864.0], '0.35': [288.0, 832.0], '0.4': [320.0, 800.0],
|
||||
@ -54,126 +34,10 @@ def get_closest_ratio(height: float, width: float, ratios: dict = ASPECT_RATIO_5
|
||||
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - aspect_ratio))
|
||||
return ratios[closest_ratio], float(closest_ratio)
|
||||
|
||||
|
||||
def get_width_and_height_from_image_and_base_resolution(image, base_resolution):
|
||||
target_pixels = int(base_resolution) * int(base_resolution)
|
||||
original_width, original_height = Image.open(image).size
|
||||
ratio = (target_pixels / (original_width * original_height)) ** 0.5
|
||||
width_slider = round(original_width * ratio)
|
||||
height_slider = round(original_height * ratio)
|
||||
return height_slider, width_slider
|
||||
|
||||
def get_image_to_video_latent(validation_image_start, validation_image_end, video_length, sample_size):
|
||||
if validation_image_start is not None and validation_image_end is not None:
|
||||
if type(validation_image_start) is str and os.path.isfile(validation_image_start):
|
||||
image_start = clip_image = Image.open(validation_image_start).convert("RGB")
|
||||
image_start = image_start.resize([sample_size[1], sample_size[0]])
|
||||
clip_image = clip_image.resize([sample_size[1], sample_size[0]])
|
||||
else:
|
||||
image_start = clip_image = validation_image_start
|
||||
image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start]
|
||||
clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image]
|
||||
|
||||
if type(validation_image_end) is str and os.path.isfile(validation_image_end):
|
||||
image_end = Image.open(validation_image_end).convert("RGB")
|
||||
image_end = image_end.resize([sample_size[1], sample_size[0]])
|
||||
else:
|
||||
image_end = validation_image_end
|
||||
image_end = [_image_end.resize([sample_size[1], sample_size[0]]) for _image_end in image_end]
|
||||
|
||||
if type(image_start) is list:
|
||||
clip_image = clip_image[0]
|
||||
start_video = torch.cat(
|
||||
[torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in image_start],
|
||||
dim=2
|
||||
)
|
||||
input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1])
|
||||
input_video[:, :, :len(image_start)] = start_video
|
||||
|
||||
input_video_mask = torch.zeros_like(input_video[:, :1])
|
||||
input_video_mask[:, :, len(image_start):] = 255
|
||||
else:
|
||||
input_video = torch.tile(
|
||||
torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0),
|
||||
[1, 1, video_length, 1, 1]
|
||||
)
|
||||
input_video_mask = torch.zeros_like(input_video[:, :1])
|
||||
input_video_mask[:, :, 1:] = 255
|
||||
|
||||
if type(image_end) is list:
|
||||
image_end = [_image_end.resize(image_start[0].size if type(image_start) is list else image_start.size) for _image_end in image_end]
|
||||
end_video = torch.cat(
|
||||
[torch.from_numpy(np.array(_image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_end in image_end],
|
||||
dim=2
|
||||
)
|
||||
input_video[:, :, -len(end_video):] = end_video
|
||||
|
||||
input_video_mask[:, :, -len(image_end):] = 0
|
||||
else:
|
||||
image_end = image_end.resize(image_start[0].size if type(image_start) is list else image_start.size)
|
||||
input_video[:, :, -1:] = torch.from_numpy(np.array(image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0)
|
||||
input_video_mask[:, :, -1:] = 0
|
||||
|
||||
input_video = input_video / 255
|
||||
|
||||
elif validation_image_start is not None:
|
||||
if type(validation_image_start) is str and os.path.isfile(validation_image_start):
|
||||
image_start = clip_image = Image.open(validation_image_start).convert("RGB")
|
||||
image_start = image_start.resize([sample_size[1], sample_size[0]])
|
||||
clip_image = clip_image.resize([sample_size[1], sample_size[0]])
|
||||
else:
|
||||
image_start = clip_image = validation_image_start
|
||||
image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start]
|
||||
clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image]
|
||||
image_end = None
|
||||
|
||||
if type(image_start) is list:
|
||||
clip_image = clip_image[0]
|
||||
start_video = torch.cat(
|
||||
[torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in image_start],
|
||||
dim=2
|
||||
)
|
||||
input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1])
|
||||
input_video[:, :, :len(image_start)] = start_video
|
||||
input_video = input_video / 255
|
||||
|
||||
input_video_mask = torch.zeros_like(input_video[:, :1])
|
||||
input_video_mask[:, :, len(image_start):] = 255
|
||||
else:
|
||||
input_video = torch.tile(
|
||||
torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0),
|
||||
[1, 1, video_length, 1, 1]
|
||||
) / 255
|
||||
input_video_mask = torch.zeros_like(input_video[:, :1])
|
||||
input_video_mask[:, :, 1:, ] = 255
|
||||
else:
|
||||
image_start = None
|
||||
image_end = None
|
||||
input_video = torch.zeros([1, 3, video_length, sample_size[0], sample_size[1]])
|
||||
input_video_mask = torch.ones([1, 1, video_length, sample_size[0], sample_size[1]]) * 255
|
||||
clip_image = None
|
||||
|
||||
del image_start
|
||||
del image_end
|
||||
gc.collect()
|
||||
|
||||
return input_video, input_video_mask, clip_image
|
||||
|
||||
def get_video_to_video_latent(input_video_path, video_length, sample_size, validation_video_mask=None):
|
||||
input_video = input_video_path
|
||||
|
||||
input_video = torch.from_numpy(np.array(input_video))[:video_length]
|
||||
input_video = input_video.permute([3, 0, 1, 2]).unsqueeze(0) / 255
|
||||
|
||||
if validation_video_mask is not None:
|
||||
validation_video_mask = Image.open(validation_video_mask).convert('L').resize((sample_size[1], sample_size[0]))
|
||||
input_video_mask = np.where(np.array(validation_video_mask) < 240, 0, 255)
|
||||
|
||||
input_video_mask = torch.from_numpy(np.array(input_video_mask)).unsqueeze(0).unsqueeze(-1).permute([3, 0, 1, 2]).unsqueeze(0)
|
||||
input_video_mask = torch.tile(input_video_mask, [1, 1, input_video.size()[2], 1, 1])
|
||||
input_video_mask = input_video_mask.to(input_video.device, input_video.dtype)
|
||||
else:
|
||||
input_video_mask = torch.zeros_like(input_video[:, :1])
|
||||
input_video_mask[:, :, :] = 255
|
||||
|
||||
return input_video, input_video_mask, None
|
||||
return height_slider, width_slider
|
||||
@ -1,303 +0,0 @@
|
||||
"""
|
||||
|
||||
The script demonstrates how to convert the weights of the CogVideoX model from SAT to Hugging Face format.
|
||||
This script supports the conversion of the following models:
|
||||
- CogVideoX-2B
|
||||
- CogVideoX-5B, CogVideoX-5B-I2V
|
||||
- CogVideoX1.1-5B, CogVideoX1.1-5B-I2V
|
||||
|
||||
Original Script:
|
||||
https://github.com/huggingface/diffusers/blob/main/scripts/convert_cogvideox_to_diffusers.py
|
||||
|
||||
"""
|
||||
import argparse
|
||||
from typing import Any, Dict
|
||||
|
||||
import torch
|
||||
from transformers import T5EncoderModel, T5Tokenizer
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLCogVideoX,
|
||||
CogVideoXDDIMScheduler,
|
||||
CogVideoXImageToVideoPipeline,
|
||||
CogVideoXPipeline,
|
||||
#CogVideoXTransformer3DModel,
|
||||
)
|
||||
from custom_cogvideox_transformer_3d import CogVideoXTransformer3DModel
|
||||
|
||||
|
||||
def reassign_query_key_value_inplace(key: str, state_dict: Dict[str, Any]):
|
||||
to_q_key = key.replace("query_key_value", "to_q")
|
||||
to_k_key = key.replace("query_key_value", "to_k")
|
||||
to_v_key = key.replace("query_key_value", "to_v")
|
||||
to_q, to_k, to_v = torch.chunk(state_dict[key], chunks=3, dim=0)
|
||||
state_dict[to_q_key] = to_q
|
||||
state_dict[to_k_key] = to_k
|
||||
state_dict[to_v_key] = to_v
|
||||
state_dict.pop(key)
|
||||
|
||||
|
||||
def reassign_query_key_layernorm_inplace(key: str, state_dict: Dict[str, Any]):
|
||||
layer_id, weight_or_bias = key.split(".")[-2:]
|
||||
|
||||
if "query" in key:
|
||||
new_key = f"transformer_blocks.{layer_id}.attn1.norm_q.{weight_or_bias}"
|
||||
elif "key" in key:
|
||||
new_key = f"transformer_blocks.{layer_id}.attn1.norm_k.{weight_or_bias}"
|
||||
|
||||
state_dict[new_key] = state_dict.pop(key)
|
||||
|
||||
|
||||
def reassign_adaln_norm_inplace(key: str, state_dict: Dict[str, Any]):
|
||||
layer_id, _, weight_or_bias = key.split(".")[-3:]
|
||||
|
||||
weights_or_biases = state_dict[key].chunk(12, dim=0)
|
||||
norm1_weights_or_biases = torch.cat(weights_or_biases[0:3] + weights_or_biases[6:9])
|
||||
norm2_weights_or_biases = torch.cat(weights_or_biases[3:6] + weights_or_biases[9:12])
|
||||
|
||||
norm1_key = f"transformer_blocks.{layer_id}.norm1.linear.{weight_or_bias}"
|
||||
state_dict[norm1_key] = norm1_weights_or_biases
|
||||
|
||||
norm2_key = f"transformer_blocks.{layer_id}.norm2.linear.{weight_or_bias}"
|
||||
state_dict[norm2_key] = norm2_weights_or_biases
|
||||
|
||||
state_dict.pop(key)
|
||||
|
||||
|
||||
def remove_keys_inplace(key: str, state_dict: Dict[str, Any]):
|
||||
state_dict.pop(key)
|
||||
|
||||
|
||||
def replace_up_keys_inplace(key: str, state_dict: Dict[str, Any]):
|
||||
key_split = key.split(".")
