mirror of
https://git.datalinker.icu/kijai/ComfyUI-CogVideoXWrapper.git
synced 2025-12-09 04:44:22 +08:00
initial consisid test
This commit is contained in:
parent
7a10e732bb
commit
d57ec230d5
@ -1,7 +1,9 @@
|
||||
from .nodes import NODE_CLASS_MAPPINGS as NODES_CLASS, NODE_DISPLAY_NAME_MAPPINGS as NODES_DISPLAY
|
||||
from .model_loading import NODE_CLASS_MAPPINGS as MODEL_CLASS, NODE_DISPLAY_NAME_MAPPINGS as MODEL_DISPLAY
|
||||
from .nodes_consis_id import NODE_CLASS_MAPPINGS as CONSID_ID_CLASS, NODE_DISPLAY_NAME_MAPPINGS as CONSID_ID_DISPLAY
|
||||
|
||||
NODE_CLASS_MAPPINGS = {**NODES_CLASS, **MODEL_CLASS, **CONSID_ID_CLASS}
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {**NODES_DISPLAY, **MODEL_DISPLAY, **CONSID_ID_DISPLAY}
|
||||
|
||||
NODE_CLASS_MAPPINGS = {**NODES_CLASS, **MODEL_CLASS}
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {**NODES_DISPLAY, **MODEL_DISPLAY}
|
||||
|
||||
__all__ = ["NODE_CLASS_MAPPINGS", "NODE_DISPLAY_NAME_MAPPINGS"]
|
||||
11
consis_id/models/eva_clip/__init__.py
Normal file
11
consis_id/models/eva_clip/__init__.py
Normal file
@ -0,0 +1,11 @@
|
||||
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
||||
from .factory import create_model, create_model_and_transforms, create_model_from_pretrained, get_tokenizer, create_transforms
|
||||
from .factory import list_models, add_model_config, get_model_config, load_checkpoint
|
||||
from .loss import ClipLoss
|
||||
from .model import CLIP, CustomCLIP, CLIPTextCfg, CLIPVisionCfg,\
|
||||
convert_weights_to_lp, convert_weights_to_fp16, trace_model, get_cast_dtype
|
||||
from .openai import load_openai_model, list_openai_models
|
||||
from .pretrained import list_pretrained, list_pretrained_models_by_tag, list_pretrained_tags_by_model,\
|
||||
get_pretrained_url, download_pretrained_from_url, is_pretrained_cfg, get_pretrained_cfg, download_pretrained
|
||||
from .tokenizer import SimpleTokenizer, tokenize
|
||||
from .transform import image_transform
|
||||
BIN
consis_id/models/eva_clip/bpe_simple_vocab_16e6.txt.gz
Normal file
BIN
consis_id/models/eva_clip/bpe_simple_vocab_16e6.txt.gz
Normal file
Binary file not shown.
2
consis_id/models/eva_clip/constants.py
Normal file
2
consis_id/models/eva_clip/constants.py
Normal file
@ -0,0 +1,2 @@
|
||||
OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
|
||||
OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
|
||||
548
consis_id/models/eva_clip/eva_vit_model.py
Normal file
548
consis_id/models/eva_clip/eva_vit_model.py
Normal file
@ -0,0 +1,548 @@
|
||||
# --------------------------------------------------------
|
||||
# Adapted from https://github.com/microsoft/unilm/tree/master/beit
|
||||
# --------------------------------------------------------
|
||||
import math
|
||||
import os
|
||||
from functools import partial
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
try:
|
||||
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
|
||||
except:
|
||||
from timm.layers import drop_path, to_2tuple, trunc_normal_
|
||||
|
||||
from .transformer import PatchDropout
|
||||
from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast
|
||||
|
||||
if os.getenv('ENV_TYPE') == 'deepspeed':
|
||||
try:
|
||||
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
|
||||
except:
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
else:
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
try:
|
||||
import xformers
|
||||
import xformers.ops as xops
|
||||
XFORMERS_IS_AVAILBLE = True
|
||||
except:
|
||||
XFORMERS_IS_AVAILBLE = False
|
||||
|
||||
class DropPath(nn.Module):
|
||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
"""
|
||||
def __init__(self, drop_prob=None):
|
||||
super(DropPath, self).__init__()
|
||||
self.drop_prob = drop_prob
|
||||
|
||||
def forward(self, x):
|
||||
return drop_path(x, self.drop_prob, self.training)
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return 'p={}'.format(self.drop_prob)
|
||||
|
||||
|
||||
class Mlp(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_features,
|
||||
hidden_features=None,
|
||||
out_features=None,
|
||||
act_layer=nn.GELU,
|
||||
norm_layer=nn.LayerNorm,
|
||||
drop=0.,
|
||||
subln=False,
|
||||
|
||||
):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.fc1 = nn.Linear(in_features, hidden_features)
|
||||
self.act = act_layer()
|
||||
|
||||
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
|
||||
|
||||
self.fc2 = nn.Linear(hidden_features, out_features)
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
# x = self.drop(x)
|
||||
# commit this for the orignal BERT implement
|
||||
x = self.ffn_ln(x)
|
||||
|
||||
x = self.fc2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
class SwiGLU(nn.Module):
|
||||
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.,
|
||||
norm_layer=nn.LayerNorm, subln=False):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
|
||||
self.w1 = nn.Linear(in_features, hidden_features)
|
||||
self.w2 = nn.Linear(in_features, hidden_features)
|
||||
|
||||
self.act = act_layer()
|
||||
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
|
||||
self.w3 = nn.Linear(hidden_features, out_features)
|
||||
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
x1 = self.w1(x)
|
||||
x2 = self.w2(x)
|
||||
hidden = self.act(x1) * x2
|
||||
x = self.ffn_ln(hidden)
|
||||
x = self.w3(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
||||
proj_drop=0., window_size=None, attn_head_dim=None, xattn=False, rope=None, subln=False, norm_layer=nn.LayerNorm):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
if attn_head_dim is not None:
|
||||
head_dim = attn_head_dim
|
||||
all_head_dim = head_dim * self.num_heads
|
||||
self.scale = qk_scale or head_dim ** -0.5
|
||||
|
||||
self.subln = subln
|
||||
if self.subln:
|
||||
self.q_proj = nn.Linear(dim, all_head_dim, bias=False)
|
||||
self.k_proj = nn.Linear(dim, all_head_dim, bias=False)
|
||||
self.v_proj = nn.Linear(dim, all_head_dim, bias=False)
|
||||
else:
|
||||
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
||||
|
||||
if qkv_bias:
|
||||
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
||||
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
||||
else:
|
||||
self.q_bias = None
|
||||
self.v_bias = None
|
||||
|
||||
if window_size:
|
||||
self.window_size = window_size
|
||||
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
||||
self.relative_position_bias_table = nn.Parameter(
|
||||
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
||||
# cls to token & token 2 cls & cls to cls
|
||||
|
||||
# get pair-wise relative position index for each token inside the window
|
||||
coords_h = torch.arange(window_size[0])
|
||||
coords_w = torch.arange(window_size[1])
|
||||
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
||||
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
||||
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
||||
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
||||
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
||||
relative_coords[:, :, 1] += window_size[1] - 1
|
||||
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
||||
relative_position_index = \
|
||||
torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
|
||||
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
||||
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
||||
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
||||
relative_position_index[0, 0] = self.num_relative_distance - 1
|
||||
|
||||
self.register_buffer("relative_position_index", relative_position_index)
|
||||
else:
|
||||
self.window_size = None
|
||||
self.relative_position_bias_table = None
|
||||
self.relative_position_index = None
|
||||
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity()
|
||||
# self.proj = nn.Linear(all_head_dim, all_head_dim)
|
||||
self.proj = nn.Linear(all_head_dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
self.xattn = xattn
|
||||
self.xattn_drop = attn_drop
|
||||
|
||||
self.rope = rope
|
||||
|
||||
def forward(self, x, rel_pos_bias=None, attn_mask=None):
|
||||
B, N, C = x.shape
|
||||
if self.subln:
|
||||
q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias)
|
||||
k = F.linear(input=x, weight=self.k_proj.weight, bias=None)
|
||||
v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias)
|
||||
|
||||
q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C
|
||||
k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
|
||||
v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
|
||||
else:
|
||||
|
||||
qkv_bias = None
|
||||
if self.q_bias is not None:
|
||||
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
||||
|
||||
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
||||
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, num_heads, N, C
|
||||
q, k, v = qkv[0], qkv[1], qkv[2]
|
||||
|
||||
if self.rope:
|
||||
# slightly fast impl
|
||||
q_t = q[:, :, 1:, :]
|
||||
ro_q_t = self.rope(q_t)
|
||||
q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v)
|
||||
|
||||
k_t = k[:, :, 1:, :]
|
||||
ro_k_t = self.rope(k_t)
|
||||
k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v)
|
||||
|
||||
if self.xattn:
|
||||
q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C
|
||||
k = k.permute(0, 2, 1, 3)
|
||||
v = v.permute(0, 2, 1, 3)
|
||||
|
||||
x = xops.memory_efficient_attention(
|
||||
q, k, v,
|
||||
p=self.xattn_drop,
|
||||
scale=self.scale,
|
||||
)
|
||||
x = x.reshape(B, N, -1)
|
||||
x = self.inner_attn_ln(x)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
else:
|
||||
q = q * self.scale
|
||||
attn = (q @ k.transpose(-2, -1))
|
||||
|
||||
if self.relative_position_bias_table is not None:
|
||||
relative_position_bias = \
|
||||
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
||||
self.window_size[0] * self.window_size[1] + 1,
|
||||
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
||||
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
||||
attn = attn + relative_position_bias.unsqueeze(0).type_as(attn)
|
||||
|
||||
if rel_pos_bias is not None:
|
||||
attn = attn + rel_pos_bias.type_as(attn)
|
||||
|
||||
if attn_mask is not None:
|
||||
attn_mask = attn_mask.bool()
|
||||
attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf"))
|
||||
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
||||
x = self.inner_attn_ln(x)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
|
||||
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
||||
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
||||
window_size=None, attn_head_dim=None, xattn=False, rope=None, postnorm=False,
|
||||
subln=False, naiveswiglu=False):
|
||||
super().__init__()
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = Attention(
|
||||
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
||||
attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim,
|
||||
xattn=xattn, rope=rope, subln=subln, norm_layer=norm_layer)
|
||||
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
|
||||
if naiveswiglu:
|
||||
self.mlp = SwiGLU(
|
||||
in_features=dim,
|
||||
hidden_features=mlp_hidden_dim,
|
||||
subln=subln,
|
||||
norm_layer=norm_layer,
|
||||
)
|
||||
else:
|
||||
self.mlp = Mlp(
|
||||
in_features=dim,
|
||||
hidden_features=mlp_hidden_dim,
|
||||
act_layer=act_layer,
|
||||
subln=subln,
|
||||
drop=drop
|
||||
)
|
||||
|
||||
if init_values is not None and init_values > 0:
|
||||
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
||||
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
||||
else:
|
||||
self.gamma_1, self.gamma_2 = None, None
|
||||
|
||||
self.postnorm = postnorm
|
||||
|
||||
def forward(self, x, rel_pos_bias=None, attn_mask=None):
|
||||
if self.gamma_1 is None:
|
||||
if self.postnorm:
|
||||
x = x + self.drop_path(self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
|
||||
x = x + self.drop_path(self.norm2(self.mlp(x)))
|
||||
else:
|
||||
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
|
||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||
else:
|
||||
if self.postnorm:
|
||||
x = x + self.drop_path(self.gamma_1 * self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
|
||||
x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x)))
|
||||
else:
|
||||
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
|
||||
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
""" Image to Patch Embedding
|
||||
"""
|
||||
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
||||
super().__init__()
|
||||
img_size = to_2tuple(img_size)
|
||||
patch_size = to_2tuple(patch_size)
|
||||
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
||||
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
||||
self.img_size = img_size
|
||||
self.patch_size = patch_size
|
||||
self.num_patches = num_patches
|
||||
|
||||
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
B, C, H, W = x.shape
|
||||
# FIXME look at relaxing size constraints
|
||||
assert H == self.img_size[0] and W == self.img_size[1], \
|
||||
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
||||
x = self.proj(x).flatten(2).transpose(1, 2)
|
||||
return x
|
||||
|
||||
|
||||
class RelativePositionBias(nn.Module):
|
||||
|
||||
def __init__(self, window_size, num_heads):
|
||||
super().__init__()
|
||||
self.window_size = window_size
|
||||
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
||||
self.relative_position_bias_table = nn.Parameter(
|
||||
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
||||
# cls to token & token 2 cls & cls to cls
|
||||
|
||||
# get pair-wise relative position index for each token inside the window
|
||||
coords_h = torch.arange(window_size[0])
|
||||
coords_w = torch.arange(window_size[1])
|
||||
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
||||
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
||||
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
||||
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
||||
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
||||
relative_coords[:, :, 1] += window_size[1] - 1
|
||||
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
||||
relative_position_index = \
|
||||
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
|
||||
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
||||
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
||||
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
||||
relative_position_index[0, 0] = self.num_relative_distance - 1
|
||||
|
||||
self.register_buffer("relative_position_index", relative_position_index)
|
||||
|
||||
def forward(self):
|
||||
relative_position_bias = \
|
||||
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
||||
self.window_size[0] * self.window_size[1] + 1,
|
||||
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
||||
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
||||
|
||||
|
||||
class EVAVisionTransformer(nn.Module):
|
||||
""" Vision Transformer with support for patch or hybrid CNN input stage
|
||||
"""
|
||||
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
||||
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
||||
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, patch_dropout=0.,
|
||||
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, rope=False,
|
||||
use_mean_pooling=True, init_scale=0.001, grad_checkpointing=False, xattn=False, postnorm=False,
|
||||
pt_hw_seq_len=16, intp_freq=False, naiveswiglu=False, subln=False):
|
||||
super().__init__()
|
||||
|
||||
if not XFORMERS_IS_AVAILBLE:
|
||||
xattn = False
|
||||
|
||||
self.image_size = img_size
|
||||
self.num_classes = num_classes
|
||||
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
||||
|
||||
self.patch_embed = PatchEmbed(
|
||||
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
||||
num_patches = self.patch_embed.num_patches
|
||||
|
||||
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
||||
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
||||
if use_abs_pos_emb:
|
||||
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
||||
else:
|
||||
self.pos_embed = None
|
||||
self.pos_drop = nn.Dropout(p=drop_rate)
|
||||
|
||||
if use_shared_rel_pos_bias:
|
||||
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
|
||||
else:
|
||||
self.rel_pos_bias = None
|
||||
|
||||
if rope:
|
||||
half_head_dim = embed_dim // num_heads // 2
|
||||
hw_seq_len = img_size // patch_size
|
||||
self.rope = VisionRotaryEmbeddingFast(
|
||||
dim=half_head_dim,
|
||||
pt_seq_len=pt_hw_seq_len,
|
||||
ft_seq_len=hw_seq_len if intp_freq else None,
|
||||
# patch_dropout=patch_dropout
|
||||
)
|
||||
else:
|
||||
