mirror of
https://git.datalinker.icu/kijai/ComfyUI-CogVideoXWrapper.git
synced 2025-12-08 20:34:23 +08:00
Allow sequential_cpu_offload for GGUF too
This commit is contained in:
parent
2a71aba1aa
commit
d3d7f043cd
@ -1,6 +1,4 @@
|
||||
{
|
||||
"_class_name": "CogVideoXTransformer3DModel",
|
||||
"_diffusers_version": "0.30.0.dev0",
|
||||
"activation_fn": "gelu-approximate",
|
||||
"attention_bias": true,
|
||||
"attention_head_dim": 64,
|
||||
|
||||
55
nodes.py
55
nodes.py
@ -175,11 +175,13 @@ class DownloadAndLoadCogVideoGGUFModel:
|
||||
"CogVideoX_5b_GGUF_Q4_0.safetensors",
|
||||
"CogVideoX_5b_I2V_GGUF_Q4_0.safetensors",
|
||||
"CogVideoX_5b_fun_GGUF_Q4_0.safetensors",
|
||||
#"CogVideoX_2b_fun_GGUF_Q4_0.safetensors"
|
||||
],
|
||||
),
|
||||
"vae_precision": (["fp16", "fp32", "bf16"], {"default": "bf16", "tooltip": "VAE dtype"}),
|
||||
"fp8_fastmode": ("BOOLEAN", {"default": False, "tooltip": "only supported on 4090 and later GPUs"}),
|
||||
"load_device": (["main_device", "offload_device"], {"default": "main_device"}),
|
||||
"enable_sequential_cpu_offload": ("BOOLEAN", {"default": False, "tooltip": "significantly reducing memory usage and slows down the inference"}),
|
||||
},
|
||||
}
|
||||
|
||||
@ -188,7 +190,7 @@ class DownloadAndLoadCogVideoGGUFModel:
|
||||
FUNCTION = "loadmodel"
|
||||
CATEGORY = "CogVideoWrapper"
|
||||
|
||||
def loadmodel(self, model, vae_precision, fp8_fastmode, load_device):
|
||||
def loadmodel(self, model, vae_precision, fp8_fastmode, load_device, enable_sequential_cpu_offload):
|
||||
device = mm.get_torch_device()
|
||||
offload_device = mm.unet_offload_device()
|
||||
mm.soft_empty_cache()
|
||||
@ -213,9 +215,16 @@ class DownloadAndLoadCogVideoGGUFModel:
|
||||
local_dir_use_symlinks=False,
|
||||
)
|
||||
|
||||
if "5b" in model:
|
||||
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_5b.json')
|
||||
transformer_path = os.path.join(script_directory, 'configs', 'transformer_config_5b.json')
|
||||
elif "2b" in model:
|
||||
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_2b.json')
|
||||
transformer_path = os.path.join(script_directory, 'configs', 'transformer_config_2b.json')
|
||||
|
||||
with open(os.path.join(script_directory, 'configs', 'transformer_config_5b.json')) as f:
|
||||
with open(transformer_path) as f:
|
||||
transformer_config = json.load(f)
|
||||
|
||||
sd = load_torch_file(gguf_path)
|
||||
#for key, value in sd.items():
|
||||
# print(key, value.shape, value.dtype)
|
||||
@ -235,6 +244,13 @@ class DownloadAndLoadCogVideoGGUFModel:
|
||||
transformer_config["in_channels"] = 16
|
||||
transformer = CogVideoXTransformer3DModel.from_config(transformer_config)
|
||||
|
||||
if "2b" in model:
|
||||
for name, param in transformer.named_parameters():
|
||||
if name != "pos_embedding":
|
||||
param.data = param.data.to(torch.float8_e4m3fn)
|
||||
else:
|
||||
param.data = param.data.to(torch.float16)
|
||||
else:
|
||||
transformer.to(torch.float8_e4m3fn)
|
||||
transformer = mz_gguf_loader.quantize_load_state_dict(transformer, sd, device="cpu")
|
||||
if load_device == "offload_device":
|
||||
@ -246,7 +262,7 @@ class DownloadAndLoadCogVideoGGUFModel:
|
||||
from .fp8_optimization import convert_fp8_linear
|
||||
convert_fp8_linear(transformer, vae_dtype)
|
||||
|
||||
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_5b.json')
|
||||
|
||||
with open(scheduler_path) as f:
|
||||
scheduler_config = json.load(f)
|
||||
|
||||
@ -279,28 +295,31 @@ class DownloadAndLoadCogVideoGGUFModel:
|
||||
pipe = CogVideoXPipeline(vae, transformer, scheduler)
|
||||
|
||||
# compilation
|
||||
if compile == "torch":
|
||||
torch._dynamo.config.suppress_errors = True
|
||||
pipe.transformer.to(memory_format=torch.channels_last)
|
||||
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
||||
elif compile == "onediff":
|
||||
from onediffx import compile_pipe
|
||||
os.environ['NEXFORT_FX_FORCE_TRITON_SDPA'] = '1'
|
||||
# if compile == "torch":
|
||||
# torch._dynamo.config.suppress_errors = True
|
||||
# pipe.transformer.to(memory_format=torch.channels_last)
|
||||
# pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
||||
# elif compile == "onediff":
|
||||
# from onediffx import compile_pipe
|
||||
# os.environ['NEXFORT_FX_FORCE_TRITON_SDPA'] = '1'
|
||||
|
||||
pipe = compile_pipe(
|
||||
pipe,
|
||||
backend="nexfort",
|
||||
options= {"mode": "max-optimize:max-autotune:max-autotune", "memory_format": "channels_last", "options": {"inductor.optimize_linear_epilogue": False, "triton.fuse_attention_allow_fp16_reduction": False}},
|
||||
ignores=["vae"],
|
||||
fuse_qkv_projections=True,
|
||||
)
|
||||
# pipe = compile_pipe(
|
||||
# pipe,
|
||||
# backend="nexfort",
|
||||
# options= {"mode": "max-optimize:max-autotune:max-autotune", "memory_format": "channels_last", "options": {"inductor.optimize_linear_epilogue": False, "triton.fuse_attention_allow_fp16_reduction": False}},
|
||||
# ignores=["vae"],
|
||||
# fuse_qkv_projections=True,
|
||||
# )
|
||||
|
||||
if enable_sequential_cpu_offload:
|
||||
pipe.enable_sequential_cpu_offload()
|
||||
|
||||
pipeline = {
|
||||
"pipe": pipe,
|
||||
"dtype": vae_dtype,
|
||||
"base_path": "Fun" if "fun" in model else "sad",
|
||||
"onediff": True if compile == "onediff" else False,
|
||||
"cpu_offloading": False,
|
||||
"cpu_offloading": enable_sequential_cpu_offload,
|
||||
"scheduler_config": scheduler_config
|
||||
}
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user