|
||||
layer_index = int(key_split[2])
|
||||
replace_layer_index = 4 - 1 - layer_index
|
||||
|
||||
key_split[1] = "up_blocks"
|
||||
key_split[2] = str(replace_layer_index)
|
||||
new_key = ".".join(key_split)
|
||||
|
||||
state_dict[new_key] = state_dict.pop(key)
|
||||
|
||||
|
||||
TRANSFORMER_KEYS_RENAME_DICT = {
|
||||
"transformer.final_layernorm": "norm_final",
|
||||
"transformer": "transformer_blocks",
|
||||
"attention": "attn1",
|
||||
"mlp": "ff.net",
|
||||
"dense_h_to_4h": "0.proj",
|
||||
"dense_4h_to_h": "2",
|
||||
".layers": "",
|
||||
"dense": "to_out.0",
|
||||
"input_layernorm": "norm1.norm",
|
||||
"post_attn1_layernorm": "norm2.norm",
|
||||
"time_embed.0": "time_embedding.linear_1",
|
||||
"time_embed.2": "time_embedding.linear_2",
|
||||
"mixins.patch_embed": "patch_embed",
|
||||
"mixins.final_layer.norm_final": "norm_out.norm",
|
||||
"mixins.final_layer.linear": "proj_out",
|
||||
"mixins.final_layer.adaLN_modulation.1": "norm_out.linear",
|
||||
"mixins.pos_embed.pos_embedding": "patch_embed.pos_embedding", # Specific to CogVideoX-5b-I2V
|
||||
}
|
||||
|
||||
TRANSFORMER_SPECIAL_KEYS_REMAP = {
|
||||
"query_key_value": reassign_query_key_value_inplace,
|
||||
"query_layernorm_list": reassign_query_key_layernorm_inplace,
|
||||
"key_layernorm_list": reassign_query_key_layernorm_inplace,
|
||||
"adaln_layer.adaLN_modulations": reassign_adaln_norm_inplace,
|
||||
"embed_tokens": remove_keys_inplace,
|
||||
"freqs_sin": remove_keys_inplace,
|
||||
"freqs_cos": remove_keys_inplace,
|
||||
"position_embedding": remove_keys_inplace,
|
||||
}
|
||||
|
||||
VAE_KEYS_RENAME_DICT = {
|
||||
"block.": "resnets.",
|
||||
"down.": "down_blocks.",
|
||||
"downsample": "downsamplers.0",
|
||||
"upsample": "upsamplers.0",
|
||||
"nin_shortcut": "conv_shortcut",
|
||||
"encoder.mid.block_1": "encoder.mid_block.resnets.0",
|
||||
"encoder.mid.block_2": "encoder.mid_block.resnets.1",
|
||||
"decoder.mid.block_1": "decoder.mid_block.resnets.0",
|
||||
"decoder.mid.block_2": "decoder.mid_block.resnets.1",
|
||||
}
|
||||
|
||||
VAE_SPECIAL_KEYS_REMAP = {
|
||||
"loss": remove_keys_inplace,
|
||||
"up.": replace_up_keys_inplace,
|
||||
}
|
||||
|
||||
TOKENIZER_MAX_LENGTH = 226
|
||||
|
||||
|
||||
def get_state_dict(saved_dict: Dict[str, Any]) -> Dict[str, Any]:
|
||||
state_dict = saved_dict
|
||||
if "model" in saved_dict.keys():
|
||||
state_dict = state_dict["model"]
|
||||
if "module" in saved_dict.keys():
|
||||
state_dict = state_dict["module"]
|
||||
if "state_dict" in saved_dict.keys():
|
||||
state_dict = state_dict["state_dict"]
|
||||
return state_dict
|
||||
|
||||
|
||||
def update_state_dict_inplace(state_dict: Dict[str, Any], old_key: str, new_key: str) -> Dict[str, Any]:
|
||||
state_dict[new_key] = state_dict.pop(old_key)
|
||||
|
||||
|
||||
def convert_transformer(
|
||||
ckpt_path: str,
|
||||
num_layers: int,
|
||||
num_attention_heads: int,
|
||||
use_rotary_positional_embeddings: bool,
|
||||
i2v: bool,
|
||||
dtype: torch.dtype,
|
||||
):
|
||||
PREFIX_KEY = "model.diffusion_model."
|
||||
|
||||
original_state_dict = get_state_dict(torch.load(ckpt_path, map_location="cpu", mmap=True))
|
||||
transformer = CogVideoXTransformer3DModel(
|
||||
in_channels=32 if i2v else 16,
|
||||
num_layers=num_layers,
|
||||
num_attention_heads=num_attention_heads,
|
||||
use_rotary_positional_embeddings=use_rotary_positional_embeddings,
|
||||
use_learned_positional_embeddings=i2v,
|
||||
).to(dtype=dtype)
|
||||
|
||||
for key in list(original_state_dict.keys()):
|
||||
new_key = key[len(PREFIX_KEY):]
|
||||
for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items():
|
||||
new_key = new_key.replace(replace_key, rename_key)
|
||||
update_state_dict_inplace(original_state_dict, key, new_key)
|
||||
|
||||
for key in list(original_state_dict.keys()):
|
||||
for special_key, handler_fn_inplace in TRANSFORMER_SPECIAL_KEYS_REMAP.items():
|
||||
if special_key not in key:
|
||||
continue
|
||||
handler_fn_inplace(key, original_state_dict)
|
||||
transformer.load_state_dict(original_state_dict, strict=True)
|
||||
return transformer
|
||||
|
||||
|
||||
def convert_vae(ckpt_path: str, scaling_factor: float, dtype: torch.dtype):
|
||||
original_state_dict = get_state_dict(torch.load(ckpt_path, map_location="cpu", mmap=True))
|
||||
vae = AutoencoderKLCogVideoX(scaling_factor=scaling_factor).to(dtype=dtype)
|
||||
|
||||
for key in list(original_state_dict.keys()):
|
||||
new_key = key[:]
|
||||
for replace_key, rename_key in VAE_KEYS_RENAME_DICT.items():
|
||||
new_key = new_key.replace(replace_key, rename_key)
|
||||
update_state_dict_inplace(original_state_dict, key, new_key)
|
||||
|
||||
for key in list(original_state_dict.keys()):
|
||||
for special_key, handler_fn_inplace in VAE_SPECIAL_KEYS_REMAP.items():
|
||||
if special_key not in key:
|
||||
continue
|
||||
handler_fn_inplace(key, original_state_dict)
|
||||
|
||||
vae.load_state_dict(original_state_dict, strict=True)
|
||||
return vae
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--transformer_ckpt_path", type=str, default=None, help="Path to original transformer checkpoint"
|
||||
)
|
||||
parser.add_argument("--vae_ckpt_path", type=str, default=None, help="Path to original vae checkpoint")
|
||||
parser.add_argument("--output_path", type=str, required=True, help="Path where converted model should be saved")
|
||||
parser.add_argument("--fp16", action="store_true", default=False, help="Whether to save the model weights in fp16")
|
||||
parser.add_argument("--bf16", action="store_true", default=False, help="Whether to save the model weights in bf16")
|
||||
parser.add_argument(
|
||||
"--push_to_hub", action="store_true", default=False, help="Whether to push to HF Hub after saving"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--text_encoder_cache_dir", type=str, default=None, help="Path to text encoder cache directory"
|
||||
)
|
||||
# For CogVideoX-2B, num_layers is 30. For 5B, it is 42
|
||||
parser.add_argument("--num_layers", type=int, default=30, help="Number of transformer blocks")
|
||||
# For CogVideoX-2B, num_attention_heads is 30. For 5B, it is 48
|
||||
parser.add_argument("--num_attention_heads", type=int, default=30, help="Number of attention heads")
|
||||
# For CogVideoX-2B, use_rotary_positional_embeddings is False. For 5B, it is True
|
||||
parser.add_argument(
|
||||
"--use_rotary_positional_embeddings", action="store_true", default=False, help="Whether to use RoPE or not"
|
||||
)
|
||||
# For CogVideoX-2B, scaling_factor is 1.15258426. For 5B, it is 0.7
|
||||
parser.add_argument("--scaling_factor", type=float, default=1.15258426, help="Scaling factor in the VAE")
|
||||
# For CogVideoX-2B, snr_shift_scale is 3.0. For 5B, it is 1.0
|
||||
parser.add_argument("--snr_shift_scale", type=float, default=3.0, help="Scaling factor in the VAE")
|
||||
parser.add_argument("--i2v", action="store_true", default=False, help="Whether to save the model weights in fp16")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
|
||||
transformer = None
|
||||
vae = None
|
||||
|
||||
if args.fp16 and args.bf16:
|
||||
raise ValueError("You cannot pass both --fp16 and --bf16 at the same time.")