self.rope = None
|
||||
|
||||
self.naiveswiglu = naiveswiglu
|
||||
|
||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
||||
self.use_rel_pos_bias = use_rel_pos_bias
|
||||
self.blocks = nn.ModuleList([
|
||||
Block(
|
||||
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
||||
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
||||
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
|
||||
xattn=xattn, rope=self.rope, postnorm=postnorm, subln=subln, naiveswiglu=naiveswiglu)
|
||||
for i in range(depth)])
|
||||
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
|
||||
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
|
||||
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
||||
|
||||
if self.pos_embed is not None:
|
||||
trunc_normal_(self.pos_embed, std=.02)
|
||||
|
||||
trunc_normal_(self.cls_token, std=.02)
|
||||
# trunc_normal_(self.mask_token, std=.02)
|
||||
|
||||
self.apply(self._init_weights)
|
||||
self.fix_init_weight()
|
||||
|
||||
if isinstance(self.head, nn.Linear):
|
||||
trunc_normal_(self.head.weight, std=.02)
|
||||
self.head.weight.data.mul_(init_scale)
|
||||
self.head.bias.data.mul_(init_scale)
|
||||
|
||||
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
|
||||
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
|
||||
|
||||
self.grad_checkpointing = grad_checkpointing
|
||||
|
||||
def fix_init_weight(self):
|
||||
def rescale(param, layer_id):
|
||||
param.div_(math.sqrt(2.0 * layer_id))
|
||||
|
||||
for layer_id, layer in enumerate(self.blocks):
|
||||
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
||||
if self.naiveswiglu:
|
||||
rescale(layer.mlp.w3.weight.data, layer_id + 1)
|
||||
else:
|
||||
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
||||
|
||||
def get_cast_dtype(self) -> torch.dtype:
|
||||
return self.blocks[0].mlp.fc2.weight.dtype
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight, std=.02)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.LayerNorm):
|
||||
nn.init.constant_(m.bias, 0)
|
||||
nn.init.constant_(m.weight, 1.0)
|
||||
|
||||
def get_num_layers(self):
|
||||
return len(self.blocks)
|
||||
|
||||
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
||||
assert unlocked_groups == 0, 'partial locking not currently supported for this model'
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
@torch.jit.ignore
|
||||
def set_grad_checkpointing(self, enable=True):
|
||||
self.grad_checkpointing = enable
|
||||
|
||||
@torch.jit.ignore
|
||||
def no_weight_decay(self):
|
||||
return {'pos_embed', 'cls_token'}
|
||||
|
||||
def get_classifier(self):
|
||||
return self.head
|
||||
|
||||
def reset_classifier(self, num_classes, global_pool=''):
|
||||
self.num_classes = num_classes
|
||||
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
||||
|
||||
def forward_features(self, x, return_all_features=False, return_hidden=False, shuffle=False):
|
||||
|
||||
x = self.patch_embed(x)
|
||||
batch_size, seq_len, _ = x.size()
|
||||
|
||||
if shuffle:
|
||||
idx = torch.randperm(x.shape[1]) + 1
|
||||
zero = torch.LongTensor([0, ])
|
||||
idx = torch.cat([zero, idx])
|
||||
pos_embed = self.pos_embed[:, idx]
|
||||
|
||||
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
||||
x = torch.cat((cls_tokens, x), dim=1)
|
||||
if shuffle:
|
||||
x = x + pos_embed
|
||||
elif self.pos_embed is not None:
|
||||
x = x + self.pos_embed
|
||||
x = self.pos_drop(x)
|
||||
|
||||
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
|
||||
if os.getenv('RoPE') == '1':
|
||||
if self.training and not isinstance(self.patch_dropout, nn.Identity):
|
||||
x, patch_indices_keep = self.patch_dropout(x)
|
||||
self.rope.forward = partial(self.rope.forward, patch_indices_keep=patch_indices_keep)
|
||||
else:
|
||||
self.rope.forward = partial(self.rope.forward, patch_indices_keep=None)
|
||||
x = self.patch_dropout(x)
|
||||
else:
|
||||
x = self.patch_dropout(x)
|
||||
|
||||
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
|
||||
hidden_states = []
|
||||
for idx, blk in enumerate(self.blocks):
|
||||
if (0 < idx <= 20) and (idx % 4 == 0) and return_hidden:
|
||||
hidden_states.append(x)
|
||||
if self.grad_checkpointing:
|
||||
x = checkpoint(blk, x, (rel_pos_bias,))
|
||||
else:
|
||||
x = blk(x, rel_pos_bias=rel_pos_bias)
|
||||
|
||||
if not return_all_features:
|
||||
x = self.norm(x)
|
||||
if self.fc_norm is not None:
|
||||
return self.fc_norm(x.mean(1)), hidden_states
|
||||
else:
|
||||
return x[:, 0], hidden_states
|
||||
return x
|
||||
|
||||
def forward(self, x, return_all_features=False, return_hidden=False, shuffle=False):
|
||||
if return_all_features:
|
||||
return self.forward_features(x, return_all_features, return_hidden, shuffle)
|
||||
x, hidden_states = self.forward_features(x, return_all_features, return_hidden, shuffle)
|
||||
x = self.head(x)
|
||||
if return_hidden:
|
||||
return x, hidden_states
|
||||
return x
|
||||
517
consis_id/models/eva_clip/factory.py
Normal file
517
consis_id/models/eva_clip/factory.py
Normal file
@ -0,0 +1,517 @@
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import pathlib
|
||||
import re
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
from typing import Optional, Tuple, Union, Dict, Any
|
||||
import torch
|
||||
|
||||
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
||||
from .model import CLIP, CustomCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\
|
||||
get_cast_dtype
|
||||
from .openai import load_openai_model
|
||||
from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained, list_pretrained_tags_by_model
|
||||
from .transform import image_transform
|
||||
from .tokenizer import HFTokenizer, tokenize
|
||||
from .utils import resize_clip_pos_embed, resize_evaclip_pos_embed, resize_visual_pos_embed, resize_eva_pos_embed
|
||||
|
||||
|
||||
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
|
||||
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
|
||||
|
||||
|
||||
def _natural_key(string_):
|
||||
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
|
||||
|
||||
|
||||
def _rescan_model_configs():
|
||||
global _MODEL_CONFIGS
|
||||
|
||||
config_ext = ('.json',)
|
||||
config_files = []
|
||||
for config_path in _MODEL_CONFIG_PATHS:
|
||||
if config_path.is_file() and config_path.suffix in config_ext:
|
||||
config_files.append(config_path)
|
||||
elif config_path.is_dir():
|
||||
for ext in config_ext:
|
||||
config_files.extend(config_path.glob(f'*{ext}'))
|
||||
|
||||
for cf in config_files:
|
||||
with open(cf, "r", encoding="utf8") as f:
|
||||
model_cfg = json.load(f)
|
||||
if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')):
|
||||
_MODEL_CONFIGS[cf.stem] = model_cfg
|
||||
|
||||
_MODEL_CONFIGS = dict(sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0])))
|
||||
|
||||
|
||||
_rescan_model_configs() # initial populate of model config registry
|
||||
|
||||
|
||||
def list_models():
|
||||
""" enumerate available model architectures based on config files """
|
||||
return list(_MODEL_CONFIGS.keys())
|
||||
|
||||
|
||||
def add_model_config(path):
|
||||
""" add model config path or file and update registry """
|
||||
if not isinstance(path, Path):
|
||||
path = Path(path)
|
||||
_MODEL_CONFIG_PATHS.append(path)
|
||||
_rescan_model_configs()
|
||||
|
||||
|
||||
def get_model_config(model_name):
|
||||
if model_name in _MODEL_CONFIGS:
|
||||
return deepcopy(_MODEL_CONFIGS[model_name])
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def get_tokenizer(model_name):
|
||||
config = get_model_config(model_name)
|
||||
tokenizer = HFTokenizer(config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else tokenize
|
||||
return tokenizer
|
||||
|
||||
|
||||
# loading openai CLIP weights when is_openai=True for training
|
||||
def load_state_dict(checkpoint_path: str, map_location: str='cpu', model_key: str='model|module|state_dict', is_openai: bool=False, skip_list: list=[]):
|
||||
if is_openai:
|
||||
model = torch.jit.load(checkpoint_path, map_location="cpu").eval()
|
||||
state_dict = model.state_dict()
|
||||
for key in ["input_resolution", "context_length", "vocab_size"]:
|
||||
state_dict.pop(key, None)
|
||||
else:
|
||||
checkpoint = torch.load(checkpoint_path, map_location=map_location)
|
||||
for mk in model_key.split('|'):
|
||||
if isinstance(checkpoint, dict) and mk in checkpoint:
|
||||
state_dict = checkpoint[mk]
|
||||
break
|
||||
else:
|
||||
state_dict = checkpoint
|
||||
if next(iter(state_dict.items()))[0].startswith('module'):
|
||||
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
||||
|
||||
for k in skip_list:
|
||||
if k in list(state_dict.keys()):
|
||||
logging.info(f"Removing key {k} from pretrained checkpoint")
|
||||
del state_dict[k]
|
||||
|
||||
if os.getenv('RoPE') == '1':
|
||||
for k in list(state_dict.keys()):
|
||||
if 'freqs_cos' in k or 'freqs_sin' in k:
|
||||
del state_dict[k]
|
||||
return state_dict
|
||||
|
||||
|
||||
|
||||
def load_checkpoint(model, checkpoint_path, model_key="model|module|state_dict", strict=True):
|
||||
state_dict = load_state_dict(checkpoint_path, model_key=model_key, is_openai=False)
|
||||
# detect old format and make compatible with new format
|
||||
if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'):
|
||||
state_dict = convert_to_custom_text_state_dict(state_dict)
|
||||
if 'text.logit_scale' in state_dict and hasattr(model, 'logit_scale'):
|
||||
state_dict['logit_scale'] = state_dict['text.logit_scale']
|
||||
del state_dict['text.logit_scale']
|
||||
|
||||
# resize_clip_pos_embed for CLIP and open CLIP
|
||||
if 'visual.positional_embedding' in state_dict:
|
||||
resize_clip_pos_embed(state_dict, model)
|
||||
# specified to eva_vit_model
|
||||
elif 'visual.pos_embed' in state_dict:
|
||||
resize_evaclip_pos_embed(state_dict, model)
|
||||
|
||||
# resize_clip_pos_embed(state_dict, model)
|
||||
incompatible_keys = model.load_state_dict(state_dict, strict=strict)
|
||||
logging.info(f"incompatible_keys.missing_keys: {incompatible_keys.missing_keys}")
|
||||
return incompatible_keys
|
||||
|
||||
def load_clip_visual_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]):
|
||||
state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list)
|
||||
|
||||
for k in list(state_dict.keys()):
|
||||
if not k.startswith('visual.'):
|
||||
del state_dict[k]
|
||||
for k in list(state_dict.keys()):
|
||||
if k.startswith('visual.'):
|
||||
new_k = k[7:]
|
||||
state_dict[new_k] = state_dict[k]
|
||||
del state_dict[k]
|
||||
return state_dict
|
||||
|
||||
def load_clip_text_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]):
|
||||
state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list)
|
||||
|
||||
for k in list(state_dict.keys()):
|
||||
if k.startswith('visual.'):
|
||||
del state_dict[k]
|
||||
return state_dict
|
||||
|
||||
def get_pretrained_tag(pretrained_model):
|
||||
pretrained_model = pretrained_model.lower()
|
||||
if "laion" in pretrained_model or "open_clip" in pretrained_model:
|
||||
return "open_clip"
|
||||
elif "openai" in pretrained_model:
|
||||
return "clip"
|
||||
elif "eva" in pretrained_model and "clip" in pretrained_model:
|
||||
return "eva_clip"
|
||||
else:
|
||||
return "other"
|
||||
|
||||
def load_pretrained_checkpoint(
|
||||
model,
|
||||
visual_checkpoint_path,
|
||||
text_checkpoint_path,
|
||||
strict=True,
|
||||
visual_model=None,
|
||||
text_model=None,
|
||||
model_key="model|module|state_dict",
|
||||
skip_list=[]):
|
||||
visual_tag = get_pretrained_tag(visual_model)
|
||||
text_tag = get_pretrained_tag(text_model)
|
||||
|
||||
logging.info(f"num of model state_dict keys: {len(model.state_dict().keys())}")
|
||||
visual_incompatible_keys, text_incompatible_keys = None, None
|
||||
if visual_checkpoint_path:
|
||||
if visual_tag == "eva_clip" or visual_tag == "open_clip":
|
||||
visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=False, skip_list=skip_list)
|
||||
elif visual_tag == "clip":
|
||||
visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=True, skip_list=skip_list)
|
||||
else:
|
||||
visual_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list)
|
||||
|
||||
# resize_clip_pos_embed for CLIP and open CLIP
|
||||
if 'positional_embedding' in visual_state_dict:
|
||||
resize_visual_pos_embed(visual_state_dict, model)
|
||||
# specified to EVA model
|
||||
elif 'pos_embed' in visual_state_dict:
|
||||
resize_eva_pos_embed(visual_state_dict, model)
|
||||
|
||||
visual_incompatible_keys = model.visual.load_state_dict(visual_state_dict, strict=strict)
|
||||
logging.info(f"num of loaded visual_state_dict keys: {len(visual_state_dict.keys())}")
|
||||
logging.info(f"visual_incompatible_keys.missing_keys: {visual_incompatible_keys.missing_keys}")
|
||||
|
||||
if text_checkpoint_path:
|
||||
if text_tag == "eva_clip" or text_tag == "open_clip":
|
||||
text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=False, skip_list=skip_list)
|
||||
elif text_tag == "clip":
|
||||
text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=True, skip_list=skip_list)
|
||||
else:
|
||||
text_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list)
|
||||
|
||||
text_incompatible_keys = model.text.load_state_dict(text_state_dict, strict=strict)
|
||||
|
||||
logging.info(f"num of loaded text_state_dict keys: {len(text_state_dict.keys())}")
|
||||
logging.info(f"text_incompatible_keys.missing_keys: {text_incompatible_keys.missing_keys}")
|
||||
|
||||
return visual_incompatible_keys, text_incompatible_keys
|
||||
|
||||
def create_model(
|
||||
model_name: str,
|
||||
pretrained: Optional[str] = None,
|
||||
precision: str = 'fp32',
|
||||
device: Union[str, torch.device] = 'cpu',
|
||||
jit: bool = False,
|
||||
force_quick_gelu: bool = False,
|
||||
force_custom_clip: bool = False,
|
||||
force_patch_dropout: Optional[float] = None,
|
||||
pretrained_image: str = '',
|
||||
pretrained_text: str = '',
|
||||
pretrained_hf: bool = True,
|
||||
pretrained_visual_model: str = None,
|
||||
pretrained_text_model: str = None,
|
||||
cache_dir: Optional[str] = None,
|
||||
skip_list: list = [],
|
||||
):
|
||||
model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names
|
||||
if isinstance(device, str):
|
||||
device = torch.device(device)
|
||||
|
||||
if pretrained and pretrained.lower() == 'openai':
|
||||
logging.info(f'Loading pretrained {model_name} from OpenAI.')
|
||||
model = load_openai_model(
|
||||
model_name,
|
||||
precision=precision,
|
||||
device=device,
|
||||
jit=jit,
|
||||
cache_dir=cache_dir,
|
||||
)
|
||||
else:
|
||||
model_cfg = get_model_config(model_name)
|
||||
if model_cfg is not None:
|
||||
logging.info(f'Loaded {model_name} model config.')
|
||||
else:
|
||||
logging.error(f'Model config for {model_name} not found; available models {list_models()}.')
|
||||
raise RuntimeError(f'Model config for {model_name} not found.')
|
||||
|
||||
if 'rope' in model_cfg.get('vision_cfg', {}):
|
||||
if model_cfg['vision_cfg']['rope']:
|
||||
os.environ['RoPE'] = "1"
|
||||
else:
|
||||
os.environ['RoPE'] = "0"
|
||||
|
||||
if force_quick_gelu:
|
||||
# override for use of QuickGELU on non-OpenAI transformer models
|
||||
model_cfg["quick_gelu"] = True
|
||||
|
||||
if force_patch_dropout is not None:
|
||||
# override the default patch dropout value
|
||||
model_cfg['vision_cfg']["patch_dropout"] = force_patch_dropout
|
||||
|
||||
cast_dtype = get_cast_dtype(precision)
|
||||
custom_clip = model_cfg.pop('custom_text', False) or force_custom_clip or ('hf_model_name' in model_cfg['text_cfg'])
|
||||
|
||||
|
||||
if custom_clip:
|
||||
if 'hf_model_name' in model_cfg.get('text_cfg', {}):
|
||||
model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf
|
||||
model = CustomCLIP(**model_cfg, cast_dtype=cast_dtype)
|
||||
else:
|
||||
model = CLIP(**model_cfg, cast_dtype=cast_dtype)
|
||||
|
||||
pretrained_cfg = {}
|
||||
if pretrained:
|
||||
checkpoint_path = ''
|
||||
pretrained_cfg = get_pretrained_cfg(model_name, pretrained)
|
||||
if pretrained_cfg:
|
||||
checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir)
|
||||
elif os.path.exists(pretrained):
|
||||
checkpoint_path = pretrained
|
||||
|
||||
if checkpoint_path:
|
||||
logging.info(f'Loading pretrained {model_name} weights ({pretrained}).')
|
||||
load_checkpoint(model,
|
||||
checkpoint_path,
|
||||
model_key="model|module|state_dict",
|
||||
strict=False
|
||||
)
|
||||
else:
|
||||
error_str = (
|
||||
f'Pretrained weights ({pretrained}) not found for model {model_name}.'
|
||||
f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.')
