diff --git a/nodes.py b/nodes.py index 089daad..8d27145 100644 --- a/nodes.py +++ b/nodes.py @@ -983,41 +983,6 @@ class CogVideoImageInterpolationEncode: return ({"samples": final_latents}, ) -class ToraEncodeTrajectory: - @classmethod - def INPUT_TYPES(s): - return {"required": { - "pipeline": ("COGVIDEOPIPE",), - "width": ("INT", {"default": 720, "min": 128, "max": 2048, "step": 8}), - "height": ("INT", {"default": 480, "min": 128, "max": 2048, "step": 8}), - "num_frames": ("INT", {"default": 49, "min": 16, "max": 1024, "step": 1}), - }, - } - - RETURN_TYPES = ("TORATRAJLIST",) - RETURN_NAMES = ("tora_traj_list",) - FUNCTION = "encode" - CATEGORY = "CogVideoWrapper" - - def encode(self, pipeline, width, height, num_frames): - device = mm.get_torch_device() - offload_device = mm.unet_offload_device() - generator = torch.Generator(device=device).manual_seed(0) - - transformer = pipeline["pipe"].transformer - vae = pipeline["pipe"].vae - vae.enable_slicing() - - canvas_width, canvas_height = 256, 256 - traj_list = PROVIDED_TRAJS["infinity"] - traj_list_range_256 = scale_traj_list_to_256(traj_list, canvas_width, canvas_height) - - - return (traj_list_range_256, ) - -from .tora.traj_utils import process_traj, scale_traj_list_to_256, PROVIDED_TRAJS -from torchvision.utils import flow_to_image - class ToraEncodeTrajectory: @classmethod def INPUT_TYPES(s):