|
||||
|
||||
dtype = torch.float16 if args.fp16 else torch.bfloat16 if args.bf16 else torch.float32
|
||||
|
||||
if args.transformer_ckpt_path is not None:
|
||||
transformer = convert_transformer(
|
||||
args.transformer_ckpt_path,
|
||||
args.num_layers,
|
||||
args.num_attention_heads,
|
||||
args.use_rotary_positional_embeddings,
|
||||
args.i2v,
|
||||
dtype,
|
||||
)
|
||||
if args.vae_ckpt_path is not None:
|
||||
vae = convert_vae(args.vae_ckpt_path, args.scaling_factor, dtype)
|
||||
|
||||
#text_encoder_id = "/share/official_pretrains/hf_home/t5-v1_1-xxl"
|
||||
#tokenizer = T5Tokenizer.from_pretrained(text_encoder_id, model_max_length=TOKENIZER_MAX_LENGTH)
|
||||
#text_encoder = T5EncoderModel.from_pretrained(text_encoder_id, cache_dir=args.text_encoder_cache_dir)
|
||||
|
||||
# Apparently, the conversion does not work anymore without this :shrug:
|
||||
#for param in text_encoder.parameters():
|
||||
# param.data = param.data.contiguous()
|
||||
|
||||
scheduler = CogVideoXDDIMScheduler.from_config(
|
||||
{
|
||||
"snr_shift_scale": args.snr_shift_scale,
|
||||
"beta_end": 0.012,
|
||||
"beta_schedule": "scaled_linear",
|
||||
"beta_start": 0.00085,
|
||||
"clip_sample": False,
|
||||
"num_train_timesteps": 1000,
|
||||
"prediction_type": "v_prediction",
|
||||
"rescale_betas_zero_snr": True,
|
||||
"set_alpha_to_one": True,
|
||||
"timestep_spacing": "trailing",
|
||||
}
|
||||
)
|
||||
if args.i2v:
|
||||
pipeline_cls = CogVideoXImageToVideoPipeline
|
||||
else:
|
||||
pipeline_cls = CogVideoXPipeline
|
||||
|
||||
pipe = pipeline_cls(
|
||||
tokenizer=None,
|
||||
text_encoder=None,
|
||||
vae=vae,
|
||||
transformer=transformer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
if args.fp16:
|
||||
pipe = pipe.to(dtype=torch.float16)
|
||||
if args.bf16:
|
||||
pipe = pipe.to(dtype=torch.bfloat16)
|
||||
|
||||
# We don't use variant here because the model must be run in fp16 (2B) or bf16 (5B). It would be weird
|
||||
# for users to specify variant when the default is not fp32 and they want to run with the correct default (which
|
||||
# is either fp16/bf16 here).
|
||||
|
||||
# This is necessary This is necessary for users with insufficient memory,
|
||||
# such as those using Colab and notebooks, as it can save some memory used for model loading.
|
||||
pipe.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB", push_to_hub=args.push_to_hub)
|
||||
@ -76,7 +76,6 @@ class CogVideoXAttnProcessor2_0:
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
#@torch.compiler.disable()
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
|
||||
432
model_loading.py
432
model_loading.py
@ -43,11 +43,8 @@ from .custom_cogvideox_transformer_3d import CogVideoXTransformer3DModel
|
||||
from .pipeline_cogvideox import CogVideoXPipeline
|
||||
from contextlib import nullcontext
|
||||
|
||||
from .cogvideox_fun.transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelFun
|
||||
from .cogvideox_fun.autoencoder_magvit import AutoencoderKLCogVideoX as AutoencoderKLCogVideoXFun
|
||||
|
||||
from .cogvideox_fun.pipeline_cogvideox_inpaint import CogVideoX_Fun_Pipeline_Inpaint
|
||||
from .cogvideox_fun.pipeline_cogvideox_control import CogVideoX_Fun_Pipeline_Control
|
||||
from accelerate import init_empty_weights
|
||||
from accelerate.utils import set_module_tensor_to_device
|
||||
|
||||
from .utils import remove_specific_blocks, log
|
||||
from comfy.utils import load_torch_file
|
||||
@ -121,8 +118,7 @@ class DownloadAndLoadCogVideoModel:
|
||||
"precision": (["fp16", "fp32", "bf16"],
|
||||
{"default": "bf16", "tooltip": "official recommendation is that 2b model should be fp16, 5b model should be bf16"}
|
||||
),
|
||||
"fp8_transformer": (['disabled', 'enabled', 'fastmode', 'torchao_fp8dq', "torchao_fp8dqrow", "torchao_int8dq", "torchao_fp6"], {"default": 'disabled', "tooltip": "enabled casts the transformer to torch.float8_e4m3fn, fastmode is only for latest nvidia GPUs and requires torch 2.4.0 and cu124 minimum"}),
|
||||
"compile": (["disabled","onediff","torch"], {"tooltip": "compile the model for faster inference, these are advanced options only available on Linux, see readme for more info"}),
|
||||
"quantization": (['disabled', 'fp8_e4m3fn', 'fp8_e4m3fn_fastmode', 'torchao_fp8dq', "torchao_fp8dqrow", "torchao_int8dq", "torchao_fp6"], {"default": 'disabled', "tooltip": "enabled casts the transformer to torch.float8_e4m3fn, fastmode is only for latest nvidia GPUs and requires torch 2.4.0 and cu124 minimum"}),
|
||||
"enable_sequential_cpu_offload": ("BOOLEAN", {"default": False, "tooltip": "significantly reducing memory usage and slows down the inference"}),
|
||||
"block_edit": ("TRANSFORMERBLOCKS", {"default": None}),
|
||||
"lora": ("COGLORA", {"default": None}),
|
||||
@ -132,13 +128,13 @@ class DownloadAndLoadCogVideoModel:
|
||||
}
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("COGVIDEOPIPE",)
|
||||
RETURN_NAMES = ("cogvideo_pipe", )
|
||||
RETURN_TYPES = ("COGVIDEOMODEL", "VAE",)
|
||||
RETURN_NAMES = ("model", "vae", )
|
||||
FUNCTION = "loadmodel"
|
||||
CATEGORY = "CogVideoWrapper"
|
||||
DESCRIPTION = "Downloads and loads the selected CogVideo model from Huggingface to 'ComfyUI/models/CogVideo'"
|
||||
|
||||
def loadmodel(self, model, precision, fp8_transformer="disabled", compile="disabled",
|
||||
def loadmodel(self, model, precision, quantization="disabled", compile="disabled",
|
||||
enable_sequential_cpu_offload=False, block_edit=None, lora=None, compile_args=None,
|
||||
attention_mode="sdpa", load_device="main_device"):
|
||||
|
||||
@ -215,12 +211,7 @@ class DownloadAndLoadCogVideoModel:
|
||||
local_dir_use_symlinks=False,
|
||||
)
|
||||
|
||||
#transformer
|
||||
if "Fun" in model:
|
||||
transformer = CogVideoXTransformer3DModelFun.from_pretrained(base_path, subfolder=subfolder)
|
||||
else:
|
||||
transformer = CogVideoXTransformer3DModel.from_pretrained(base_path, subfolder=subfolder)
|
||||
|
||||
transformer = CogVideoXTransformer3DModel.from_pretrained(base_path, subfolder=subfolder)
|
||||
transformer = transformer.to(dtype).to(transformer_load_device)
|
||||
|
||||
if "1.5" in model:
|
||||
@ -235,17 +226,17 @@ class DownloadAndLoadCogVideoModel:
|
||||
scheduler = CogVideoXDDIMScheduler.from_config(scheduler_config)
|
||||
|
||||
# VAE
|
||||
if "Fun" in model:
|
||||
vae = AutoencoderKLCogVideoXFun.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device)
|
||||
if "Pose" in model:
|
||||
pipe = CogVideoX_Fun_Pipeline_Control(vae, transformer, scheduler)
|
||||
else:
|
||||
pipe = CogVideoX_Fun_Pipeline_Inpaint(vae, transformer, scheduler)
|
||||
else:
|
||||
vae = AutoencoderKLCogVideoX.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device)
|
||||
pipe = CogVideoXPipeline(vae, transformer, scheduler)
|
||||
if "cogvideox-2b-img2vid" in model:
|
||||
pipe.input_with_padding = False
|
||||
vae = AutoencoderKLCogVideoX.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device)
|
||||
|
||||
#pipeline
|
||||
pipe = CogVideoXPipeline(
|
||||
transformer,
|
||||
scheduler,
|
||||
dtype=dtype,
|
||||
is_fun_inpaint=True if "fun" in model.lower() and "pose" not in model.lower() else False
|
||||
)
|
||||
if "cogvideox-2b-img2vid" in model:
|
||||
pipe.input_with_padding = False
|
||||
|
||||
#LoRAs
|
||||
if lora is not None:
|
||||
@ -281,8 +272,19 @@ class DownloadAndLoadCogVideoModel:
|
||||
lora_scale = lora_scale / lora_rank
|
||||