|
||||
logging.warning(error_str)
|
||||
raise RuntimeError(error_str)
|
||||
else:
|
||||
visual_checkpoint_path = ''
|
||||
text_checkpoint_path = ''
|
||||
|
||||
if pretrained_image:
|
||||
pretrained_visual_model = pretrained_visual_model.replace('/', '-') # for callers using old naming with / in ViT names
|
||||
pretrained_image_cfg = get_pretrained_cfg(pretrained_visual_model, pretrained_image)
|
||||
if 'timm_model_name' in model_cfg.get('vision_cfg', {}):
|
||||
# pretrained weight loading for timm models set via vision_cfg
|
||||
model_cfg['vision_cfg']['timm_model_pretrained'] = True
|
||||
elif pretrained_image_cfg:
|
||||
visual_checkpoint_path = download_pretrained(pretrained_image_cfg, cache_dir=cache_dir)
|
||||
elif os.path.exists(pretrained_image):
|
||||
visual_checkpoint_path = pretrained_image
|
||||
else:
|
||||
logging.warning(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.')
|
||||
raise RuntimeError(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.')
|
||||
|
||||
if pretrained_text:
|
||||
pretrained_text_model = pretrained_text_model.replace('/', '-') # for callers using old naming with / in ViT names
|
||||
pretrained_text_cfg = get_pretrained_cfg(pretrained_text_model, pretrained_text)
|
||||
if pretrained_image_cfg:
|
||||
text_checkpoint_path = download_pretrained(pretrained_text_cfg, cache_dir=cache_dir)
|
||||
elif os.path.exists(pretrained_text):
|
||||
text_checkpoint_path = pretrained_text
|
||||
else:
|
||||
logging.warning(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.')
|
||||
raise RuntimeError(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.')
|
||||
|
||||
if visual_checkpoint_path:
|
||||
logging.info(f'Loading pretrained {model_name}.visual weights ({visual_checkpoint_path}).')
|
||||
if text_checkpoint_path:
|
||||
logging.info(f'Loading pretrained {model_name}.text weights ({text_checkpoint_path}).')
|
||||
|
||||
if visual_checkpoint_path or text_checkpoint_path:
|
||||
load_pretrained_checkpoint(
|
||||
model,
|
||||
visual_checkpoint_path,
|
||||
text_checkpoint_path,
|
||||
strict=False,
|
||||
visual_model=pretrained_visual_model,
|
||||
text_model=pretrained_text_model,
|
||||
model_key="model|module|state_dict",
|
||||
skip_list=skip_list
|
||||
)
|
||||
|
||||
if "fp16" in precision or "bf16" in precision:
|
||||
logging.info(f'convert precision to {precision}')
|
||||
model = model.to(torch.bfloat16) if 'bf16' in precision else model.to(torch.float16)
|
||||
|
||||
model.to(device=device)
|
||||
|
||||
# set image / mean metadata from pretrained_cfg if available, or use default
|
||||
model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN
|
||||
model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD
|
||||
|
||||
if jit:
|
||||
model = torch.jit.script(model)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def create_model_and_transforms(
|
||||
model_name: str,
|
||||
pretrained: Optional[str] = None,
|
||||
precision: str = 'fp32',
|
||||
device: Union[str, torch.device] = 'cpu',
|
||||
jit: bool = False,
|
||||
force_quick_gelu: bool = False,
|
||||
force_custom_clip: bool = False,
|
||||
force_patch_dropout: Optional[float] = None,
|
||||
pretrained_image: str = '',
|
||||
pretrained_text: str = '',
|
||||
pretrained_hf: bool = True,
|
||||
pretrained_visual_model: str = None,
|
||||
pretrained_text_model: str = None,
|
||||
image_mean: Optional[Tuple[float, ...]] = None,
|
||||
image_std: Optional[Tuple[float, ...]] = None,
|
||||
cache_dir: Optional[str] = None,
|
||||
skip_list: list = [],
|
||||
):
|
||||
model = create_model(
|
||||
model_name,
|
||||
pretrained,
|
||||
precision=precision,
|
||||
device=device,
|
||||
jit=jit,
|
||||
force_quick_gelu=force_quick_gelu,
|
||||
force_custom_clip=force_custom_clip,
|
||||
force_patch_dropout=force_patch_dropout,
|
||||
pretrained_image=pretrained_image,
|
||||
pretrained_text=pretrained_text,
|
||||
pretrained_hf=pretrained_hf,
|
||||
pretrained_visual_model=pretrained_visual_model,
|
||||
pretrained_text_model=pretrained_text_model,
|
||||
cache_dir=cache_dir,
|
||||
skip_list=skip_list,
|
||||
)
|
||||
|
||||
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
|
||||
image_std = image_std or getattr(model.visual, 'image_std', None)
|
||||
preprocess_train = image_transform(
|
||||
model.visual.image_size,
|
||||
is_train=True,
|
||||
mean=image_mean,
|
||||
std=image_std
|
||||
)
|
||||
preprocess_val = image_transform(
|
||||
model.visual.image_size,
|
||||
is_train=False,
|
||||
mean=image_mean,
|
||||
std=image_std
|
||||
)
|
||||
|
||||
return model, preprocess_train, preprocess_val
|
||||
|
||||
|
||||
def create_transforms(
|
||||
model_name: str,
|
||||
pretrained: Optional[str] = None,
|
||||
precision: str = 'fp32',
|
||||
device: Union[str, torch.device] = 'cpu',
|
||||
jit: bool = False,
|
||||
force_quick_gelu: bool = False,
|
||||
force_custom_clip: bool = False,
|
||||
force_patch_dropout: Optional[float] = None,
|
||||
pretrained_image: str = '',
|
||||
pretrained_text: str = '',
|
||||
pretrained_hf: bool = True,
|
||||
pretrained_visual_model: str = None,
|
||||
pretrained_text_model: str = None,
|
||||
image_mean: Optional[Tuple[float, ...]] = None,
|
||||
image_std: Optional[Tuple[float, ...]] = None,
|
||||
cache_dir: Optional[str] = None,
|
||||
skip_list: list = [],
|
||||
):
|
||||
model = create_model(
|
||||
model_name,
|
||||
pretrained,
|
||||
precision=precision,
|
||||
device=device,
|
||||
jit=jit,
|
||||
force_quick_gelu=force_quick_gelu,
|
||||
force_custom_clip=force_custom_clip,
|
||||
force_patch_dropout=force_patch_dropout,
|
||||
pretrained_image=pretrained_image,
|
||||
pretrained_text=pretrained_text,
|
||||
pretrained_hf=pretrained_hf,
|
||||
pretrained_visual_model=pretrained_visual_model,
|
||||
pretrained_text_model=pretrained_text_model,
|
||||
cache_dir=cache_dir,
|
||||
skip_list=skip_list,
|
||||
)
|
||||
|
||||
|
||||
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
|
||||
image_std = image_std or getattr(model.visual, 'image_std', None)
|
||||
preprocess_train = image_transform(
|
||||
model.visual.image_size,
|
||||
is_train=True,
|
||||
mean=image_mean,
|
||||
std=image_std
|
||||
)
|
||||
preprocess_val = image_transform(
|
||||
model.visual.image_size,
|
||||
is_train=False,
|
||||
mean=image_mean,
|
||||
std=image_std
|
||||
)
|
||||
del model
|
||||
|
||||
return preprocess_train, preprocess_val
|
||||
|
||||
def create_model_from_pretrained(
|
||||
model_name: str,
|
||||
pretrained: str,
|
||||
precision: str = 'fp32',
|
||||
device: Union[str, torch.device] = 'cpu',
|
||||
jit: bool = False,
|
||||
force_quick_gelu: bool = False,
|
||||
force_custom_clip: bool = False,
|
||||
force_patch_dropout: Optional[float] = None,
|
||||
return_transform: bool = True,
|
||||
image_mean: Optional[Tuple[float, ...]] = None,
|
||||
image_std: Optional[Tuple[float, ...]] = None,
|
||||
cache_dir: Optional[str] = None,
|
||||
is_frozen: bool = False,
|
||||
):
|
||||
if not is_pretrained_cfg(model_name, pretrained) and not os.path.exists(pretrained):
|
||||
raise RuntimeError(
|
||||
f'{pretrained} is not a valid pretrained cfg or checkpoint for {model_name}.'
|
||||
f' Use open_clip.list_pretrained() to find one.')
|
||||
|
||||
model = create_model(
|
||||
model_name,
|
||||
pretrained,
|
||||
precision=precision,
|
||||
device=device,
|
||||
jit=jit,
|
||||
force_quick_gelu=force_quick_gelu,
|
||||
force_custom_clip=force_custom_clip,
|
||||
force_patch_dropout=force_patch_dropout,
|
||||
cache_dir=cache_dir,
|
||||
)
|
||||
|
||||
if is_frozen:
|
||||
for param in model.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
if not return_transform:
|
||||
return model
|
||||
|
||||
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
|
||||
image_std = image_std or getattr(model.visual, 'image_std', None)
|
||||
preprocess = image_transform(
|
||||
model.visual.image_size,
|
||||
is_train=False,
|
||||
mean=image_mean,
|
||||
std=image_std
|
||||
)
|
||||
|
||||
return model, preprocess
|
||||
57
consis_id/models/eva_clip/hf_configs.py
Normal file
57
consis_id/models/eva_clip/hf_configs.py
Normal file
@ -0,0 +1,57 @@
|
||||
# HF architecture dict:
|
||||
arch_dict = {
|
||||
# https://huggingface.co/docs/transformers/model_doc/roberta#roberta
|
||||
"roberta": {
|
||||
"config_names": {
|
||||
"context_length": "max_position_embeddings",
|
||||
"vocab_size": "vocab_size",
|
||||
"width": "hidden_size",
|
||||
"heads": "num_attention_heads",
|
||||
"layers": "num_hidden_layers",
|
||||
"layer_attr": "layer",
|
||||
"token_embeddings_attr": "embeddings"
|
||||
},
|
||||
"pooler": "mean_pooler",
|
||||
},
|
||||
# https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaConfig
|
||||
"xlm-roberta": {
|
||||
"config_names": {
|
||||
"context_length": "max_position_embeddings",
|
||||
"vocab_size": "vocab_size",
|
||||
"width": "hidden_size",
|
||||
"heads": "num_attention_heads",
|
||||
"layers": "num_hidden_layers",
|
||||
"layer_attr": "layer",
|
||||
"token_embeddings_attr": "embeddings"
|
||||
},
|
||||
"pooler": "mean_pooler",
|
||||
},
|
||||
# https://huggingface.co/docs/transformers/model_doc/mt5#mt5
|
||||
"mt5": {
|
||||
"config_names": {
|
||||
# unlimited seqlen
|
||||
# https://github.com/google-research/text-to-text-transfer-transformer/issues/273
|
||||
# https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/t5/modeling_t5.py#L374
|
||||
"context_length": "",
|
||||
"vocab_size": "vocab_size",
|
||||
"width": "d_model",
|
||||
"heads": "num_heads",
|
||||
"layers": "num_layers",
|
||||
"layer_attr": "block",
|
||||
"token_embeddings_attr": "embed_tokens"
|
||||
},
|
||||
"pooler": "mean_pooler",
|
||||
},
|
||||
"bert": {
|
||||
"config_names": {
|
||||
"context_length": "max_position_embeddings",
|
||||
"vocab_size": "vocab_size",
|
||||
"width": "hidden_size",
|
||||
"heads": "num_attention_heads",
|
||||
"layers": "num_hidden_layers",
|
||||
"layer_attr": "layer",
|
||||
"token_embeddings_attr": "embeddings"
|
||||
},
|
||||
"pooler": "mean_pooler",
|
||||
}
|
||||
}
|
||||
248
consis_id/models/eva_clip/hf_model.py
Normal file
248
consis_id/models/eva_clip/hf_model.py
Normal file
@ -0,0 +1,248 @@
|
||||
""" huggingface model adapter
|
||||
|
||||
Wraps HuggingFace transformers (https://github.com/huggingface/transformers) models for use as a text tower in CLIP model.
|
||||
"""
|
||||
|
||||
import re
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
from torch import TensorType
|
||||
try:
|
||||
import transformers
|
||||
from transformers import AutoModel, AutoModelForMaskedLM, AutoTokenizer, AutoConfig, PretrainedConfig
|
||||
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, \
|
||||
BaseModelOutputWithPoolingAndCrossAttentions
|
||||
except ImportError as e:
|
||||
transformers = None
|
||||
|
||||
|
||||
class BaseModelOutput:
|
||||
pass
|
||||
|
||||
|
||||
class PretrainedConfig:
|
||||
pass
|
||||
|
||||
from .hf_configs import arch_dict
|
||||
|
||||
# utils
|
||||
def _camel2snake(s):
|
||||
return re.sub(r'(?<!^)(?=[A-Z])', '_', s).lower()
|
||||
|
||||
# TODO: ?last - for gpt-like models
|
||||
_POOLERS = {}
|
||||
|
||||
def register_pooler(cls):
|
||||
"""Decorator registering pooler class"""
|
||||
_POOLERS[_camel2snake(cls.__name__)] = cls
|
||||
return cls
|
||||
|
||||
|
||||
@register_pooler
|
||||
class MeanPooler(nn.Module):
|
||||
"""Mean pooling"""
|
||||
def forward(self, x:BaseModelOutput, attention_mask:TensorType):
|
||||
masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1)
|
||||
return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True)
|
||||
|
||||
@register_pooler
|
||||
class MaxPooler(nn.Module):
|
||||
"""Max pooling"""
|
||||
def forward(self, x:BaseModelOutput, attention_mask:TensorType):
|
||||
masked_output = x.last_hidden_state.masked_fill(attention_mask.unsqueeze(-1), -torch.inf)
|
||||
return masked_output.max(1).values
|
||||
|
||||
@register_pooler
|
||||
class ClsPooler(nn.Module):
|
||||
"""CLS token pooling"""
|
||||
def __init__(self, use_pooler_output=True):
|
||||
super().__init__()
|
||||
self.cls_token_position = 0
|
||||
self.use_pooler_output = use_pooler_output
|
||||
|
||||
def forward(self, x:BaseModelOutput, attention_mask:TensorType):
|
||||
|
||||
if (self.use_pooler_output and
|
||||
isinstance(x, (BaseModelOutputWithPooling, BaseModelOutputWithPoolingAndCrossAttentions)) and
|
||||
(x.pooler_output is not None)
|
||||
):
|
||||
return x.pooler_output
|
||||
|
||||
return x.last_hidden_state[:, self.cls_token_position, :]
|
||||
|
||||
class HFTextEncoder(nn.Module):
|
||||
"""HuggingFace model adapter"""
|
||||
def __init__(
|
||||
self,
|
||||
model_name_or_path: str,
|
||||
output_dim: int,
|
||||
tokenizer_name: str = None,
|
||||
config: PretrainedConfig = None,
|
||||
pooler_type: str = None,
|
||||
proj: str = None,
|
||||
pretrained: bool = True,
|
||||
masked_language_modeling: bool = False):
|
||||
super().__init__()
|
||||
|
||||
self.output_dim = output_dim
|
||||
|
||||
# TODO: find better way to get this information
|
||||
uses_transformer_pooler = (pooler_type == "cls_pooler")
|
||||
|
||||
if transformers is None:
|
||||
raise RuntimeError("Please `pip install transformers` to use pre-trained HuggingFace models")
|
||||
if config is None:
|
||||
self.config = AutoConfig.from_pretrained(model_name_or_path)
|
||||
if masked_language_modeling:
|
||||
create_func, model_args = (AutoModelForMaskedLM.from_pretrained, model_name_or_path) if pretrained else (
|
||||
AutoModelForMaskedLM.from_config, self.config)
|
||||
else:
|
||||
create_func, model_args = (AutoModel.from_pretrained, model_name_or_path) if pretrained else (
|
||||
AutoModel.from_config, self.config)
|
||||
# TODO: do all model configs have this attribute? PretrainedConfig does so yes??
|
||||
if hasattr(self.config, "is_encoder_decoder") and self.config.is_encoder_decoder:
|
||||
self.transformer = create_func(model_args)
|
||||
self.transformer = self.transformer.encoder
|
||||
else:
|
||||
self.transformer = create_func(model_args, add_pooling_layer=uses_transformer_pooler)
|
||||
else:
|
||||
self.config = config
|
||||
if masked_language_modeling:
|
||||
self.transformer = AutoModelForMaskedLM.from_config(config)
|
||||
else:
|
||||
self.transformer = AutoModel.from_config(config)
|
||||
|
||||
if pooler_type is None: # get default arch pooler
|
||||
self.pooler = _POOLERS[(arch_dict[self.config.model_type]["pooler"])]()
|
||||
else:
|
||||
self.pooler = _POOLERS[pooler_type]()
|
||||
|
||||
d_model = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["width"])
|
||||
if (d_model == output_dim) and (proj is None): # do we always need a proj?
|
||||
self.proj = nn.Identity()
|
||||
elif proj == 'linear':
|
||||
self.proj = nn.Linear(d_model, output_dim, bias=False)
|
||||
elif proj == 'mlp':
|
||||
hidden_size = (d_model + output_dim) // 2
|
||||
self.proj = nn.Sequential(
|
||||
nn.Linear(d_model, hidden_size, bias=False),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_size, output_dim, bias=False),
|
||||
)
|
||||
|
||||
# self.itm_proj = nn.Linear(d_model, 2, bias=False)
|
||||
# self.mlm_proj = nn.Linear(d_model, self.config.vocab_size), bias=False)
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
||||
|
||||
# def forward_itm(self, x:TensorType, image_embeds:TensorType) -> TensorType:
|
||||
# image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(x.device)
|
||||
# attn_mask = (x != self.config.pad_token_id).long()
|
||||
# out = self.transformer(
|
||||
# input_ids=x,
|
||||
# attention_mask=attn_mask,
|
||||
# encoder_hidden_states = image_embeds,
|
||||
# encoder_attention_mask = image_atts,
|
||||
# )
|
||||
# pooled_out = self.pooler(out, attn_mask)
|
||||
|
||||
# return self.itm_proj(pooled_out)
|
||||
|
||||
def mask(self, input_ids, vocab_size, device, targets=None, masked_indices=None, probability_matrix=None):
|
||||
if masked_indices is None:
|
||||
masked_indices = torch.bernoulli(probability_matrix).bool()
|
||||
|
||||
masked_indices[input_ids == self.tokenizer.pad_token_id] = False
|
||||
masked_indices[input_ids == self.tokenizer.cls_token_id] = False
|
||||
|
||||
if targets is not None:
|
||||
targets[~masked_indices] = -100 # We only compute loss on masked tokens
|
||||
|
||||
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
|
||||
indices_replaced = torch.bernoulli(torch.full(input_ids.shape, 0.8)).bool() & masked_indices
|
||||
input_ids[indices_replaced] = self.tokenizer.mask_token_id
|
||||
|
||||
# 10% of the time, we replace masked input tokens with random word
|
||||
indices_random = torch.bernoulli(torch.full(input_ids.shape, 0.5)).bool() & masked_indices & ~indices_replaced
|
||||
random_words = torch.randint(vocab_size, input_ids.shape, dtype=torch.long).to(device)
|
||||
input_ids[indices_random] = random_words[indices_random]
|
||||
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
|
||||
|
||||
if targets is not None:
|
||||
return input_ids, targets
|
||||
else:
|
||||
return input_ids
|
||||
|
||||
def forward_mlm(self, input_ids, image_embeds, mlm_probability=0.25):
|
||||
labels = input_ids.clone()
|
||||
attn_mask = (input_ids != self.config.pad_token_id).long()
|
||||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(input_ids.device)
|
||||
vocab_size = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["vocab_size"])
|
||||
probability_matrix = torch.full(labels.shape, mlm_probability)
|
||||
input_ids, labels = self.mask(input_ids, vocab_size, input_ids.device, targets=labels,
|
||||
probability_matrix = probability_matrix)
|
||||
mlm_output = self.transformer(input_ids,
|
||||
attention_mask = attn_mask,
|
||||
encoder_hidden_states = image_embeds,
|
||||
encoder_attention_mask = image_atts,
|
||||
return_dict = True,
|
||||
labels = labels,
|
||||
)
|
||||
return mlm_output.loss
|
||||
# mlm_output = self.transformer(input_ids,
|
||||
# attention_mask = attn_mask,
|
||||
# encoder_hidden_states = image_embeds,
|
||||
# encoder_attention_mask = image_atts,
|
||||
# return_dict = True,
|
||||
# ).last_hidden_state
|
||||
# logits = self.mlm_proj(mlm_output)
|
||||
|
||||
# # logits = logits[:, :-1, :].contiguous().view(-1, vocab_size)
|
||||
# logits = logits[:, 1:, :].contiguous().view(-1, vocab_size)
|
||||
# labels = labels[:, 1:].contiguous().view(-1)
|
||||
|
||||
# mlm_loss = F.cross_entropy(
|
||||
# logits,
|
||||
# labels,
|
||||
# # label_smoothing=0.1,
|
||||
# )
|
||||
# return mlm_loss
|
||||
|
||||
|
||||
def forward(self, x:TensorType) -> TensorType:
|
||||
attn_mask = (x != self.config.pad_token_id).long()
|
||||
out = self.transformer(input_ids=x, attention_mask=attn_mask)
|
||||
pooled_out = self.pooler(out, attn_mask)
|
||||
|
||||
return self.proj(pooled_out)
|
||||
|
||||
def lock(self, unlocked_layers:int=0, freeze_layer_norm:bool=True):
|
||||
if not unlocked_layers: # full freezing
|
||||
for n, p in self.transformer.named_parameters():
|
||||
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
|
||||
return
|
||||
|
||||
encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
|
||||
layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
|
||||
print(f"Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model")
|
||||
embeddings = getattr(
|
||||
self.transformer, arch_dict[self.config.model_type]["config_names"]["token_embeddings_attr"])
|
||||
modules = [embeddings, *layer_list][:-unlocked_layers]
|
||||
# freeze layers
|
||||
for module in modules:
|
||||
for n, p in module.named_parameters():
|
||||
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
|
||||
|
||||
|
||||
@torch.jit.ignore
|
||||
def set_grad_checkpointing(self, enable=True):
|
||||
self.transformer.gradient_checkpointing_enable()
|
||||
|
||||
def get_num_layers(self):
|
||||
encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
|
||||
layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
|
||||
return len(layer_list)
|
||||
|
||||
def init_parameters(self):
|
||||
pass
|
||||
138
consis_id/models/eva_clip/loss.py
Normal file
138
consis_id/models/eva_clip/loss.py
Normal file
@ -0,0 +1,138 @@
|
||||
import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
try:
|
||||
import torch.distributed.nn
|
||||
from torch import distributed as dist
|
||||
has_distributed = True
|
||||
except ImportError:
|
||||
has_distributed = False
|
||||
|
||||
try:
|
||||
import horovod.torch as hvd
|
||||
except ImportError:
|
||||
hvd = None
|
||||
|
||||
from timm.loss import LabelSmoothingCrossEntropy
|
||||
|
||||
|
||||
def gather_features(
|
||||
image_features,
|
||||
text_features,
|
||||
local_loss=False,
|
||||
gather_with_grad=False,
|
||||
rank=0,
|
||||
world_size=1,
|
||||
use_horovod=False
|
||||
):
|
||||
assert has_distributed, 'torch.distributed did not import correctly, please use a PyTorch version with support.'
|
||||
if use_horovod:
|
||||
assert hvd is not None, 'Please install horovod'
|
||||
if gather_with_grad:
|
||||
all_image_features = hvd.allgather(image_features)
|
||||
all_text_features = hvd.allgather(text_features)
|
||||
else:
|
||||
with torch.no_grad():
|
||||
all_image_features = hvd.allgather(image_features)
|
||||
all_text_features = hvd.allgather(text_features)
|
||||
if not local_loss:
|
||||
# ensure grads for local rank when all_* features don't have a gradient
|
||||
gathered_image_features = list(all_image_features.chunk(world_size, dim=0))
|
||||
gathered_text_features = list(all_text_features.chunk(world_size, dim=0))
|
||||
gathered_image_features[rank] = image_features
|
||||
gathered_text_features[rank] = text_features
|
||||
all_image_features = torch.cat(gathered_image_features, dim=0)
|
||||
all_text_features = torch.cat(gathered_text_features, dim=0)
|
||||
else:
|
||||
# We gather tensors from all gpus
|
||||
if gather_with_grad:
|
||||
all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features), dim=0)
|
||||
all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features), dim=0)
|
||||
# all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features, async_op=True), dim=0)
|
||||
# all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features, async_op=True), dim=0)
|
||||
else:
|
||||
gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)]
|
||||
gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)]
|
||||
dist.all_gather(gathered_image_features, image_features)
|
||||
dist.all_gather(gathered_text_features, text_features)
|
||||
if not local_loss:
|
||||
# ensure grads for local rank when all_* features don't have a gradient
|
||||
gathered_image_features[rank] = image_features
|
||||
gathered_text_features[rank] = text_features
|
||||
all_image_features = torch.cat(gathered_image_features, dim=0)
|
||||
all_text_features = torch.cat(gathered_text_features, dim=0)
|
||||
|
||||
return all_image_features, all_text_features
|
||||
|
||||
|
||||
class ClipLoss(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
local_loss=False,
|
||||
gather_with_grad=False,
|
||||
cache_labels=False,
|
||||
rank=0,
|
||||
world_size=1,
|
||||
use_horovod=False,
|
||||
smoothing=0.,
|
||||
):
|
||||
super().__init__()
|
||||
self.local_loss = local_loss
|
||||
self.gather_with_grad = gather_with_grad
|
||||
self.cache_labels = cache_labels
|
||||
self.rank = rank
|
||||
self.world_size = world_size
|
||||
self.use_horovod = use_horovod
|
||||
self.label_smoothing_cross_entropy = LabelSmoothingCrossEntropy(smoothing=smoothing) if smoothing > 0 else None
|
||||
|
||||
# cache state
|
||||
self.prev_num_logits = 0
|
||||
self.labels = {}
|
||||
|
||||
def forward(self, image_features, text_features, logit_scale=1.):
|
||||
device = image_features.device
|
||||
if self.world_size > 1:
|
||||
all_image_features, all_text_features = gather_features(
|
||||
image_features, text_features,
|
||||
self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.use_horovod)
|
||||
|
||||
if self.local_loss:
|
||||
logits_per_image = logit_scale * image_features @ all_text_features.T
|
||||
logits_per_text = logit_scale * text_features @ all_image_features.T
|
||||
else:
|
||||
logits_per_image = logit_scale * all_image_features @ all_text_features.T
|
||||
logits_per_text = logits_per_image.T
|
||||
else:
|
||||
logits_per_image = logit_scale * image_features @ text_features.T
|
||||
logits_per_text = logit_scale * text_features @ image_features.T
|
||||
# calculated ground-truth and cache if enabled
|
||||
num_logits = logits_per_image.shape[0]
|
||||
if self.prev_num_logits != num_logits or device not in self.labels:
|
||||
labels = torch.arange(num_logits, device=device, dtype=torch.long)
|
||||
if self.world_size > 1 and self.local_loss:
|
||||
labels = labels + num_logits * self.rank
|
||||
if self.cache_labels:
|
||||
self.labels[device] = labels
|
||||
self.prev_num_logits = num_logits
|
||||
else:
|
||||
labels = self.labels[device]
|
||||
|
||||
if self.label_smoothing_cross_entropy:
|
||||
total_loss = (
|
||||
self.label_smoothing_cross_entropy(logits_per_image, labels) +
|
||||
self.label_smoothing_cross_entropy(logits_per_text, labels)
|
||||
) / 2
|
||||
else:
|
||||
total_loss = (
|
||||
F.cross_entropy(logits_per_image, labels) +
|
||||
F.cross_entropy(logits_per_text, labels)
|
||||
) / 2
|
||||
|
||||
acc = None
|
||||
i2t_acc = (logits_per_image.argmax(-1) == labels).sum() / len(logits_per_image)
|
||||
t2i_acc = (logits_per_text.argmax(-1) == labels).sum() / len(logits_per_text)
|
||||
acc = {"i2t": i2t_acc, "t2i": t2i_acc}
|
||||
return total_loss, acc
|
||||
439
consis_id/models/eva_clip/model.py
Normal file
439
consis_id/models/eva_clip/model.py
Normal file
@ -0,0 +1,439 @@
|
||||
""" CLIP Model
|
||||
|
||||
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
||||
"""
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple, Union
|
||||
from functools import partial
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
try:
|
||||
from .hf_model import HFTextEncoder
|
||||
except:
|
||||
HFTextEncoder = None
|
||||
from .modified_resnet import ModifiedResNet
|
||||
from .timm_model import TimmModel
|
||||
from .eva_vit_model import EVAVisionTransformer
|
||||
from .transformer import LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer
|
||||
|
||||
try:
|
||||
from apex.normalization import FusedLayerNorm
|
||||
except:
|
||||
FusedLayerNorm = LayerNorm
|
||||
print("Please 'pip install apex'")
|
||||
|
||||
try:
|
||||
import xformers.ops as xops
|
||||
except ImportError:
|
||||
xops = None
|
||||
print("Please 'pip install xformers'")
|
||||
|
||||
@dataclass
|
||||
class CLIPVisionCfg:
|
||||
layers: Union[Tuple[int, int, int, int], int] = 12
|
||||
width: int = 768
|
||||
head_width: int = 64
|
||||
mlp_ratio: float = 4.0
|
||||
patch_size: int = 16
|
||||
image_size: Union[Tuple[int, int], int] = 224
|
||||
ls_init_value: Optional[float] = None # layer scale initial value
|
||||
patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
|
||||
global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580)
|
||||
drop_path_rate: Optional[float] = None # drop path rate
|
||||
timm_model_name: str = None # a valid model name overrides layers, width, patch_size
|
||||
timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model
|
||||
timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
|
||||
timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '')
|
||||
timm_proj_bias: bool = False # enable bias final projection
|
||||
eva_model_name: str = None # a valid eva model name overrides layers, width, patch_size
|
||||
qkv_bias: bool = True
|
||||
fusedLN: bool = False
|
||||
xattn: bool = False
|
||||
postnorm: bool = False
|
||||
rope: bool = False
|
||||
pt_hw_seq_len: int = 16 # 224/14
|
||||
intp_freq: bool = False
|
||||
naiveswiglu: bool = False
|
||||
subln: bool = False
|
||||
|
||||
|
||||
@dataclass
|
||||
class CLIPTextCfg:
|
||||
context_length: int = 77
|
||||
vocab_size: int = 49408
|
||||
width: int = 512
|
||||
heads: int = 8
|
||||
layers: int = 12
|
||||
ls_init_value: Optional[float] = None # layer scale initial value
|
||||
hf_model_name: str = None
|
||||
hf_tokenizer_name: str = None
|
||||
hf_model_pretrained: bool = True
|
||||
proj: str = 'mlp'
|
||||
pooler_type: str = 'mean_pooler'
|
||||
masked_language_modeling: bool = False
|
||||
fusedLN: bool = False
|
||||
xattn: bool = False
|
||||
attn_mask: bool = True
|
||||
|
||||
def get_cast_dtype(precision: str):
|
||||
cast_dtype = None
|
||||
if precision == 'bf16':
|
||||
cast_dtype = torch.bfloat16
|
||||
elif precision == 'fp16':
|
||||
cast_dtype = torch.float16
|
||||
return cast_dtype
|
||||
|
||||
|
||||
def _build_vision_tower(
|
||||
embed_dim: int,
|
||||
vision_cfg: CLIPVisionCfg,
|
||||
quick_gelu: bool = False,
|
||||
cast_dtype: Optional[torch.dtype] = None
|
||||
):
|
||||
if isinstance(vision_cfg, dict):
|
||||
vision_cfg = CLIPVisionCfg(**vision_cfg)