pipe.fuse_lora(lora_scale=lora_scale, components=["transformer"])
|
||||
|
||||
if "fused" in attention_mode:
|
||||
from diffusers.models.attention import Attention
|
||||
transformer.fuse_qkv_projections = True
|
||||
for module in transformer.modules():
|
||||
if isinstance(module, Attention):
|
||||
module.fuse_projections(fuse=True)
|
||||
transformer.attention_mode = attention_mode
|
||||
|
||||
if compile_args is not None:
|
||||
pipe.transformer.to(memory_format=torch.channels_last)
|
||||
|
||||
#fp8
|
||||
if fp8_transformer == "enabled" or fp8_transformer == "fastmode":
|
||||
if quantization == "fp8_e4m3fn" or quantization == "fp8_e4m3fn_fastmode":
|
||||
params_to_keep = {"patch_embed", "lora", "pos_embedding", "time_embedding", "norm_k", "norm_q", "to_k.bias", "to_q.bias", "to_v.bias"}
|
||||
if "1.5" in model:
|
||||
params_to_keep.update({"norm1.linear.weight", "ofs_embedding", "norm_final", "norm_out", "proj_out"})
|
||||
@ -290,13 +292,20 @@ class DownloadAndLoadCogVideoModel:
|
||||
if not any(keyword in name for keyword in params_to_keep):
|
||||
param.data = param.data.to(torch.float8_e4m3fn)
|
||||
|
||||
if fp8_transformer == "fastmode":
|
||||
if quantization == "fp8_e4m3fn_fastmode":
|
||||
from .fp8_optimization import convert_fp8_linear
|
||||
if "1.5" in model:
|
||||
params_to_keep.update({"ff"}) #otherwise NaNs
|
||||
convert_fp8_linear(pipe.transformer, dtype, params_to_keep=params_to_keep)
|
||||
|
||||
# compilation
|
||||
if compile_args is not None:
|
||||
torch._dynamo.config.cache_size_limit = compile_args["dynamo_cache_size_limit"]
|
||||
for i, block in enumerate(pipe.transformer.transformer_blocks):
|
||||
if "CogVideoXBlock" in str(block):
|
||||
pipe.transformer.transformer_blocks[i] = torch.compile(block, fullgraph=compile_args["fullgraph"], dynamic=compile_args["dynamic"], backend=compile_args["backend"], mode=compile_args["mode"])
|
||||
|
||||
elif "torchao" in fp8_transformer:
|
||||
if "torchao" in quantization:
|
||||
try:
|
||||
from torchao.quantization import (
|
||||
quantize_,
|
||||
@ -313,14 +322,14 @@ class DownloadAndLoadCogVideoModel:
|
||||
return isinstance(module, nn.Linear)
|
||||
return False
|
||||
|
||||
if "fp6" in fp8_transformer: #slower for some reason on 4090
|
||||
if "fp6" in quantization: #slower for some reason on 4090
|
||||
quant_func = fpx_weight_only(3, 2)
|
||||
elif "fp8dq" in fp8_transformer: #very fast on 4090 when compiled
|
||||
elif "fp8dq" in quantization: #very fast on 4090 when compiled
|
||||
quant_func = float8_dynamic_activation_float8_weight()
|
||||
elif 'fp8dqrow' in fp8_transformer:
|
||||
elif 'fp8dqrow' in quantization:
|
||||
from torchao.quantization.quant_api import PerRow
|
||||
quant_func = float8_dynamic_activation_float8_weight(granularity=PerRow())
|
||||
elif 'int8dq' in fp8_transformer:
|
||||
elif 'int8dq' in quantization:
|
||||
quant_func = int8_dynamic_activation_int8_weight()
|
||||
|
||||
for i, block in enumerate(pipe.transformer.transformer_blocks):
|
||||
@ -365,41 +374,19 @@ class DownloadAndLoadCogVideoModel:
|
||||
# (3): Dropout(p=0.0, inplace=False)
|
||||
# )
|
||||
# )
|
||||
# )
|
||||
# )
|
||||
|
||||
# if compile == "onediff":
|
||||
# from onediffx import compile_pipe
|
||||
# os.environ['NEXFORT_FX_FORCE_TRITON_SDPA'] = '1'
|
||||
|
||||
# compilation
|
||||
if compile == "torch":
|
||||
#pipe.transformer.to(memory_format=torch.channels_last)
|
||||
if compile_args is not None:
|
||||
torch._dynamo.config.cache_size_limit = compile_args["dynamo_cache_size_limit"]
|
||||
for i, block in enumerate(pipe.transformer.transformer_blocks):
|
||||
if "CogVideoXBlock" in str(block):
|
||||
pipe.transformer.transformer_blocks[i] = torch.compile(block, fullgraph=compile_args["fullgraph"], dynamic=compile_args["dynamic"], backend=compile_args["backend"], mode=compile_args["mode"])
|
||||
else:
|
||||
for i, block in enumerate(pipe.transformer.transformer_blocks):
|
||||
if "CogVideoXBlock" in str(block):
|
||||
pipe.transformer.transformer_blocks[i] = torch.compile(block, fullgraph=False, dynamic=False, backend="inductor")
|
||||
|
||||
transformer.attention_mode = attention_mode
|
||||
|
||||
if "fused" in attention_mode:
|
||||
from diffusers.models.attention import Attention
|
||||
transformer.fuse_qkv_projections = True
|
||||
for module in transformer.modules():
|
||||
if isinstance(module, Attention):
|
||||
module.fuse_projections(fuse=True)
|
||||
|
||||
elif compile == "onediff":
|
||||
from onediffx import compile_pipe
|
||||
os.environ['NEXFORT_FX_FORCE_TRITON_SDPA'] = '1'
|
||||
|
||||
pipe = compile_pipe(
|
||||
pipe,
|
||||
backend="nexfort",
|
||||
options= {"mode": "max-optimize:max-autotune:max-autotune", "memory_format": "channels_last", "options": {"inductor.optimize_linear_epilogue": False, "triton.fuse_attention_allow_fp16_reduction": False}},
|
||||
ignores=["vae"],
|
||||
fuse_qkv_projections= False,
|
||||
)
|
||||
# pipe = compile_pipe(
|
||||
# pipe,
|
||||
# backend="nexfort",
|
||||
# options= {"mode": "max-optimize:max-autotune:max-autotune", "memory_format": "channels_last", "options": {"inductor.optimize_linear_epilogue": False, "triton.fuse_attention_allow_fp16_reduction": False}},
|
||||
# ignores=["vae"],
|
||||
# fuse_qkv_projections= False,
|
||||
# )
|
||||
|
||||
pipeline = {
|
||||
"pipe": pipe,
|
||||
@ -412,7 +399,7 @@ class DownloadAndLoadCogVideoModel:
|
||||
"model_name": model,
|
||||
}
|
||||
|
||||
return (pipeline,)
|
||||
return (pipeline, vae)
|
||||
#region GGUF
|
||||
class DownloadAndLoadCogVideoGGUFModel:
|
||||
@classmethod
|
||||
@ -444,8 +431,8 @@ class DownloadAndLoadCogVideoGGUFModel:
|
||||
}
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("COGVIDEOPIPE",)
|
||||
RETURN_NAMES = ("cogvideo_pipe", )
|
||||
RETURN_TYPES = ("COGVIDEOMODEL", "VAE",)
|
||||
RETURN_NAMES = ("model", "vae",)
|
||||
FUNCTION = "loadmodel"
|
||||
CATEGORY = "CogVideoWrapper"
|
||||
|
||||
@ -486,7 +473,6 @@ class DownloadAndLoadCogVideoGGUFModel:
|
||||
with open(transformer_path) as f:
|
||||
transformer_config = json.load(f)
|
||||
|
||||
|
||||
|
||||
from . import mz_gguf_loader
|
||||
import importlib
|
||||
@ -498,7 +484,6 @@ class DownloadAndLoadCogVideoGGUFModel:
|
||||
transformer_config["in_channels"] = 32
|
||||
else:
|
||||
transformer_config["in_channels"] = 33
|
||||
transformer = CogVideoXTransformer3DModelFun.from_config(transformer_config)
|
||||
elif "I2V" in model or "Interpolation" in model:
|
||||
transformer_config["in_channels"] = 32
|
||||
if "1_5" in model:
|
||||
@ -508,10 +493,10 @@ class DownloadAndLoadCogVideoGGUFModel:
|
||||
transformer_config["patch_bias"] = False
|
||||
transformer_config["sample_height"] = 300
|
||||
transformer_config["sample_width"] = 300
|
||||
transformer = CogVideoXTransformer3DModel.from_config(transformer_config)
|
||||
else:
|
||||
transformer_config["in_channels"] = 16
|
||||
transformer = CogVideoXTransformer3DModel.from_config(transformer_config)
|
||||
|
||||
transformer = CogVideoXTransformer3DModel.from_config(transformer_config)
|
||||
|
||||
params_to_keep = {"patch_embed", "pos_embedding", "time_embedding"}
|
||||
if "2b" in model:
|
||||
@ -564,60 +549,25 @@ class DownloadAndLoadCogVideoGGUFModel:
|
||||
with open(os.path.join(script_directory, 'configs', 'vae_config.json')) as f:
|
||||
vae_config = json.load(f)
|
||||
|
||||
#VAE
|
||||
vae_sd = load_torch_file(vae_path)
|
||||
if "fun" in model:
|
||||