|
||||
|
||||
# OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
|
||||
# memory efficient in recent PyTorch releases (>= 1.10).
|
||||
# NOTE: timm models always use native GELU regardless of quick_gelu flag.
|
||||
act_layer = QuickGELU if quick_gelu else nn.GELU
|
||||
|
||||
if vision_cfg.eva_model_name:
|
||||
vision_heads = vision_cfg.width // vision_cfg.head_width
|
||||
norm_layer = LayerNorm
|
||||
|
||||
visual = EVAVisionTransformer(
|
||||
img_size=vision_cfg.image_size,
|
||||
patch_size=vision_cfg.patch_size,
|
||||
num_classes=embed_dim,
|
||||
use_mean_pooling=vision_cfg.global_average_pool, #False
|
||||
init_values=vision_cfg.ls_init_value,
|
||||
patch_dropout=vision_cfg.patch_dropout,
|
||||
embed_dim=vision_cfg.width,
|
||||
depth=vision_cfg.layers,
|
||||
num_heads=vision_heads,
|
||||
mlp_ratio=vision_cfg.mlp_ratio,
|
||||
qkv_bias=vision_cfg.qkv_bias,
|
||||
drop_path_rate=vision_cfg.drop_path_rate,
|
||||
norm_layer= partial(FusedLayerNorm, eps=1e-6) if vision_cfg.fusedLN else partial(norm_layer, eps=1e-6),
|
||||
xattn=vision_cfg.xattn,
|
||||
rope=vision_cfg.rope,
|
||||
postnorm=vision_cfg.postnorm,
|
||||
pt_hw_seq_len= vision_cfg.pt_hw_seq_len, # 224/14
|
||||
intp_freq= vision_cfg.intp_freq,
|
||||
naiveswiglu= vision_cfg.naiveswiglu,
|
||||
subln= vision_cfg.subln
|
||||
)
|
||||
elif vision_cfg.timm_model_name:
|
||||
visual = TimmModel(
|
||||
vision_cfg.timm_model_name,
|
||||
pretrained=vision_cfg.timm_model_pretrained,
|
||||
pool=vision_cfg.timm_pool,
|
||||
proj=vision_cfg.timm_proj,
|
||||
proj_bias=vision_cfg.timm_proj_bias,
|
||||
embed_dim=embed_dim,
|
||||
image_size=vision_cfg.image_size
|
||||
)
|
||||
act_layer = nn.GELU # so that text transformer doesn't use QuickGELU w/ timm models
|
||||
elif isinstance(vision_cfg.layers, (tuple, list)):
|
||||
vision_heads = vision_cfg.width * 32 // vision_cfg.head_width
|
||||
visual = ModifiedResNet(
|
||||
layers=vision_cfg.layers,
|
||||
output_dim=embed_dim,
|
||||
heads=vision_heads,
|
||||
image_size=vision_cfg.image_size,
|
||||
width=vision_cfg.width
|
||||
)
|
||||
else:
|
||||
vision_heads = vision_cfg.width // vision_cfg.head_width
|
||||
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
|
||||
visual = VisionTransformer(
|
||||
image_size=vision_cfg.image_size,
|
||||
patch_size=vision_cfg.patch_size,
|
||||
width=vision_cfg.width,
|
||||
layers=vision_cfg.layers,
|
||||
heads=vision_heads,
|
||||
mlp_ratio=vision_cfg.mlp_ratio,
|
||||
ls_init_value=vision_cfg.ls_init_value,
|
||||
patch_dropout=vision_cfg.patch_dropout,
|
||||
global_average_pool=vision_cfg.global_average_pool,
|
||||
output_dim=embed_dim,
|
||||
act_layer=act_layer,
|
||||
norm_layer=norm_layer,
|
||||
)
|
||||
|
||||
return visual
|
||||
|
||||
|
||||
def _build_text_tower(
|
||||
embed_dim: int,
|
||||
text_cfg: CLIPTextCfg,
|
||||
quick_gelu: bool = False,
|
||||
cast_dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
if isinstance(text_cfg, dict):
|
||||
text_cfg = CLIPTextCfg(**text_cfg)
|
||||
|
||||
if text_cfg.hf_model_name:
|
||||
text = HFTextEncoder(
|
||||
text_cfg.hf_model_name,
|
||||
output_dim=embed_dim,
|
||||
tokenizer_name=text_cfg.hf_tokenizer_name,
|
||||
proj=text_cfg.proj,
|
||||
pooler_type=text_cfg.pooler_type,
|
||||
masked_language_modeling=text_cfg.masked_language_modeling
|
||||
)
|
||||
else:
|
||||
act_layer = QuickGELU if quick_gelu else nn.GELU
|
||||
norm_layer = LayerNorm
|
||||
|
||||
text = TextTransformer(
|
||||
context_length=text_cfg.context_length,
|
||||
vocab_size=text_cfg.vocab_size,
|
||||
width=text_cfg.width,
|
||||
heads=text_cfg.heads,
|
||||
layers=text_cfg.layers,
|
||||
ls_init_value=text_cfg.ls_init_value,
|
||||
output_dim=embed_dim,
|
||||
act_layer=act_layer,
|
||||
norm_layer= FusedLayerNorm if text_cfg.fusedLN else norm_layer,
|
||||
xattn=text_cfg.xattn,
|
||||
attn_mask=text_cfg.attn_mask,
|
||||
)
|
||||
return text
|
||||
|
||||
class CLIP(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim: int,
|
||||
vision_cfg: CLIPVisionCfg,
|
||||
text_cfg: CLIPTextCfg,
|
||||
quick_gelu: bool = False,
|
||||
cast_dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
|
||||
|
||||
text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
|
||||
self.transformer = text.transformer
|
||||
self.vocab_size = text.vocab_size
|
||||
self.token_embedding = text.token_embedding
|
||||
self.positional_embedding = text.positional_embedding
|
||||
self.ln_final = text.ln_final
|
||||
self.text_projection = text.text_projection
|
||||
self.register_buffer('attn_mask', text.attn_mask, persistent=False)
|
||||
|
||||
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
||||
|
||||
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
|
||||
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
|
||||
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
|
||||
|
||||
@torch.jit.ignore
|
||||
def set_grad_checkpointing(self, enable=True):
|
||||
self.visual.set_grad_checkpointing(enable)
|
||||
self.transformer.grad_checkpointing = enable
|
||||
|
||||
@torch.jit.ignore
|
||||
def no_weight_decay(self):
|
||||
return {'logit_scale'}
|
||||
|
||||
def encode_image(self, image, normalize: bool = False):
|
||||
features = self.visual(image)
|
||||
return F.normalize(features, dim=-1) if normalize else features
|
||||
|
||||
def encode_text(self, text, normalize: bool = False):
|
||||
cast_dtype = self.transformer.get_cast_dtype()
|
||||
|
||||
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
|
||||
|
||||
x = x + self.positional_embedding.to(cast_dtype)
|
||||
x = x.permute(1, 0, 2) # NLD -> LND
|
||||
x = self.transformer(x, attn_mask=self.attn_mask)
|
||||
x = x.permute(1, 0, 2) # LND -> NLD
|
||||
x = self.ln_final(x) # [batch_size, n_ctx, transformer.width]
|
||||
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
||||
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
||||
return F.normalize(x, dim=-1) if normalize else x
|
||||
|
||||
def forward(self, image, text):
|
||||
image_features = self.encode_image(image, normalize=True)
|
||||
text_features = self.encode_text(text, normalize=True)
|
||||
return image_features, text_features, self.logit_scale.exp()
|
||||
|
||||
|
||||
class CustomCLIP(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim: int,
|
||||
vision_cfg: CLIPVisionCfg,
|
||||
text_cfg: CLIPTextCfg,
|
||||
quick_gelu: bool = False,
|
||||
cast_dtype: Optional[torch.dtype] = None,
|
||||
itm_task: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
|
||||
self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
|
||||
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
||||
|
||||
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
|
||||
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
|
||||
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
|
||||
|
||||
def lock_text_tower(self, unlocked_layers:int=0, freeze_layer_norm:bool=True):
|
||||
self.text.lock(unlocked_layers, freeze_layer_norm)
|
||||
|
||||
@torch.jit.ignore
|
||||
def set_grad_checkpointing(self, enable=True):
|
||||
self.visual.set_grad_checkpointing(enable)
|
||||
self.text.set_grad_checkpointing(enable)
|
||||
|
||||
@torch.jit.ignore
|
||||
def no_weight_decay(self):
|
||||
return {'logit_scale'}
|
||||
|
||||
def encode_image(self, image, normalize: bool = False):
|
||||
features = self.visual(image)
|
||||
return F.normalize(features, dim=-1) if normalize else features
|
||||
|
||||
def encode_text(self, text, normalize: bool = False):
|
||||
features = self.text(text)
|
||||
return F.normalize(features, dim=-1) if normalize else features
|
||||
|
||||
def forward(self, image, text):
|
||||
image_features = self.encode_image(image, normalize=True)
|
||||
text_features = self.encode_text(text, normalize=True)
|
||||
return image_features, text_features, self.logit_scale.exp()
|
||||
|
||||
|
||||
def convert_weights_to_lp(model: nn.Module, dtype=torch.float16):
|
||||
"""Convert applicable model parameters to low-precision (bf16 or fp16)"""
|
||||
|
||||
def _convert_weights(l):
|
||||
|
||||
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
||||
l.weight.data = l.weight.data.to(dtype)
|
||||
if l.bias is not None:
|
||||
l.bias.data = l.bias.data.to(dtype)
|
||||
|
||||
if isinstance(l, (nn.MultiheadAttention, Attention)):
|
||||
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
||||
tensor = getattr(l, attr, None)
|
||||
if tensor is not None:
|
||||
tensor.data = tensor.data.to(dtype)
|
||||
|
||||
if isinstance(l, nn.Parameter):
|
||||
l.data = l.data.to(dtype)
|
||||
|
||||
for name in ["text_projection", "proj"]:
|
||||
if hasattr(l, name) and isinstance(l, nn.Parameter):
|
||||
attr = getattr(l, name, None)
|
||||
if attr is not None:
|
||||
attr.data = attr.data.to(dtype)
|
||||
|
||||
model.apply(_convert_weights)
|
||||
|
||||
|
||||
convert_weights_to_fp16 = convert_weights_to_lp # backwards compat
|
||||
|
||||
|
||||
# used to maintain checkpoint compatibility
|
||||
def convert_to_custom_text_state_dict(state_dict: dict):
|
||||
if 'text_projection' in state_dict:
|
||||
# old format state_dict, move text tower -> .text
|
||||
new_state_dict = {}
|
||||
for k, v in state_dict.items():
|
||||
if any(k.startswith(p) for p in (
|
||||
'text_projection',
|
||||
'positional_embedding',
|
||||
'token_embedding',
|
||||
'transformer',
|
||||
'ln_final',
|
||||
'logit_scale'
|
||||
)):
|
||||
k = 'text.' + k
|
||||
new_state_dict[k] = v
|
||||
return new_state_dict
|
||||
return state_dict
|
||||
|
||||
|
||||
def build_model_from_openai_state_dict(
|
||||
state_dict: dict,
|
||||
quick_gelu=True,
|
||||
cast_dtype=torch.float16,
|
||||
):
|
||||
vit = "visual.proj" in state_dict
|
||||
|
||||
if vit:
|
||||
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
||||
vision_layers = len(
|
||||
[k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
||||
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
||||
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
||||
image_size = vision_patch_size * grid_size
|
||||
else:
|
||||
counts: list = [
|
||||
len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
||||
vision_layers = tuple(counts)
|
||||
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
||||
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
||||
vision_patch_size = None
|
||||
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
||||
image_size = output_width * 32
|
||||
|
||||
embed_dim = state_dict["text_projection"].shape[1]
|
||||
context_length = state_dict["positional_embedding"].shape[0]
|
||||
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
||||
transformer_width = state_dict["ln_final.weight"].shape[0]
|
||||
transformer_heads = transformer_width // 64
|
||||
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
||||
|
||||
vision_cfg = CLIPVisionCfg(
|
||||
layers=vision_layers,
|
||||
width=vision_width,
|
||||
patch_size=vision_patch_size,
|
||||
image_size=image_size,
|
||||
)
|
||||
text_cfg = CLIPTextCfg(
|
||||
context_length=context_length,
|
||||
vocab_size=vocab_size,
|
||||
width=transformer_width,
|
||||
heads=transformer_heads,
|
||||
layers=transformer_layers
|
||||
)
|
||||
model = CLIP(
|
||||
embed_dim,
|
||||
vision_cfg=vision_cfg,
|
||||
text_cfg=text_cfg,
|
||||
quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU
|
||||
cast_dtype=cast_dtype,
|
||||
)
|
||||
|
||||
for key in ["input_resolution", "context_length", "vocab_size"]:
|
||||
state_dict.pop(key, None)
|
||||
|
||||
convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16
|
||||
model.load_state_dict(state_dict)
|
||||
return model.eval()
|
||||
|
||||
|
||||
def trace_model(model, batch_size=256, device=torch.device('cpu')):
|
||||
model.eval()
|
||||
image_size = model.visual.image_size
|
||||
example_images = torch.ones((batch_size, 3, image_size, image_size), device=device)
|
||||
example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device)
|
||||
model = torch.jit.trace_module(
|
||||
model,
|
||||
inputs=dict(
|
||||
forward=(example_images, example_text),
|
||||
encode_text=(example_text,),
|
||||
encode_image=(example_images,)
|
||||
))
|
||||
model.visual.image_size = image_size
|
||||
return model
|
||||
19
consis_id/models/eva_clip/model_configs/EVA01-CLIP-B-16.json
Normal file
19
consis_id/models/eva_clip/model_configs/EVA01-CLIP-B-16.json
Normal file
@ -0,0 +1,19 @@
|
||||
{
|
||||
"embed_dim": 512,
|
||||
"vision_cfg": {
|
||||
"image_size": 224,
|
||||
"layers": 12,
|
||||
"width": 768,
|
||||
"patch_size": 16,
|
||||
"eva_model_name": "eva-clip-b-16",
|
||||
"ls_init_value": 0.1,
|
||||
"drop_path_rate": 0.0
|
||||
},
|
||||
"text_cfg": {
|
||||
"context_length": 77,
|
||||
"vocab_size": 49408,
|
||||
"width": 512,
|
||||
"heads": 8,
|
||||
"layers": 12
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,24 @@
|
||||
{
|
||||
"embed_dim": 1024,
|
||||
"vision_cfg": {
|
||||
"image_size": 224,
|
||||
"layers": 40,
|
||||
"width": 1408,
|
||||
"head_width": 88,
|
||||
"mlp_ratio": 4.3637,
|
||||
"patch_size": 14,
|
||||
"eva_model_name": "eva-clip-g-14-x",
|
||||
"drop_path_rate": 0,
|
||||
"xattn": true,
|
||||
"fusedLN": true
|
||||
},
|
||||
"text_cfg": {
|
||||
"context_length": 77,
|
||||
"vocab_size": 49408,
|
||||
"width": 1024,
|
||||
"heads": 16,
|
||||
"layers": 24,
|
||||
"xattn": false,
|
||||
"fusedLN": true
|
||||
}
|
||||
}
|
||||
24
consis_id/models/eva_clip/model_configs/EVA01-CLIP-g-14.json
Normal file
24
consis_id/models/eva_clip/model_configs/EVA01-CLIP-g-14.json
Normal file
@ -0,0 +1,24 @@
|
||||
{
|
||||
"embed_dim": 1024,
|
||||
"vision_cfg": {
|
||||
"image_size": 224,
|
||||
"layers": 40,
|
||||
"width": 1408,
|
||||
"head_width": 88,
|
||||
"mlp_ratio": 4.3637,
|
||||
"patch_size": 14,
|
||||
"eva_model_name": "eva-clip-g-14-x",
|
||||
"drop_path_rate": 0.4,
|
||||
"xattn": true,
|
||||
"fusedLN": true
|
||||
},
|
||||
"text_cfg": {
|
||||
"context_length": 77,
|
||||
"vocab_size": 49408,
|
||||
"width": 768,
|
||||
"heads": 12,
|
||||
"layers": 12,
|
||||
"xattn": false,
|
||||
"fusedLN": true
|
||||
}
|
||||
}
|
||||
29
consis_id/models/eva_clip/model_configs/EVA02-CLIP-B-16.json
Normal file
29
consis_id/models/eva_clip/model_configs/EVA02-CLIP-B-16.json
Normal file
@ -0,0 +1,29 @@
|
||||
{
|
||||
"embed_dim": 512,
|
||||
"vision_cfg": {
|
||||
"image_size": 224,
|
||||
"layers": 12,
|
||||
"width": 768,
|
||||
"head_width": 64,
|
||||
"patch_size": 16,
|
||||
"mlp_ratio": 2.6667,
|
||||
"eva_model_name": "eva-clip-b-16-X",
|
||||
"drop_path_rate": 0.0,
|
||||
"xattn": true,
|
||||
"fusedLN": true,
|
||||
"rope": true,
|
||||
"pt_hw_seq_len": 16,
|
||||
"intp_freq": true,
|
||||
"naiveswiglu": true,
|
||||
"subln": true
|
||||
},
|
||||
"text_cfg": {
|
||||
"context_length": 77,
|
||||
"vocab_size": 49408,
|
||||
"width": 512,
|
||||
"heads": 8,
|
||||
"layers": 12,
|
||||
"xattn": true,
|
||||
"fusedLN": true
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,29 @@
|
||||
{
|
||||
"embed_dim": 768,
|
||||
"vision_cfg": {
|
||||
"image_size": 336,
|
||||
"layers": 24,
|
||||
"width": 1024,
|
||||
"drop_path_rate": 0,
|
||||
"head_width": 64,
|
||||
"mlp_ratio": 2.6667,
|
||||
"patch_size": 14,
|
||||
"eva_model_name": "eva-clip-l-14-336",
|
||||
"xattn": true,
|
||||
"fusedLN": true,
|
||||
"rope": true,
|
||||
"pt_hw_seq_len": 16,
|
||||
"intp_freq": true,
|
||||
"naiveswiglu": true,
|
||||
"subln": true
|
||||
},
|
||||