vae = AutoencoderKLCogVideoXFun.from_config(vae_config).to(vae_dtype).to(offload_device)
|
||||
vae.load_state_dict(vae_sd)
|
||||
if "Pose" in model:
|
||||
pipe = CogVideoX_Fun_Pipeline_Control(vae, transformer, scheduler)
|
||||
else:
|
||||
pipe = CogVideoX_Fun_Pipeline_Inpaint(vae, transformer, scheduler)
|
||||
else:
|
||||
vae = AutoencoderKLCogVideoX.from_config(vae_config).to(vae_dtype).to(offload_device)
|
||||
vae.load_state_dict(vae_sd)
|
||||
pipe = CogVideoXPipeline(vae, transformer, scheduler)
|
||||
vae = AutoencoderKLCogVideoX.from_config(vae_config).to(vae_dtype).to(offload_device)
|
||||
vae.load_state_dict(vae_sd)
|
||||
del vae_sd
|
||||
pipe = CogVideoXPipeline(transformer, scheduler, dtype=vae_dtype)
|
||||
|
||||
if enable_sequential_cpu_offload:
|
||||
pipe.enable_sequential_cpu_offload()
|
||||
|
||||
sd = load_torch_file(gguf_path)
|
||||
|
||||
# #LoRAs
|
||||
# if lora is not None:
|
||||
# if "fun" in model.lower():
|
||||
# raise NotImplementedError("LoRA with GGUF is not supported for Fun models")
|
||||
# from .lora_utils import merge_lora#, load_lora_into_transformer
|
||||
# #for l in lora:
|
||||
# # log.info(f"Merging LoRA weights from {l['path']} with strength {l['strength']}")
|
||||
# # pipe.transformer = merge_lora(pipe.transformer, l["path"], l["strength"])
|
||||
# else:
|
||||
# adapter_list = []
|
||||
# adapter_weights = []
|
||||
# for l in lora:
|
||||
# lora_sd = load_torch_file(l["path"])
|
||||
# for key, val in lora_sd.items():
|
||||
# if "lora_B" in key:
|
||||
# lora_rank = val.shape[1]
|
||||
# break
|
||||
# log.info(f"Loading rank {lora_rank} LoRA weights from {l['path']} with strength {l['strength']}")
|
||||
# adapter_name = l['path'].split("/")[-1].split(".")[0]
|
||||
# adapter_weight = l['strength']
|
||||
# pipe.load_lora_weights(l['path'], weight_name=l['path'].split("/")[-1], lora_rank=lora_rank, adapter_name=adapter_name)
|
||||
|
||||
# #transformer = load_lora_into_transformer(lora, transformer)
|
||||
# adapter_list.append(adapter_name)
|
||||
# adapter_weights.append(adapter_weight)
|
||||
# for l in lora:
|
||||
# pipe.set_adapters(adapter_list, adapter_weights=adapter_weights)
|
||||
# #pipe.fuse_lora(lora_scale=1 / lora_rank, components=["transformer"])
|
||||
|
||||
pipe.transformer = mz_gguf_loader.quantize_load_state_dict(pipe.transformer, sd, device="cpu")
|
||||
del sd
|
||||
|
||||
if load_device == "offload_device":
|
||||
pipe.transformer.to(offload_device)
|
||||
else:
|
||||
pipe.transformer.to(device)
|
||||
|
||||
|
||||
pipeline = {
|
||||
"pipe": pipe,
|
||||
"dtype": vae_dtype,
|
||||
@ -629,9 +579,253 @@ class DownloadAndLoadCogVideoGGUFModel:
|
||||
"manual_offloading": True,
|
||||
}
|
||||
|
||||
return (pipeline, vae)
|
||||
|
||||
#region ModelLoader
|
||||
class CogVideoXModelLoader:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"model": (folder_paths.get_filename_list("diffusion_models"), {"tooltip": "The name of the checkpoint (model) to load.",}),
|
||||
|
||||
"base_precision": (["fp16", "fp32", "bf16"], {"default": "bf16"}),
|
||||
"quantization": (['disabled', 'fp8_e4m3fn', 'fp8_e4m3fn_fast', 'torchao_fp8dq', "torchao_fp8dqrow", "torchao_int8dq", "torchao_fp6"], {"default": 'disabled', "tooltip": "optional quantization method"}),
|
||||
"load_device": (["main_device", "offload_device"], {"default": "main_device"}),
|
||||
"enable_sequential_cpu_offload": ("BOOLEAN", {"default": False, "tooltip": "significantly reducing memory usage and slows down the inference"}),
|
||||
},
|
||||
"optional": {
|
||||
"block_edit": ("TRANSFORMERBLOCKS", {"default": None}),
|
||||
"lora": ("COGLORA", {"default": None}),
|
||||
"compile_args":("COMPILEARGS", ),
|
||||
"attention_mode": (["sdpa", "sageattn", "fused_sdpa", "fused_sageattn"], {"default": "sdpa"}),
|
||||
}
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("COGVIDEOMODEL",)
|
||||
RETURN_NAMES = ("model", )
|
||||
FUNCTION = "loadmodel"
|
||||
CATEGORY = "CogVideoWrapper"
|
||||
|
||||
def loadmodel(self, model, base_precision, load_device, enable_sequential_cpu_offload,
|
||||
block_edit=None, compile_args=None, lora=None, attention_mode="sdpa", quantization="disabled"):
|
||||
|
||||
device = mm.get_torch_device()
|
||||
offload_device = mm.unet_offload_device()
|
||||
manual_offloading = True
|
||||
transformer_load_device = device if load_device == "main_device" else offload_device
|
||||
mm.soft_empty_cache()
|
||||
|
||||
base_dtype = {"fp8_e4m3fn": torch.float8_e4m3fn, "fp8_e4m3fn_fast": torch.float8_e4m3fn, "bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[base_precision]
|
||||
|
||||
model_path = folder_paths.get_full_path_or_raise("diffusion_models", model)
|
||||
sd = load_torch_file(model_path, device=transformer_load_device)
|
||||
|
||||
model_type = ""
|
||||
if sd["patch_embed.proj.weight"].shape == (3072, 33, 2, 2):
|
||||
model_type = "fun_5b"
|
||||
elif sd["patch_embed.proj.weight"].shape == (3072, 16, 2, 2):
|
||||
model_type = "5b"
|
||||
elif sd["patch_embed.proj.weight"].shape == (3072, 128):
|
||||
model_type = "5b_1_5"
|
||||
elif sd["patch_embed.proj.weight"].shape == (3072, 256):
|
||||
model_type = "5b_I2V_1_5"
|
||||
elif sd["patch_embed.proj.weight"].shape == (1920, 33, 2, 2):
|
||||
model_type = "fun_2b"
|
||||
elif sd["patch_embed.proj.weight"].shape == (1920, 16, 2, 2):
|
||||
model_type = "2b"
|
||||
elif sd["patch_embed.proj.weight"].shape == (3072, 32, 2, 2):
|
||||
if "pos_embedding" in sd:
|
||||
model_type = "fun_5b_pose"
|
||||
else:
|
||||
model_type = "I2V_5b"
|
||||
else:
|
||||
raise Exception("Selected model is not recognized")
|
||||
log.info(f"Detected CogVideoX model type: {model_type}")
|
||||
|
||||
if "5b" in model_type:
|
||||
scheduler_config_path = os.path.join(script_directory, 'configs', 'scheduler_config_5b.json')
|
||||
transformer_config_path = os.path.join(script_directory, 'configs', 'transformer_config_5b.json')
|
||||
elif "2b" in model_type:
|
||||
scheduler_config_path = os.path.join(script_directory, 'configs', 'scheduler_config_2b.json')
|
||||
transformer_config_path = os.path.join(script_directory, 'configs', 'transformer_config_2b.json')
|
||||
|
||||
with open(transformer_config_path) as f:
|
||||
transformer_config = json.load(f)
|
||||
|
||||
with init_empty_weights():
|
||||
if model_type in ["I2V", "I2V_5b", "fun_5b_pose", "5b_I2V_1_5"]:
|
||||
transformer_config["in_channels"] = 32
|
||||
if "1_5" in model_type:
|
||||
transformer_config["ofs_embed_dim"] = 512
|
||||
transformer_config["use_learned_positional_embeddings"] = False
|
||||
transformer_config["patch_size_t"] = 2
|
||||
transformer_config["patch_bias"] = False
|
||||
transformer_config["sample_height"] = 300
|
||||
transformer_config["sample_width"] = 300
|
||||
elif "fun" in model_type:
|
||||
transformer_config["in_channels"] = 33
|
||||
else:
|
||||
if "1_5" in model_type:
|
||||
transformer_config["use_learned_positional_embeddings"] = False
|
||||
transformer_config["patch_size_t"] = 2
|
||||
transformer_config["patch_bias"] = False
|
||||
#transformer_config["sample_height"] = 300 todo: check if this is needed
|
||||
#transformer_config["sample_width"] = 300
|
||||
transformer_config["in_channels"] = 16
|
||||
|
||||
transformer = CogVideoXTransformer3DModel.from_config(transformer_config)
|
||||
|
||||
#load weights
|
||||
#params_to_keep = {}
|
||||
log.info("Using accelerate to load and assign model weights to device...")