"text_cfg": {
|
||||
"context_length": 77,
|
||||
"vocab_size": 49408,
|
||||
"width": 768,
|
||||
"heads": 12,
|
||||
"layers": 12,
|
||||
"xattn": false,
|
||||
"fusedLN": true
|
||||
}
|
||||
}
|
||||
29
consis_id/models/eva_clip/model_configs/EVA02-CLIP-L-14.json
Normal file
29
consis_id/models/eva_clip/model_configs/EVA02-CLIP-L-14.json
Normal file
@ -0,0 +1,29 @@
|
||||
{
|
||||
"embed_dim": 768,
|
||||
"vision_cfg": {
|
||||
"image_size": 224,
|
||||
"layers": 24,
|
||||
"width": 1024,
|
||||
"drop_path_rate": 0,
|
||||
"head_width": 64,
|
||||
"mlp_ratio": 2.6667,
|
||||
"patch_size": 14,
|
||||
"eva_model_name": "eva-clip-l-14",
|
||||
"xattn": true,
|
||||
"fusedLN": true,
|
||||
"rope": true,
|
||||
"pt_hw_seq_len": 16,
|
||||
"intp_freq": true,
|
||||
"naiveswiglu": true,
|
||||
"subln": true
|
||||
},
|
||||
"text_cfg": {
|
||||
"context_length": 77,
|
||||
"vocab_size": 49408,
|
||||
"width": 768,
|
||||
"heads": 12,
|
||||
"layers": 12,
|
||||
"xattn": false,
|
||||
"fusedLN": true
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,25 @@
|
||||
{
|
||||
"embed_dim": 1024,
|
||||
"vision_cfg": {
|
||||
"image_size": 224,
|
||||
"layers": 64,
|
||||
"width": 1792,
|
||||
"head_width": 112,
|
||||
"mlp_ratio": 8.571428571428571,
|
||||
"patch_size": 14,
|
||||
"eva_model_name": "eva-clip-4b-14-x",
|
||||
"drop_path_rate": 0,
|
||||
"xattn": true,
|
||||
"postnorm": true,
|
||||
"fusedLN": true
|
||||
},
|
||||
"text_cfg": {
|
||||
"context_length": 77,
|
||||
"vocab_size": 49408,
|
||||
"width": 1280,
|
||||
"heads": 20,
|
||||
"layers": 32,
|
||||
"xattn": false,
|
||||
"fusedLN": true
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,25 @@
|
||||
{
|
||||
"embed_dim": 1024,
|
||||
"vision_cfg": {
|
||||
"image_size": 224,
|
||||
"layers": 64,
|
||||
"width": 1792,
|
||||
"head_width": 112,
|
||||
"mlp_ratio": 8.571428571428571,
|
||||
"patch_size": 14,
|
||||
"eva_model_name": "eva-clip-4b-14-x",
|
||||
"drop_path_rate": 0,
|
||||
"xattn": true,
|
||||
"postnorm": true,
|
||||
"fusedLN": true
|
||||
},
|
||||
"text_cfg": {
|
||||
"context_length": 77,
|
||||
"vocab_size": 49408,
|
||||
"width": 1024,
|
||||
"heads": 16,
|
||||
"layers": 24,
|
||||
"xattn": false,
|
||||
"fusedLN": true
|
||||
}
|
||||
}
|
||||
188
consis_id/models/eva_clip/modified_resnet.py
Normal file
188
consis_id/models/eva_clip/modified_resnet.py
Normal file
@ -0,0 +1,188 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from collections import OrderedDict
|
||||
|
||||
current_file_path = os.path.abspath(__file__)
|
||||
project_roots = [os.path.dirname(current_file_path)]
|
||||
for project_root in project_roots:
|
||||
sys.path.insert(0, project_root) if project_root not in sys.path else None
|
||||
|
||||
from .utils import freeze_batch_norm_2d
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1):
|
||||
super().__init__()
|
||||
|
||||
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
||||
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(planes)
|
||||
self.act1 = nn.ReLU(inplace=True)
|
||||
|
||||
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(planes)
|
||||
self.act2 = nn.ReLU(inplace=True)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
||||
|
||||
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
||||
self.act3 = nn.ReLU(inplace=True)
|
||||
|
||||
self.downsample = None
|
||||
self.stride = stride
|
||||
|
||||
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
||||
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
||||
self.downsample = nn.Sequential(OrderedDict([
|
||||
("-1", nn.AvgPool2d(stride)),
|
||||
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
||||
("1", nn.BatchNorm2d(planes * self.expansion))
|
||||
]))
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
identity = x
|
||||
|
||||
out = self.act1(self.bn1(self.conv1(x)))
|
||||
out = self.act2(self.bn2(self.conv2(out)))
|
||||
out = self.avgpool(out)
|
||||
out = self.bn3(self.conv3(out))
|
||||
|
||||
if self.downsample is not None:
|
||||
identity = self.downsample(x)
|
||||
|
||||
out += identity
|
||||
out = self.act3(out)
|
||||
return out
|
||||
|
||||
|
||||
class AttentionPool2d(nn.Module):
|
||||
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
||||
super().__init__()
|
||||
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
||||
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
||||
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
||||
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
||||
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
||||
self.num_heads = num_heads
|
||||
|
||||
def forward(self, x):
|
||||
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
|
||||
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
||||
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
||||
x, _ = F.multi_head_attention_forward(
|
||||
query=x, key=x, value=x,
|
||||
embed_dim_to_check=x.shape[-1],
|
||||
num_heads=self.num_heads,
|
||||
q_proj_weight=self.q_proj.weight,
|
||||
k_proj_weight=self.k_proj.weight,
|
||||
v_proj_weight=self.v_proj.weight,
|
||||
in_proj_weight=None,
|
||||
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
||||
bias_k=None,
|
||||
bias_v=None,
|
||||
add_zero_attn=False,
|
||||
dropout_p=0.,
|
||||
out_proj_weight=self.c_proj.weight,
|
||||
out_proj_bias=self.c_proj.bias,
|
||||
use_separate_proj_weight=True,
|
||||
training=self.training,
|
||||
need_weights=False
|
||||
)
|
||||
|
||||
return x[0]
|
||||
|
||||
|
||||
class ModifiedResNet(nn.Module):
|
||||
"""
|
||||
A ResNet class that is similar to torchvision's but contains the following changes:
|
||||
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
||||
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
||||
- The final pooling layer is a QKV attention instead of an average pool
|
||||
"""
|
||||
|
||||
def __init__(self, layers, output_dim, heads, image_size=224, width=64):
|
||||
super().__init__()
|
||||
self.output_dim = output_dim
|
||||
self.image_size = image_size
|
||||
|
||||
# the 3-layer stem
|
||||
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(width // 2)
|
||||
self.act1 = nn.ReLU(inplace=True)
|
||||
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(width // 2)
|
||||
self.act2 = nn.ReLU(inplace=True)
|
||||
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(width)
|
||||
self.act3 = nn.ReLU(inplace=True)
|
||||
self.avgpool = nn.AvgPool2d(2)
|
||||
|
||||
# residual layers
|
||||
self._inplanes = width # this is a *mutable* variable used during construction
|
||||
self.layer1 = self._make_layer(width, layers[0])
|
||||
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
||||
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
||||
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
||||
|
||||
embed_dim = width * 32 # the ResNet feature dimension
|
||||
self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim)
|
||||
|
||||
self.init_parameters()
|
||||
|
||||
def _make_layer(self, planes, blocks, stride=1):
|
||||
layers = [Bottleneck(self._inplanes, planes, stride)]
|
||||
|
||||
self._inplanes = planes * Bottleneck.expansion
|
||||
for _ in range(1, blocks):
|
||||
layers.append(Bottleneck(self._inplanes, planes))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def init_parameters(self):
|
||||
if self.attnpool is not None:
|
||||
std = self.attnpool.c_proj.in_features ** -0.5
|
||||
nn.init.normal_(self.attnpool.q_proj.weight, std=std)
|
||||
nn.init.normal_(self.attnpool.k_proj.weight, std=std)
|
||||
nn.init.normal_(self.attnpool.v_proj.weight, std=std)
|
||||
nn.init.normal_(self.attnpool.c_proj.weight, std=std)
|
||||
|
||||
for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]:
|
||||
for name, param in resnet_block.named_parameters():
|
||||
if name.endswith("bn3.weight"):
|
||||
nn.init.zeros_(param)
|
||||
|
||||
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
||||
assert unlocked_groups == 0, 'partial locking not currently supported for this model'
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
if freeze_bn_stats:
|
||||
freeze_batch_norm_2d(self)
|
||||
|
||||
@torch.jit.ignore
|
||||
def set_grad_checkpointing(self, enable=True):
|
||||
# FIXME support for non-transformer
|
||||
pass
|
||||
|
||||
def stem(self, x):
|
||||
x = self.act1(self.bn1(self.conv1(x)))
|
||||
x = self.act2(self.bn2(self.conv2(x)))
|
||||
x = self.act3(self.bn3(self.conv3(x)))
|
||||
x = self.avgpool(x)
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
x = self.stem(x)
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
x = self.layer4(x)
|
||||
x = self.attnpool(x)
|
||||
|
||||
return x
|
||||
144
consis_id/models/eva_clip/openai.py
Normal file
144
consis_id/models/eva_clip/openai.py
Normal file
@ -0,0 +1,144 @@
|
||||
""" OpenAI pretrained model functions
|
||||
|
||||
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
||||
"""
|
||||
|
||||
import os
|
||||
import warnings
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import torch
|
||||
|
||||
from .model import build_model_from_openai_state_dict, convert_weights_to_lp, get_cast_dtype
|
||||
from .pretrained import get_pretrained_url, list_pretrained_models_by_tag, download_pretrained_from_url
|
||||
|
||||
__all__ = ["list_openai_models", "load_openai_model"]
|
||||
|
||||
|
||||
def list_openai_models() -> List[str]:
|
||||
"""Returns the names of available CLIP models"""
|
||||
return list_pretrained_models_by_tag('openai')
|
||||
|
||||
|
||||
def load_openai_model(
|
||||
name: str,
|
||||
precision: Optional[str] = None,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
jit: bool = True,
|
||||
cache_dir: Optional[str] = None,
|
||||
):
|
||||
"""Load a CLIP model
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name : str
|
||||
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
||||
precision: str
|
||||
Model precision, if None defaults to 'fp32' if device == 'cpu' else 'fp16'.
|
||||
device : Union[str, torch.device]
|
||||
The device to put the loaded model
|
||||
jit : bool
|
||||
Whether to load the optimized JIT model (default) or more hackable non-JIT model.
|
||||
cache_dir : Optional[str]
|
||||
The directory to cache the downloaded model weights
|
||||
|
||||
Returns
|
||||
-------
|
||||
model : torch.nn.Module
|
||||
The CLIP model
|
||||
preprocess : Callable[[PIL.Image], torch.Tensor]
|
||||
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
||||
"""
|
||||
if device is None:
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
if precision is None:
|
||||
precision = 'fp32' if device == 'cpu' else 'fp16'
|
||||
|
||||
if get_pretrained_url(name, 'openai'):
|
||||
model_path = download_pretrained_from_url(get_pretrained_url(name, 'openai'), cache_dir=cache_dir)
|
||||
elif os.path.isfile(name):
|
||||
model_path = name
|
||||
else:
|
||||
raise RuntimeError(f"Model {name} not found; available models = {list_openai_models()}")
|
||||
|
||||
try:
|
||||
# loading JIT archive
|
||||
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
|
||||
state_dict = None
|
||||
except RuntimeError:
|
||||
# loading saved state dict
|
||||
if jit:
|
||||
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
||||
jit = False
|
||||
state_dict = torch.load(model_path, map_location="cpu")
|
||||
|
||||
if not jit:
|
||||
# Build a non-jit model from the OpenAI jitted model state dict
|
||||
cast_dtype = get_cast_dtype(precision)
|
||||
try:
|
||||
model = build_model_from_openai_state_dict(state_dict or model.state_dict(), cast_dtype=cast_dtype)
|
||||
except KeyError:
|
||||
sd = {k[7:]: v for k, v in state_dict["state_dict"].items()}
|
||||
model = build_model_from_openai_state_dict(sd, cast_dtype=cast_dtype)
|
||||
|
||||
# model from OpenAI state dict is in manually cast fp16 mode, must be converted for AMP/fp32/bf16 use
|
||||
model = model.to(device)
|
||||
if precision.startswith('amp') or precision == 'fp32':
|
||||
model.float()
|
||||
elif precision == 'bf16':
|
||||
convert_weights_to_lp(model, dtype=torch.bfloat16)
|
||||
|
||||
return model
|
||||
|
||||
# patch the device names
|
||||
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
||||
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
||||
|
||||
def patch_device(module):
|
||||
try:
|
||||
graphs = [module.graph] if hasattr(module, "graph") else []
|
||||
except RuntimeError:
|
||||
graphs = []
|
||||
|
||||
if hasattr(module, "forward1"):
|
||||
graphs.append(module.forward1.graph)
|
||||
|
||||
for graph in graphs:
|
||||
for node in graph.findAllNodes("prim::Constant"):
|
||||
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
|
||||
node.copyAttributes(device_node)
|
||||
|
||||
model.apply(patch_device)
|
||||
patch_device(model.encode_image)
|
||||
patch_device(model.encode_text)
|
||||
|
||||
# patch dtype to float32 (typically for CPU)
|
||||
if precision == 'fp32':
|
||||
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
||||
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
||||
float_node = float_input.node()
|
||||
|
||||
def patch_float(module):
|
||||
try:
|
||||
graphs = [module.graph] if hasattr(module, "graph") else []
|
||||
except RuntimeError:
|
||||
graphs = []
|
||||
|
||||
if hasattr(module, "forward1"):
|
||||
graphs.append(module.forward1.graph)
|
||||
|
||||
for graph in graphs:
|
||||
for node in graph.findAllNodes("aten::to"):
|
||||
inputs = list(node.inputs())
|
||||
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
||||
if inputs[i].node()["value"] == 5:
|
||||
inputs[i].node().copyAttributes(float_node)
|
||||
|
||||
model.apply(patch_float)
|
||||
patch_float(model.encode_image)
|
||||
patch_float(model.encode_text)
|
||||
model.float()
|
||||
|
||||
# ensure image_size attr available at consistent location for both jit and non-jit
|
||||
model.visual.image_size = model.input_resolution.item()
|
||||
return model
|
||||
332
consis_id/models/eva_clip/pretrained.py
Normal file
332
consis_id/models/eva_clip/pretrained.py
Normal file
@ -0,0 +1,332 @@
|
||||
import hashlib
|
||||
import os
|
||||
import urllib
|
||||
import warnings
|
||||
from functools import partial
|
||||
from typing import Dict, Union
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
try:
|
||||
from huggingface_hub import hf_hub_download
|
||||
_has_hf_hub = True
|
||||
except ImportError:
|
||||
hf_hub_download = None
|
||||
_has_hf_hub = False
|
||||
|
||||
|
||||
def _pcfg(url='', hf_hub='', filename='', mean=None, std=None):
|
||||
return dict(
|
||||
url=url,
|
||||
hf_hub=hf_hub,
|
||||
mean=mean,
|
||||
std=std,
|
||||
)
|
||||
|
||||
_VITB32 = dict(
|
||||
openai=_pcfg(
|
||||
"https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
|
||||
laion400m_e31=_pcfg(
|
||||
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
|
||||
laion400m_e32=_pcfg(
|
||||
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
|
||||
laion2b_e16=_pcfg(
|
||||
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-laion2b_e16-af8dbd0c.pth"),
|
||||
laion2b_s34b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-laion2B-s34B-b79K/')
|
||||
)
|
||||
|
||||
_VITB32_quickgelu = dict(
|
||||
openai=_pcfg(
|
||||
"https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
|
||||
laion400m_e31=_pcfg(
|
||||
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
|
||||
laion400m_e32=_pcfg(
|
||||
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
|
||||
)
|
||||
|
||||
_VITB16 = dict(
|
||||
openai=_pcfg(