|
||||
|
||||
for name, param in transformer.named_parameters():
|
||||
#dtype_to_use = base_dtype if any(keyword in name for keyword in params_to_keep) else dtype
|
||||
set_module_tensor_to_device(transformer, name, device=transformer_load_device, dtype=base_dtype, value=sd[name])
|
||||
del sd
|
||||
|
||||
|
||||
#scheduler
|
||||
with open(scheduler_config_path) as f:
|
||||
scheduler_config = json.load(f)
|
||||
scheduler = CogVideoXDDIMScheduler.from_config(scheduler_config, subfolder="scheduler")
|
||||
|
||||
if block_edit is not None:
|
||||
transformer = remove_specific_blocks(transformer, block_edit)
|
||||
|
||||
if "fused" in attention_mode:
|
||||
from diffusers.models.attention import Attention
|
||||
transformer.fuse_qkv_projections = True
|
||||
for module in transformer.modules():
|
||||
if isinstance(module, Attention):
|
||||
module.fuse_projections(fuse=True)
|
||||
transformer.attention_mode = attention_mode
|
||||
|
||||
if "fun" in model_type:
|
||||
if not "pose" in model_type:
|
||||
raise NotImplementedError("Fun models besides pose are not supported with this loader yet")
|
||||
pipe = CogVideoX_Fun_Pipeline_Inpaint(vae, transformer, scheduler)
|
||||
else:
|
||||
pipe = CogVideoXPipeline(transformer, scheduler, dtype=base_dtype)
|
||||
else:
|
||||
pipe = CogVideoXPipeline(transformer, scheduler, dtype=base_dtype)
|
||||
|
||||
if enable_sequential_cpu_offload:
|
||||
pipe.enable_sequential_cpu_offload()
|
||||
|
||||
#LoRAs
|
||||
if lora is not None:
|
||||
from .lora_utils import merge_lora#, load_lora_into_transformer
|
||||
if "fun" in model.lower():
|
||||
for l in lora:
|
||||
log.info(f"Merging LoRA weights from {l['path']} with strength {l['strength']}")
|
||||
transformer = merge_lora(transformer, l["path"], l["strength"])
|
||||
else:
|
||||
adapter_list = []
|
||||
adapter_weights = []
|
||||
for l in lora:
|
||||
fuse = True if l["fuse_lora"] else False
|
||||
lora_sd = load_torch_file(l["path"])
|
||||
for key, val in lora_sd.items():
|
||||
if "lora_B" in key:
|
||||
lora_rank = val.shape[1]
|
||||
break
|
||||
log.info(f"Merging rank {lora_rank} LoRA weights from {l['path']} with strength {l['strength']}")
|
||||
adapter_name = l['path'].split("/")[-1].split(".")[0]
|
||||
adapter_weight = l['strength']
|
||||
pipe.load_lora_weights(l['path'], weight_name=l['path'].split("/")[-1], lora_rank=lora_rank, adapter_name=adapter_name)
|
||||
|
||||
#transformer = load_lora_into_transformer(lora, transformer)
|
||||
adapter_list.append(adapter_name)
|
||||
adapter_weights.append(adapter_weight)
|
||||
for l in lora:
|
||||
pipe.set_adapters(adapter_list, adapter_weights=adapter_weights)
|
||||
if fuse:
|
||||
lora_scale = 1
|
||||
dimension_loras = ["orbit", "dimensionx"] # for now dimensionx loras need scaling
|
||||
if any(item in lora[-1]["path"].lower() for item in dimension_loras):
|
||||
lora_scale = lora_scale / lora_rank
|
||||
pipe.fuse_lora(lora_scale=lora_scale, components=["transformer"])
|
||||
|
||||
if compile_args is not None:
|
||||
pipe.transformer.to(memory_format=torch.channels_last)
|
||||
|
||||
#quantization
|
||||
if quantization == "fp8_e4m3fn" or quantization == "fp8_e4m3fn_fast":
|
||||
params_to_keep = {"patch_embed", "lora", "pos_embedding", "time_embedding", "norm_k", "norm_q", "to_k.bias", "to_q.bias", "to_v.bias"}
|
||||
if "1.5" in model:
|
||||
params_to_keep.update({"norm1.linear.weight", "ofs_embedding", "norm_final", "norm_out", "proj_out"})
|
||||
for name, param in pipe.transformer.named_parameters():
|
||||
if not any(keyword in name for keyword in params_to_keep):
|
||||
param.data = param.data.to(torch.float8_e4m3fn)
|
||||
|
||||
if quantization == "fp8_e4m3fn_fast":
|
||||
from .fp8_optimization import convert_fp8_linear
|
||||
if "1.5" in model:
|
||||
params_to_keep.update({"ff"}) #otherwise NaNs
|
||||
convert_fp8_linear(pipe.transformer, base_dtype, params_to_keep=params_to_keep)
|
||||
|
||||
#compile
|
||||
if compile_args is not None:
|
||||
torch._dynamo.config.cache_size_limit = compile_args["dynamo_cache_size_limit"]
|
||||
for i, block in enumerate(pipe.transformer.transformer_blocks):
|
||||
if "CogVideoXBlock" in str(block):
|
||||
pipe.transformer.transformer_blocks[i] = torch.compile(block, fullgraph=compile_args["fullgraph"], dynamic=compile_args["dynamic"], backend=compile_args["backend"], mode=compile_args["mode"])
|
||||
|
||||
if "torchao" in quantization:
|
||||
try:
|
||||
from torchao.quantization import (
|
||||
quantize_,
|
||||
fpx_weight_only,
|
||||
float8_dynamic_activation_float8_weight,
|
||||
int8_dynamic_activation_int8_weight
|
||||
)
|
||||
except:
|
||||
raise ImportError("torchao is not installed, please install torchao to use fp8dq")
|
||||
|
||||
def filter_fn(module: nn.Module, fqn: str) -> bool:
|
||||
target_submodules = {'attn1', 'ff'} # avoid norm layers, 1.5 at least won't work with quantized norm1 #todo: test other models
|
||||
if any(sub in fqn for sub in target_submodules):
|
||||
return isinstance(module, nn.Linear)
|
||||
return False
|
||||
|
||||
if "fp6" in quantization: #slower for some reason on 4090
|
||||
quant_func = fpx_weight_only(3, 2)
|
||||
elif "fp8dq" in quantization: #very fast on 4090 when compiled
|
||||
quant_func = float8_dynamic_activation_float8_weight()
|
||||
elif 'fp8dqrow' in quantization:
|
||||
from torchao.quantization.quant_api import PerRow
|
||||
quant_func = float8_dynamic_activation_float8_weight(granularity=PerRow())
|
||||
elif 'int8dq' in quantization:
|
||||
quant_func = int8_dynamic_activation_int8_weight()
|
||||
|
||||
for i, block in enumerate(pipe.transformer.transformer_blocks):
|
||||
if "CogVideoXBlock" in str(block):
|
||||
quantize_(block, quant_func, filter_fn=filter_fn)
|
||||
|
||||
manual_offloading = False # to disable manual .to(device) calls
|
||||
log.info(f"Quantized transformer blocks to {quantization}")
|
||||
|
||||
# if load_device == "offload_device":
|
||||
# pipe.transformer.to(offload_device)
|
||||
# else:
|
||||
# pipe.transformer.to(device)
|
||||
|
||||
pipeline = {
|
||||
"pipe": pipe,
|
||||
"dtype": base_dtype,
|
||||
"base_path": model,
|
||||
"onediff": False,
|
||||
"cpu_offloading": enable_sequential_cpu_offload,
|
||||
"scheduler_config": scheduler_config,
|
||||
"model_name": model,
|
||||
"manual_offloading": manual_offloading,
|
||||
}
|
||||
|
||||
return (pipeline,)
|
||||
|
||||
#revion VAE
|
||||
#region VAE
|
||||
|
||||
class CogVideoXVAELoader:
|
||||
@classmethod
|
||||
@ -829,6 +1023,7 @@ NODE_CLASS_MAPPINGS = {
|
||||
"DownloadAndLoadToraModel": DownloadAndLoadToraModel,
|
||||
"CogVideoLoraSelect": CogVideoLoraSelect,
|
||||
"CogVideoXVAELoader": CogVideoXVAELoader,
|
||||
"CogVideoXModelLoader": CogVideoXModelLoader,
|
||||
}
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"DownloadAndLoadCogVideoModel": "(Down)load CogVideo Model",
|
||||
@ -837,4 +1032,5 @@ NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"DownloadAndLoadToraModel": "(Down)load Tora Model",
|
||||
"CogVideoLoraSelect": "CogVideo LoraSelect",
|
||||
"CogVideoXVAELoader": "CogVideoX VAE Loader",
|
||||
"CogVideoXModelLoader": "CogVideoX Model Loader",
|
||||
}
|
||||
@ -17,15 +17,13 @@ import inspect
|
||||
from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import math
|
||||
|
||||
from diffusers.models import AutoencoderKLCogVideoX
|
||||
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
||||
from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
|
||||
from diffusers.utils import logging
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
from diffusers.video_processor import VideoProcessor
|
||||
|
||||
#from diffusers.models.embeddings import get_3d_rotary_pos_embed
|
||||
from diffusers.loaders import CogVideoXLoraLoaderMixin
|
||||
|
||||
@ -120,15 +118,6 @@ class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
||||
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
||||
|
||||
Args:
|
||||
vae ([`AutoencoderKL`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
|
||||
text_encoder ([`T5EncoderModel`]):
|
||||
Frozen text-encoder. CogVideoX uses
|
||||
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the
|
||||
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
|
||||
tokenizer (`T5Tokenizer`):
|
||||
Tokenizer of class
|
||||
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
||||
transformer ([`CogVideoXTransformer3DModel`]):
|
||||
A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents.