|
||||
"https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt"),
|
||||
laion400m_e31=_pcfg(
|
||||
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e31-00efa78f.pt"),
|
||||
laion400m_e32=_pcfg(
|
||||
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e32-55e67d44.pt"),
|
||||
laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-laion2B-s34B-b88K/'),
|
||||
)
|
||||
|
||||
_EVAB16 = dict(
|
||||
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'),
|
||||
eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'),
|
||||
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'),
|
||||
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'),
|
||||
)
|
||||
|
||||
_VITB16_PLUS_240 = dict(
|
||||
laion400m_e31=_pcfg(
|
||||
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e31-8fb26589.pt"),
|
||||
laion400m_e32=_pcfg(
|
||||
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"),
|
||||
)
|
||||
|
||||
_VITL14 = dict(
|
||||
openai=_pcfg(
|
||||
"https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt"),
|
||||
laion400m_e31=_pcfg(
|
||||
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e31-69988bb6.pt"),
|
||||
laion400m_e32=_pcfg(
|
||||
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e32-3d133497.pt"),
|
||||
laion2b_s32b_b82k=_pcfg(
|
||||
hf_hub='laion/CLIP-ViT-L-14-laion2B-s32B-b82K/',
|
||||
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
||||
)
|
||||
|
||||
_EVAL14 = dict(
|
||||
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'),
|
||||
eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'),
|
||||
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'),
|
||||
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'),
|
||||
)
|
||||
|
||||
_VITL14_336 = dict(
|
||||
openai=_pcfg(
|
||||
"https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt"),
|
||||
)
|
||||
|
||||
_EVAL14_336 = dict(
|
||||
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'),
|
||||
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'),
|
||||
eva_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'),
|
||||
eva02_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'),
|
||||
)
|
||||
|
||||
_VITH14 = dict(
|
||||
laion2b_s32b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-H-14-laion2B-s32B-b79K/'),
|
||||
)
|
||||
|
||||
_VITg14 = dict(
|
||||
laion2b_s12b_b42k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s12B-b42K/'),
|
||||
laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s34B-b88K/'),
|
||||
)
|
||||
|
||||
_EVAg14 = dict(
|
||||
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'),
|
||||
eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'),
|
||||
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'),
|
||||
eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'),
|
||||
)
|
||||
|
||||
_EVAg14_PLUS = dict(
|
||||
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'),
|
||||
eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'),
|
||||
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'),
|
||||
eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'),
|
||||
)
|
||||
|
||||
_VITbigG14 = dict(
|
||||
laion2b_s39b_b160k=_pcfg(hf_hub='laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/'),
|
||||
)
|
||||
|
||||
_EVAbigE14 = dict(
|
||||
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
|
||||
eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
|
||||
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'),
|
||||
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'),
|
||||
)
|
||||
|
||||
_EVAbigE14_PLUS = dict(
|
||||
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
|
||||
eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
|
||||
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'),
|
||||
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'),
|
||||
)
|
||||
|
||||
|
||||
_PRETRAINED = {
|
||||
# "ViT-B-32": _VITB32,
|
||||
"OpenaiCLIP-B-32": _VITB32,
|
||||
"OpenCLIP-B-32": _VITB32,
|
||||
|
||||
# "ViT-B-32-quickgelu": _VITB32_quickgelu,
|
||||
"OpenaiCLIP-B-32-quickgelu": _VITB32_quickgelu,
|
||||
"OpenCLIP-B-32-quickgelu": _VITB32_quickgelu,
|
||||
|
||||
# "ViT-B-16": _VITB16,
|
||||
"OpenaiCLIP-B-16": _VITB16,
|
||||
"OpenCLIP-B-16": _VITB16,
|
||||
|
||||
"EVA02-B-16": _EVAB16,
|
||||
"EVA02-CLIP-B-16": _EVAB16,
|
||||
|
||||
# "ViT-B-16-plus-240": _VITB16_PLUS_240,
|
||||
"OpenCLIP-B-16-plus-240": _VITB16_PLUS_240,
|
||||
|
||||
# "ViT-L-14": _VITL14,
|
||||
"OpenaiCLIP-L-14": _VITL14,
|
||||
"OpenCLIP-L-14": _VITL14,
|
||||
|
||||
"EVA02-L-14": _EVAL14,
|
||||
"EVA02-CLIP-L-14": _EVAL14,
|
||||
|
||||
# "ViT-L-14-336": _VITL14_336,
|
||||
"OpenaiCLIP-L-14-336": _VITL14_336,
|
||||
|
||||
"EVA02-CLIP-L-14-336": _EVAL14_336,
|
||||
|
||||
# "ViT-H-14": _VITH14,
|
||||
# "ViT-g-14": _VITg14,
|
||||
"OpenCLIP-H-14": _VITH14,
|
||||
"OpenCLIP-g-14": _VITg14,
|
||||
|
||||
"EVA01-CLIP-g-14": _EVAg14,
|
||||
"EVA01-CLIP-g-14-plus": _EVAg14_PLUS,
|
||||
|
||||
# "ViT-bigG-14": _VITbigG14,
|
||||
"OpenCLIP-bigG-14": _VITbigG14,
|
||||
|
||||
"EVA02-CLIP-bigE-14": _EVAbigE14,
|
||||
"EVA02-CLIP-bigE-14-plus": _EVAbigE14_PLUS,
|
||||
}
|
||||
|
||||
|
||||
def _clean_tag(tag: str):
|
||||
# normalize pretrained tags
|
||||
return tag.lower().replace('-', '_')
|
||||
|
||||
|
||||
def list_pretrained(as_str: bool = False):
|
||||
""" returns list of pretrained models
|
||||
Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True
|
||||
"""
|
||||
return [':'.join([k, t]) if as_str else (k, t) for k in _PRETRAINED.keys() for t in _PRETRAINED[k].keys()]
|
||||
|
||||
|
||||
def list_pretrained_models_by_tag(tag: str):
|
||||
""" return all models having the specified pretrain tag """
|
||||
models = []
|
||||
tag = _clean_tag(tag)
|
||||
for k in _PRETRAINED.keys():
|
||||
if tag in _PRETRAINED[k]:
|
||||
models.append(k)
|
||||
return models
|
||||
|
||||
|
||||
def list_pretrained_tags_by_model(model: str):
|
||||
""" return all pretrain tags for the specified model architecture """
|
||||
tags = []
|
||||
if model in _PRETRAINED:
|
||||
tags.extend(_PRETRAINED[model].keys())
|
||||
return tags
|
||||
|
||||
|
||||
def is_pretrained_cfg(model: str, tag: str):
|
||||
if model not in _PRETRAINED:
|
||||
return False
|
||||
return _clean_tag(tag) in _PRETRAINED[model]
|
||||
|
||||
|
||||
def get_pretrained_cfg(model: str, tag: str):
|
||||
if model not in _PRETRAINED:
|
||||
return {}
|
||||
model_pretrained = _PRETRAINED[model]
|
||||
return model_pretrained.get(_clean_tag(tag), {})
|
||||
|
||||
|
||||
def get_pretrained_url(model: str, tag: str):
|
||||
cfg = get_pretrained_cfg(model, _clean_tag(tag))
|
||||
return cfg.get('url', '')
|
||||
|
||||
|
||||
def download_pretrained_from_url(
|
||||
url: str,
|
||||
cache_dir: Union[str, None] = None,
|
||||
):
|
||||
if not cache_dir:
|
||||
cache_dir = os.path.expanduser("~/.cache/clip")
|
||||
os.makedirs(cache_dir, exist_ok=True)
|
||||
filename = os.path.basename(url)
|
||||
|
||||
if 'openaipublic' in url:
|
||||
expected_sha256 = url.split("/")[-2]
|
||||
elif 'mlfoundations' in url:
|
||||
expected_sha256 = os.path.splitext(filename)[0].split("-")[-1]
|
||||
else:
|
||||
expected_sha256 = ''
|
||||
|
||||
download_target = os.path.join(cache_dir, filename)
|
||||
|
||||
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
||||
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
||||
|
||||
if os.path.isfile(download_target):
|
||||
if expected_sha256:
|
||||
if hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
|
||||
return download_target
|
||||
else:
|
||||
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
||||
else:
|
||||
return download_target
|
||||
|
||||
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
||||
with tqdm(total=int(source.headers.get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop:
|
||||
while True:
|
||||
buffer = source.read(8192)
|
||||
if not buffer:
|
||||
break
|
||||
|
||||
output.write(buffer)
|
||||
loop.update(len(buffer))
|
||||
|
||||
if expected_sha256 and not hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
|
||||
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
|
||||
|
||||
return download_target
|
||||
|
||||
|
||||
def has_hf_hub(necessary=False):
|
||||
if not _has_hf_hub and necessary:
|
||||
# if no HF Hub module installed, and it is necessary to continue, raise error
|
||||
raise RuntimeError(
|
||||
'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.')
|
||||
return _has_hf_hub
|
||||
|
||||
|
||||
def download_pretrained_from_hf(
|
||||
model_id: str,
|
||||
filename: str = 'open_clip_pytorch_model.bin',
|
||||
revision=None,
|
||||
cache_dir: Union[str, None] = None,
|
||||
):
|
||||
has_hf_hub(True)
|
||||
cached_file = hf_hub_download(model_id, filename, revision=revision, cache_dir=cache_dir)
|
||||
return cached_file
|
||||
|
||||
|
||||
def download_pretrained(
|
||||
cfg: Dict,
|
||||
force_hf_hub: bool = False,
|
||||
cache_dir: Union[str, None] = None,
|
||||
):
|
||||
target = ''
|
||||
if not cfg:
|
||||
return target
|
||||
|
||||
download_url = cfg.get('url', '')
|
||||
download_hf_hub = cfg.get('hf_hub', '')
|
||||
if download_hf_hub and force_hf_hub:
|
||||
# use HF hub even if url exists
|
||||
download_url = ''
|
||||
|
||||
if download_url:
|
||||
target = download_pretrained_from_url(download_url, cache_dir=cache_dir)
|
||||
elif download_hf_hub:
|
||||
has_hf_hub(True)
|
||||
# we assume the hf_hub entries in pretrained config combine model_id + filename in
|
||||
# 'org/model_name/filename.pt' form. To specify just the model id w/o filename and
|
||||
# use 'open_clip_pytorch_model.bin' default, there must be a trailing slash 'org/model_name/'.
|
||||
model_id, filename = os.path.split(download_hf_hub)
|
||||
if filename:
|
||||
target = download_pretrained_from_hf(model_id, filename=filename, cache_dir=cache_dir)
|
||||
else:
|
||||
target = download_pretrained_from_hf(model_id, cache_dir=cache_dir)
|
||||
|
||||
return target
|
||||
137
consis_id/models/eva_clip/rope.py
Normal file
137
consis_id/models/eva_clip/rope.py
Normal file
@ -0,0 +1,137 @@
|
||||
from math import pi
|
||||
import torch
|
||||
from torch import nn
|
||||
from einops import rearrange, repeat
|
||||
import logging
|
||||
|
||||
def broadcat(tensors, dim = -1):
|
||||
num_tensors = len(tensors)
|
||||
shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
|
||||
assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions'
|
||||
shape_len = list(shape_lens)[0]
|
||||
dim = (dim + shape_len) if dim < 0 else dim
|
||||
dims = list(zip(*map(lambda t: list(t.shape), tensors)))
|
||||
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
|
||||
assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation'
|
||||
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
|
||||
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
|
||||
expanded_dims.insert(dim, (dim, dims[dim]))
|
||||
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
|
||||
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
|
||||
return torch.cat(tensors, dim = dim)
|
||||
|
||||
def rotate_half(x):
|
||||
x = rearrange(x, '... (d r) -> ... d r', r = 2)
|
||||
x1, x2 = x.unbind(dim = -1)
|
||||
x = torch.stack((-x2, x1), dim = -1)
|
||||
return rearrange(x, '... d r -> ... (d r)')
|
||||
|
||||
|
||||
class VisionRotaryEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
pt_seq_len,
|
||||
ft_seq_len=None,
|
||||
custom_freqs = None,
|
||||
freqs_for = 'lang',
|
||||
theta = 10000,
|
||||
max_freq = 10,
|
||||
num_freqs = 1,
|
||||
):
|
||||
super().__init__()
|
||||
if custom_freqs:
|
||||
freqs = custom_freqs
|
||||
elif freqs_for == 'lang':
|
||||
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
|
||||
elif freqs_for == 'pixel':
|
||||
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
|
||||
elif freqs_for == 'constant':
|
||||
freqs = torch.ones(num_freqs).float()
|
||||
else:
|
||||
raise ValueError(f'unknown modality {freqs_for}')
|
||||
|
||||
if ft_seq_len is None: ft_seq_len = pt_seq_len
|
||||
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
|
||||
|
||||
freqs_h = torch.einsum('..., f -> ... f', t, freqs)
|
||||
freqs_h = repeat(freqs_h, '... n -> ... (n r)', r = 2)
|
||||
|
||||
freqs_w = torch.einsum('..., f -> ... f', t, freqs)
|
||||
freqs_w = repeat(freqs_w, '... n -> ... (n r)', r = 2)
|
||||
|
||||
freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim = -1)
|
||||
|
||||
self.register_buffer("freqs_cos", freqs.cos())
|
||||
self.register_buffer("freqs_sin", freqs.sin())
|
||||
|
||||
logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
|
||||
|
||||
def forward(self, t, start_index = 0):
|
||||
rot_dim = self.freqs_cos.shape[-1]
|
||||
end_index = start_index + rot_dim
|
||||
assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}'
|
||||
t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:]
|
||||
t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin)
|
||||
|
||||
return torch.cat((t_left, t, t_right), dim = -1)
|
||||
|
||||
class VisionRotaryEmbeddingFast(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
pt_seq_len,
|
||||
ft_seq_len=None,
|
||||
custom_freqs = None,
|
||||
freqs_for = 'lang',
|
||||
theta = 10000,
|
||||
max_freq = 10,
|
||||
num_freqs = 1,
|
||||
patch_dropout = 0.
|
||||
):
|
||||
super().__init__()
|
||||
if custom_freqs:
|
||||
freqs = custom_freqs
|
||||
elif freqs_for == 'lang':
|
||||
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
|
||||
elif freqs_for == 'pixel':
|
||||
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
|
||||
elif freqs_for == 'constant':
|
||||
freqs = torch.ones(num_freqs).float()
|
||||
else:
|
||||
raise ValueError(f'unknown modality {freqs_for}')
|
||||
|
||||
if ft_seq_len is None: ft_seq_len = pt_seq_len
|
||||
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
|
||||
|
||||
freqs = torch.einsum('..., f -> ... f', t, freqs)
|
||||
freqs = repeat(freqs, '... n -> ... (n r)', r = 2)
|
||||
freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim = -1)
|
||||
|
||||
freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
|
||||
freqs_sin = freqs.sin().view(-1, freqs.shape[-1])
|
||||
|
||||
self.patch_dropout = patch_dropout
|
||||
|
||||
self.register_buffer("freqs_cos", freqs_cos)
|
||||
self.register_buffer("freqs_sin", freqs_sin)
|
||||
|
||||
logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
|
||||
|
||||
def forward(self, t, patch_indices_keep=None):
|
||||
if patch_indices_keep is not None:
|
||||
batch = t.size()[0]
|
||||
batch_indices = torch.arange(batch)
|
||||
batch_indices = batch_indices[..., None]
|
||||
|
||||
freqs_cos = repeat(self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
|
||||
freqs_sin = repeat(self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
|
||||
|
||||
freqs_cos = freqs_cos[batch_indices, patch_indices_keep]
|
||||
freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j')
|
||||
freqs_sin = freqs_sin[batch_indices, patch_indices_keep]
|
||||
freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j')
|
||||
|
||||
return t * freqs_cos + rotate_half(t) * freqs_sin
|
||||
|
||||
return t * self.freqs_cos + rotate_half(t) * self.freqs_sin
|
||||
122
consis_id/models/eva_clip/timm_model.py
Normal file
122
consis_id/models/eva_clip/timm_model.py
Normal file
@ -0,0 +1,122 @@
|
||||
""" timm model adapter
|
||||
|
||||
Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model.