|
||||
scheduler ([`SchedulerMixin`]):
|
||||
@ -140,31 +129,25 @@ class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vae: AutoencoderKLCogVideoX,
|
||||
transformer: CogVideoXTransformer3DModel,
|
||||
scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler],
|
||||
original_mask = None,
|
||||
dtype: torch.dtype = torch.bfloat16,
|
||||
is_fun_inpaint: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
vae=vae, transformer=transformer, scheduler=scheduler
|
||||
)
|
||||
self.vae_scale_factor_spatial = (
|
||||
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
||||
)
|
||||
self.vae_scale_factor_temporal = (
|
||||
self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4
|
||||
)
|
||||
self.original_mask = original_mask
|
||||
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
|
||||
self.video_processor.config.do_resize = False
|
||||
self.register_modules(transformer=transformer, scheduler=scheduler)
|
||||
self.vae_scale_factor_spatial = 8
|
||||
self.vae_scale_factor_temporal = 4
|
||||
self.vae_latent_channels = 16
|
||||
self.vae_dtype = dtype
|
||||
self.is_fun_inpaint = is_fun_inpaint
|
||||
|
||||
self.input_with_padding = True
|
||||
|
||||
|
||||
def prepare_latents(
|
||||
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, timesteps, denoise_strength,
|
||||
self, batch_size, num_channels_latents, num_frames, height, width, device, generator, timesteps, denoise_strength,
|
||||
num_inference_steps, latents=None, freenoise=True, context_size=None, context_overlap=None
|
||||
):
|
||||
shape = (
|
||||
@ -174,14 +157,10 @@ class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
||||
height // self.vae_scale_factor_spatial,
|
||||
width // self.vae_scale_factor_spatial,
|
||||
)
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||
)
|
||||
noise = randn_tensor(shape, generator=generator, device=torch.device("cpu"), dtype=self.vae.dtype)
|
||||
|
||||
noise = randn_tensor(shape, generator=generator, device=torch.device("cpu"), dtype=self.vae_dtype)
|
||||
if freenoise:
|
||||
print("Applying FreeNoise")
|
||||
logger.info("Applying FreeNoise")
|
||||
# code and comments from AnimateDiff-Evolved by Kosinkadink (https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved)
|
||||
video_length = num_frames // 4
|
||||
delta = context_size - context_overlap
|
||||
@ -221,20 +200,20 @@ class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
||||
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, denoise_strength, device)
|
||||
latent_timestep = timesteps[:1]
|
||||
|
||||
noise = randn_tensor(shape, generator=generator, device=device, dtype=self.vae.dtype)
|
||||
frames_needed = noise.shape[1]
|
||||
current_frames = latents.shape[1]
|
||||
|
||||
if frames_needed > current_frames:
|
||||
repeat_factor = frames_needed // current_frames
|
||||
repeat_factor = frames_needed - current_frames
|
||||
additional_frame = torch.randn((latents.size(0), repeat_factor, latents.size(2), latents.size(3), latents.size(4)), dtype=latents.dtype, device=latents.device)
|
||||
latents = torch.cat((latents, additional_frame), dim=1)
|
||||
latents = torch.cat((additional_frame, latents), dim=1)
|
||||
self.additional_frames = repeat_factor
|
||||
elif frames_needed < current_frames:
|
||||
latents = latents[:, :frames_needed, :, :, :]
|
||||
|
||||
latents = self.scheduler.add_noise(latents, noise, latent_timestep)
|
||||
latents = self.scheduler.add_noise(latents, noise.to(device), latent_timestep)
|
||||
latents = latents * self.scheduler.init_noise_sigma # scale the initial noise by the standard deviation required by the scheduler
|
||||
return latents, timesteps, noise
|
||||
return latents, timesteps
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
||||
def prepare_extra_step_kwargs(self, generator, eta):
|
||||
@ -355,10 +334,10 @@ class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
||||
guidance_scale: float = 6,
|
||||
denoise_strength: float = 1.0,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
num_videos_per_prompt: int = 1,
|
||||
eta: float = 0.0,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.Tensor] = None,
|
||||
fun_mask: Optional[torch.Tensor] = None,
|
||||
image_cond_latents: Optional[torch.Tensor] = None,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||||
@ -398,8 +377,6 @@ class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of videos to generate per prompt.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
@ -443,7 +420,7 @@ class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
||||
prompt_embeds = prompt_embeds.to(self.vae.dtype)
|
||||
prompt_embeds = prompt_embeds.to(self.vae_dtype)
|
||||
|
||||
# 4. Prepare timesteps
|
||||
if sigmas is None:
|
||||
@ -453,7 +430,7 @@ class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
||||
self._num_timesteps = len(timesteps)
|
||||
|
||||
# 5. Prepare latents.
|
||||
latent_channels = self.vae.config.latent_channels
|
||||
latent_channels = self.vae_latent_channels
|
||||
latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
|
||||
|
||||
# For CogVideoX 1.5, the latent frames should be padded to make it divisible by patch_size_t
|
||||
@ -469,18 +446,12 @@ class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
||||
self.additional_frames = patch_size_t - latent_frames % patch_size_t
|
||||
num_frames += self.additional_frames * self.vae_scale_factor_temporal
|
||||
|
||||
|
||||
if self.original_mask is not None:
|
||||
image_latents = latents
|
||||
original_image_latents = image_latents
|
||||
|
||||
latents, timesteps, noise = self.prepare_latents(
|
||||
batch_size * num_videos_per_prompt,
|
||||
latents, timesteps = self.prepare_latents(
|
||||
batch_size,
|
||||
latent_channels,
|
||||
num_frames,
|
||||
height,
|
||||
width,
|
||||
self.vae.dtype,
|
||||
device,
|
||||
generator,
|
||||
timesteps,
|
||||
@ -491,37 +462,41 @@ class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
||||
context_overlap=context_overlap,
|
||||
freenoise=freenoise,
|
||||
)
|
||||
latents = latents.to(self.vae.dtype)
|
||||
latents = latents.to(self.vae_dtype)
|
||||
|
||||
if self.is_fun_inpaint and fun_mask is None: # For FUN inpaint vid2vid, we need to mask all the latents
|
||||
fun_mask = torch.zeros_like(latents[:, :, :1, :, :], device=latents.device, dtype=latents.dtype)
|
||||
fun_masked_video_latents = torch.zeros_like(latents, device=latents.device, dtype=latents.dtype)
|
||||
|
||||
# 5.5.
|
||||
if image_cond_latents is not None:
|
||||
if image_cond_latents.shape[1] > 1:
|
||||
if image_cond_latents.shape[1] == 2:
|
||||
logger.info("More than one image conditioning frame received, interpolating")
|
||||
padding_shape = (
|
||||
batch_size,
|
||||
(latents.shape[1] - 2),
|
||||
self.vae.config.latent_channels,
|
||||
height // self.vae_scale_factor_spatial,
|
||||
width // self.vae_scale_factor_spatial,
|
||||
batch_size,
|
||||
(latents.shape[1] - 2),
|
||||
self.vae_latent_channels,
|
||||
height // self.vae_scale_factor_spatial,
|
||||
width // self.vae_scale_factor_spatial,
|
||||
)
|
||||
latent_padding = torch.zeros(padding_shape, device=device, dtype=self.vae.dtype)
|
||||
latent_padding = torch.zeros(padding_shape, device=device, dtype=self.vae_dtype)
|
||||
image_cond_latents = torch.cat([image_cond_latents[:, 0, :, :, :].unsqueeze(1), latent_padding, image_cond_latents[:, -1, :, :, :].unsqueeze(1)], dim=1)
|
||||
if self.transformer.config.patch_size_t is not None:
|
||||
first_frame = image_cond_latents[:, : image_cond_latents.size(1) % self.transformer.config.patch_size_t, ...]
|
||||
image_cond_latents = torch.cat([first_frame, image_cond_latents], dim=1)
|
||||
first_frame = image_cond_latents[:, : image_cond_latents.size(1) % self.transformer.config.patch_size_t, ...]
|
||||
image_cond_latents = torch.cat([first_frame, image_cond_latents], dim=1)
|
||||
|
||||
logger.info(f"image cond latents shape: {image_cond_latents.shape}")
|
||||
else:
|
||||
elif image_cond_latents.shape[1] == 1:
|
||||
logger.info("Only one image conditioning frame received, img2vid")
|
||||
if self.input_with_padding:
|
||||
padding_shape = (
|
||||
batch_size,
|
||||
(latents.shape[1] - 1),
|
||||
self.vae.config.latent_channels,
|
||||
self.vae_latent_channels,
|
||||
height // self.vae_scale_factor_spatial,
|
||||
width // self.vae_scale_factor_spatial,
|
||||
)
|
||||
latent_padding = torch.zeros(padding_shape, device=device, dtype=self.vae.dtype)
|
||||
latent_padding = torch.zeros(padding_shape, device=device, dtype=self.vae_dtype)
|
||||
image_cond_latents = torch.cat([image_cond_latents, latent_padding], dim=1)
|
||||
# Select the first frame along the second dimension
|
||||
if self.transformer.config.patch_size_t is not None:
|
||||
@ -529,22 +504,11 @@ class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
||||
image_cond_latents = torch.cat([first_frame, image_cond_latents], dim=1)
|
||||
else:
|
||||
image_cond_latents = image_cond_latents.repeat(1, latents.shape[1], 1, 1, 1)
|
||||
else:
|
||||
logger.info(f"Received {image_cond_latents.shape[1]} image conditioning frames")
|
||||
|
||||
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||||
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||||
|
||||
# masks
|
||||
if self.original_mask is not None:
|
||||
mask = self.original_mask.to(device)
|
||||
logger.info(f"self.original_mask: {self.original_mask.shape}")
|
||||
|
||||
mask = F.interpolate(self.original_mask.unsqueeze(1), size=(latents.shape[-2], latents.shape[-1]), mode='bilinear', align_corners=False)
|
||||
if mask.shape[0] != latents.shape[1]:
|
||||
mask = mask.unsqueeze(1).repeat(1, latents.shape[1], 16, 1, 1)
|
||||
else:
|
||||
mask = mask.unsqueeze(0).repeat(1, 1, 16, 1, 1)
|
||||
logger.info(f"latents: {latents.shape}")
|
||||
logger.info(f"mask: {mask.shape}")
|
||||
|
||||
|
||||
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
||||
|
||||
@ -554,7 +518,7 @@ class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
||||
raise NotImplementedError("Context schedule not currently supported with image conditioning")
|
||||
logger.info(f"Context schedule enabled: {context_frames} frames, {context_stride} stride, {context_overlap} overlap")
|
||||
use_context_schedule = True
|
||||
from .cogvideox_fun.context import get_context_scheduler
|
||||
from .context import get_context_scheduler
|
||||
context = get_context_scheduler(context_schedule)
|
||||
#todo ofs embeds?
|
||||
|
||||
@ -747,7 +711,18 @@ class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
||||
|
||||
if image_cond_latents is not None:
|
||||
latent_image_input = torch.cat([image_cond_latents] * 2) if do_classifier_free_guidance else image_cond_latents
|
||||
latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2)
|
||||
if fun_mask is not None: #for fun img2vid and interpolation
|
||||
fun_inpaint_mask = torch.cat([fun_mask] * 2) if do_classifier_free_guidance else fun_mask
|
||||
masks_input = torch.cat([fun_inpaint_mask, latent_image_input], dim=2)
|
||||
latent_model_input = torch.cat([latent_model_input, masks_input], dim=2)
|
||||
else:
|
||||
latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2)
|
||||
else: # for Fun inpaint vid2vid
|
||||
if fun_mask is not None:
|
||||
fun_inpaint_mask = torch.cat([fun_mask] * 2) if do_classifier_free_guidance else fun_mask
|
||||
fun_inpaint_masked_video_latents = torch.cat([fun_masked_video_latents] * 2) if do_classifier_free_guidance else fun_masked_video_latents
|
||||
fun_inpaint_latents = torch.cat([fun_inpaint_mask, fun_inpaint_masked_video_latents], dim=2).to(latents.dtype)
|
||||
latent_model_input = torch.cat([latent_model_input, fun_inpaint_latents], dim=2)
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latent_model_input.shape[0])
|
||||
@ -767,9 +742,9 @@ class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
||||
return_dict=False,
|
||||
)[0]
|
||||
if isinstance(controlnet_states, (tuple, list)):
|
||||
controlnet_states = [x.to(dtype=self.vae.dtype) for x in controlnet_states]
|
||||
controlnet_states = [x.to(dtype=self.vae_dtype) for x in controlnet_states]
|
||||
else:
|
||||
controlnet_states = controlnet_states.to(dtype=self.vae.dtype)
|
||||
controlnet_states = controlnet_states.to(dtype=self.vae_dtype)
|
||||
|
||||
|
||||
# predict noise model_output
|
||||
@ -796,30 +771,18 @@ class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
if not isinstance(self.scheduler, CogVideoXDPMScheduler):
|
||||
latents = self.scheduler.step(noise_pred, t, latents.to(self.vae.dtype), **extra_step_kwargs, return_dict=False)[0]
|
||||
latents = self.scheduler.step(noise_pred, t, latents.to(self.vae_dtype), **extra_step_kwargs, return_dict=False)[0]
|
||||
else:
|
||||
latents, old_pred_original_sample = self.scheduler.step(
|
||||
noise_pred,
|
||||
old_pred_original_sample,
|
||||
t,
|
||||
timesteps[i - 1] if i > 0 else None,
|
||||
latents.to(self.vae.dtype),
|
||||
latents.to(self.vae_dtype),
|
||||
**extra_step_kwargs,
|
||||
return_dict=False,
|
||||
)
|
||||
latents = latents.to(prompt_embeds.dtype)
|
||||
# start diff diff
|
||||
if i < len(timesteps) - 1 and self.original_mask is not None:
|
||||
noise_timestep = timesteps[i + 1]
|
||||
image_latent = self.scheduler.add_noise(original_image_latents, noise, torch.tensor([noise_timestep])
|
||||
)
|
||||
mask = mask.to(latents)
|
||||
ts_from = timesteps[0]
|
||||
ts_to = timesteps[-1]
|
||||
threshold = (t - ts_to) / (ts_from - ts_to)
|
||||
mask = torch.where(mask >= threshold, mask, torch.zeros_like(mask))
|
||||
latents = image_latent * mask + latents * (1 - mask)
|
||||
# end diff diff
|
||||
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
|
||||
@ -1,9 +1,9 @@
|
||||
[project]
|
||||
name = "comfyui-cogvideoxwrapper"
|
||||
description = "Diffusers wrapper for CogVideoX -models: [a/https://github.com/THUDM/CogVideo](https://github.com/THUDM/CogVideo)"
|
||||
version = "1.1.0"
|
||||
version = "1.5.0"
|
||||
license = {file = "LICENSE"}
|
||||
dependencies = ["huggingface_hub", "diffusers>=0.30.1", "accelerate>=0.33.0"]
|
||||
dependencies = ["huggingface_hub", "diffusers>=0.31.0", "accelerate>=0.33.0"]
|
||||
|
||||
[project.urls]
|
||||
Repository = "https://github.com/kijai/ComfyUI-CogVideoXWrapper"
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user