|
||||
"""
|
||||
import logging
|
||||
from collections import OrderedDict
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
try:
|
||||
import timm
|
||||
from timm.models.layers import Mlp, to_2tuple
|
||||
try:
|
||||
# old timm imports < 0.8.1
|
||||
from timm.models.layers.attention_pool2d import RotAttentionPool2d
|
||||
from timm.models.layers.attention_pool2d import AttentionPool2d as AbsAttentionPool2d
|
||||
except ImportError:
|
||||
# new timm imports >= 0.8.1
|
||||
from timm.layers import RotAttentionPool2d
|
||||
from timm.layers import AttentionPool2d as AbsAttentionPool2d
|
||||
except ImportError:
|
||||
timm = None
|
||||
|
||||
from .utils import freeze_batch_norm_2d
|
||||
|
||||
|
||||
class TimmModel(nn.Module):
|
||||
""" timm model adapter
|
||||
# FIXME this adapter is a work in progress, may change in ways that break weight compat
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name,
|
||||
embed_dim,
|
||||
image_size=224,
|
||||
pool='avg',
|
||||
proj='linear',
|
||||
proj_bias=False,
|
||||
drop=0.,
|
||||
pretrained=False):
|
||||
super().__init__()
|
||||
if timm is None:
|
||||
raise RuntimeError("Please `pip install timm` to use timm models.")
|
||||
|
||||
self.image_size = to_2tuple(image_size)
|
||||
self.trunk = timm.create_model(model_name, pretrained=pretrained)
|
||||
feat_size = self.trunk.default_cfg.get('pool_size', None)
|
||||
feature_ndim = 1 if not feat_size else 2
|
||||
if pool in ('abs_attn', 'rot_attn'):
|
||||
assert feature_ndim == 2
|
||||
# if attn pooling used, remove both classifier and default pool
|
||||
self.trunk.reset_classifier(0, global_pool='')
|
||||
else:
|
||||
# reset global pool if pool config set, otherwise leave as network default
|
||||
reset_kwargs = dict(global_pool=pool) if pool else {}
|
||||
self.trunk.reset_classifier(0, **reset_kwargs)
|
||||
prev_chs = self.trunk.num_features
|
||||
|
||||
head_layers = OrderedDict()
|
||||
if pool == 'abs_attn':
|
||||
head_layers['pool'] = AbsAttentionPool2d(prev_chs, feat_size=feat_size, out_features=embed_dim)
|
||||
prev_chs = embed_dim
|
||||
elif pool == 'rot_attn':
|
||||
head_layers['pool'] = RotAttentionPool2d(prev_chs, out_features=embed_dim)
|
||||
prev_chs = embed_dim
|
||||
else:
|
||||
assert proj, 'projection layer needed if non-attention pooling is used.'
|
||||
|
||||
# NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used
|
||||
if proj == 'linear':
|
||||
head_layers['drop'] = nn.Dropout(drop)
|
||||
head_layers['proj'] = nn.Linear(prev_chs, embed_dim, bias=proj_bias)
|
||||
elif proj == 'mlp':
|
||||
head_layers['mlp'] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=drop, bias=(True, proj_bias))
|
||||
|
||||
self.head = nn.Sequential(head_layers)
|
||||
|
||||
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
||||
""" lock modules
|
||||
Args:
|
||||
unlocked_groups (int): leave last n layer groups unlocked (default: 0)
|
||||
"""
|
||||
if not unlocked_groups:
|
||||
# lock full model
|
||||
for param in self.trunk.parameters():
|
||||
param.requires_grad = False
|
||||
if freeze_bn_stats:
|
||||
freeze_batch_norm_2d(self.trunk)
|
||||
else:
|
||||
# NOTE: partial freeze requires latest timm (master) branch and is subject to change
|
||||
try:
|
||||
# FIXME import here until API stable and in an official release
|
||||
from timm.models.helpers import group_parameters, group_modules
|
||||
except ImportError:
|
||||
raise RuntimeError(
|
||||
'Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`')
|
||||
matcher = self.trunk.group_matcher()
|
||||
gparams = group_parameters(self.trunk, matcher)
|
||||
max_layer_id = max(gparams.keys())
|
||||
max_layer_id = max_layer_id - unlocked_groups
|
||||
for group_idx in range(max_layer_id + 1):
|
||||
group = gparams[group_idx]
|
||||
for param in group:
|
||||
self.trunk.get_parameter(param).requires_grad = False
|
||||
if freeze_bn_stats:
|
||||
gmodules = group_modules(self.trunk, matcher, reverse=True)
|
||||
gmodules = {k for k, v in gmodules.items() if v <= max_layer_id}
|
||||
freeze_batch_norm_2d(self.trunk, gmodules)
|
||||
|
||||
@torch.jit.ignore
|
||||
def set_grad_checkpointing(self, enable=True):
|
||||
try:
|
||||
self.trunk.set_grad_checkpointing(enable)
|
||||
except Exception as e:
|
||||
logging.warning('grad checkpointing not supported for this timm image tower, continuing without...')
|
||||
|
||||
def forward(self, x):
|
||||
x = self.trunk(x)
|
||||
x = self.head(x)
|
||||
return x
|
||||
201
consis_id/models/eva_clip/tokenizer.py
Normal file
201
consis_id/models/eva_clip/tokenizer.py
Normal file
@ -0,0 +1,201 @@
|
||||
""" CLIP tokenizer
|
||||
|
||||
Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
||||
"""
|
||||
import gzip
|
||||
import html
|
||||
import os
|
||||
from functools import lru_cache
|
||||
from typing import Union, List
|
||||
|
||||
import ftfy
|
||||
import regex as re
|
||||
import torch
|
||||
|
||||
# https://stackoverflow.com/q/62691279
|
||||
import os
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
|
||||
|
||||
@lru_cache()
|
||||
def default_bpe():
|
||||
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
||||
|
||||
|
||||
@lru_cache()
|
||||
def bytes_to_unicode():
|
||||
"""
|
||||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||
The reversible bpe codes work on unicode strings.
|
||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
||||
cs = bs[:]
|
||||
n = 0
|
||||
for b in range(2**8):
|
||||
if b not in bs:
|
||||
bs.append(b)
|
||||
cs.append(2**8+n)
|
||||
n += 1
|
||||
cs = [chr(n) for n in cs]
|
||||
return dict(zip(bs, cs))
|
||||
|
||||
|
||||
def get_pairs(word):
|
||||
"""Return set of symbol pairs in a word.
|
||||
Word is represented as tuple of symbols (symbols being variable-length strings).
|
||||
"""
|
||||
pairs = set()
|
||||
prev_char = word[0]
|
||||
for char in word[1:]:
|
||||
pairs.add((prev_char, char))
|
||||
prev_char = char
|
||||
return pairs
|
||||
|
||||
|
||||
def basic_clean(text):
|
||||
text = ftfy.fix_text(text)
|
||||
text = html.unescape(html.unescape(text))
|
||||
return text.strip()
|
||||
|
||||
|
||||
def whitespace_clean(text):
|
||||
text = re.sub(r'\s+', ' ', text)
|
||||
text = text.strip()
|
||||
return text
|
||||
|
||||
|
||||
class SimpleTokenizer(object):
|
||||
def __init__(self, bpe_path: str = default_bpe(), special_tokens=None):
|
||||
self.byte_encoder = bytes_to_unicode()
|
||||
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
||||
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
||||
merges = merges[1:49152-256-2+1]
|
||||
merges = [tuple(merge.split()) for merge in merges]
|
||||
vocab = list(bytes_to_unicode().values())
|
||||
vocab = vocab + [v+'</w>' for v in vocab]
|
||||
for merge in merges:
|
||||
vocab.append(''.join(merge))
|
||||
if not special_tokens:
|
||||
special_tokens = ['<start_of_text>', '<end_of_text>']
|
||||
else:
|
||||
special_tokens = ['<start_of_text>', '<end_of_text>'] + special_tokens
|
||||
vocab.extend(special_tokens)
|
||||
self.encoder = dict(zip(vocab, range(len(vocab))))
|
||||
self.decoder = {v: k for k, v in self.encoder.items()}
|
||||
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
||||
self.cache = {t:t for t in special_tokens}
|
||||
special = "|".join(special_tokens)
|
||||
self.pat = re.compile(special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
||||
|
||||
self.vocab_size = len(self.encoder)
|
||||
self.all_special_ids = [self.encoder[t] for t in special_tokens]
|
||||
|
||||
def bpe(self, token):
|
||||
if token in self.cache:
|
||||
return self.cache[token]
|
||||
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
||||
pairs = get_pairs(word)
|
||||
|
||||
if not pairs:
|
||||
return token+'</w>'
|
||||
|
||||
while True:
|
||||
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
||||
if bigram not in self.bpe_ranks:
|
||||
break
|
||||
first, second = bigram
|
||||
new_word = []
|
||||
i = 0
|
||||
while i < len(word):
|
||||
try:
|
||||
j = word.index(first, i)
|
||||
new_word.extend(word[i:j])
|
||||
i = j
|
||||
except:
|
||||
new_word.extend(word[i:])
|
||||
break
|
||||
|
||||
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
||||
new_word.append(first+second)
|
||||
i += 2
|
||||
else:
|
||||
new_word.append(word[i])
|
||||
i += 1
|
||||
new_word = tuple(new_word)
|
||||
word = new_word
|
||||
if len(word) == 1:
|
||||
break
|
||||
else:
|
||||
pairs = get_pairs(word)
|
||||
word = ' '.join(word)
|
||||
self.cache[token] = word
|
||||
return word
|
||||
|
||||
def encode(self, text):
|
||||
bpe_tokens = []
|
||||
text = whitespace_clean(basic_clean(text)).lower()
|
||||
for token in re.findall(self.pat, text):
|
||||
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
||||
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
||||
return bpe_tokens
|
||||
|
||||
def decode(self, tokens):
|
||||
text = ''.join([self.decoder[token] for token in tokens])
|
||||
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
||||
return text
|
||||
|
||||
|
||||
_tokenizer = SimpleTokenizer()
|
||||
|
||||
|
||||
def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor:
|
||||
"""
|
||||
Returns the tokenized representation of given input string(s)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
texts : Union[str, List[str]]
|
||||
An input string or a list of input strings to tokenize
|
||||
context_length : int
|
||||
The context length to use; all CLIP models use 77 as the context length
|
||||
|
||||
Returns
|
||||
-------
|
||||
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
|
||||
"""
|
||||
if isinstance(texts, str):
|
||||
texts = [texts]
|
||||
|
||||
sot_token = _tokenizer.encoder["<start_of_text>"]
|
||||
eot_token = _tokenizer.encoder["<end_of_text>"]
|
||||
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
||||
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
||||
|
||||
for i, tokens in enumerate(all_tokens):
|
||||
if len(tokens) > context_length:
|
||||
tokens = tokens[:context_length] # Truncate
|
||||
tokens[-1] = eot_token
|
||||
result[i, :len(tokens)] = torch.tensor(tokens)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
class HFTokenizer:
|
||||
"HuggingFace tokenizer wrapper"
|
||||
def __init__(self, tokenizer_name:str):
|
||||
from transformers import AutoTokenizer
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
||||
|
||||
def __call__(self, texts:Union[str, List[str]], context_length:int=77) -> torch.Tensor:
|
||||
# same cleaning as for default tokenizer, except lowercasing
|
||||
# adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance
|
||||
if isinstance(texts, str):
|
||||
texts = [texts]
|
||||
texts = [whitespace_clean(basic_clean(text)) for text in texts]
|
||||
input_ids = self.tokenizer(texts, return_tensors='pt', max_length=context_length, padding='max_length', truncation=True).input_ids
|
||||
return input_ids
|
||||
103
consis_id/models/eva_clip/transform.py
Normal file
103
consis_id/models/eva_clip/transform.py
Normal file
@ -0,0 +1,103 @@
|
||||
from typing import Optional, Sequence, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torchvision.transforms.functional as F
|
||||
|
||||
from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \
|
||||
CenterCrop
|
||||
|
||||
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
||||
|
||||
|
||||
class ResizeMaxSize(nn.Module):
|
||||
|
||||
def __init__(self, max_size, interpolation=InterpolationMode.BICUBIC, fn='max', fill=0):
|
||||
super().__init__()
|
||||
if not isinstance(max_size, int):
|
||||
raise TypeError(f"Size should be int. Got {type(max_size)}")
|
||||
self.max_size = max_size
|
||||
self.interpolation = interpolation
|
||||
self.fn = min if fn == 'min' else min
|
||||
self.fill = fill
|
||||
|
||||
def forward(self, img):
|
||||
if isinstance(img, torch.Tensor):
|
||||
height, width = img.shape[:2]
|
||||
else:
|
||||
width, height = img.size
|
||||
scale = self.max_size / float(max(height, width))
|
||||
if scale != 1.0:
|
||||
new_size = tuple(round(dim * scale) for dim in (height, width))
|
||||
img = F.resize(img, new_size, self.interpolation)
|
||||
pad_h = self.max_size - new_size[0]
|
||||
pad_w = self.max_size - new_size[1]
|
||||
img = F.pad(img, padding=[pad_w//2, pad_h//2, pad_w - pad_w//2, pad_h - pad_h//2], fill=self.fill)
|
||||
return img
|
||||
|
||||
|
||||
def _convert_to_rgb(image):
|
||||
return image.convert('RGB')
|
||||
|
||||
|
||||
# class CatGen(nn.Module):
|
||||
# def __init__(self, num=4):
|
||||
# self.num = num
|
||||
# def mixgen_batch(image, text):
|
||||
# batch_size = image.shape[0]
|
||||
# index = np.random.permutation(batch_size)
|
||||
|
||||
# cat_images = []
|
||||
# for i in range(batch_size):
|
||||
# # image mixup
|
||||
# image[i,:] = lam * image[i,:] + (1 - lam) * image[index[i],:]
|
||||
# # text concat
|
||||
# text[i] = tokenizer((str(text[i]) + " " + str(text[index[i]])))[0]
|
||||
# text = torch.stack(text)
|
||||
# return image, text
|
||||
|
||||
|
||||
def image_transform(
|
||||
image_size: int,
|
||||
is_train: bool,
|
||||
mean: Optional[Tuple[float, ...]] = None,
|
||||
std: Optional[Tuple[float, ...]] = None,
|
||||
resize_longest_max: bool = False,
|
||||
fill_color: int = 0,
|
||||
):
|
||||
mean = mean or OPENAI_DATASET_MEAN
|
||||
if not isinstance(mean, (list, tuple)):
|
||||
mean = (mean,) * 3
|
||||
|
||||
std = std or OPENAI_DATASET_STD
|
||||
if not isinstance(std, (list, tuple)):
|
||||
std = (std,) * 3
|
||||
|
||||
if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]:
|
||||
# for square size, pass size as int so that Resize() uses aspect preserving shortest edge
|
||||
image_size = image_size[0]
|
||||
|
||||
normalize = Normalize(mean=mean, std=std)
|
||||
if is_train:
|
||||
return Compose([
|
||||
RandomResizedCrop(image_size, scale=(0.9, 1.0), interpolation=InterpolationMode.BICUBIC),
|
||||
_convert_to_rgb,
|
||||
ToTensor(),
|
||||
normalize,
|
||||
])
|
||||
else:
|
||||
if resize_longest_max:
|
||||
transforms = [
|
||||
ResizeMaxSize(image_size, fill=fill_color)
|
||||
]
|
||||
else:
|
||||
transforms = [
|
||||
Resize(image_size, interpolation=InterpolationMode.BICUBIC),
|
||||
CenterCrop(image_size),
|
||||
]
|
||||
transforms.extend([
|
||||
_convert_to_rgb,
|
||||
ToTensor(),
|
||||
normalize,
|
||||
])
|
||||
return Compose(transforms)
|
||||
737
consis_id/models/eva_clip/transformer.py
Normal file
737
consis_id/models/eva_clip/transformer.py
Normal file
@ -0,0 +1,737 @@
|
||||
import os
|
||||
import logging
|
||||
from collections import OrderedDict
|
||||
import math
|
||||
from typing import Callable, Optional, Sequence
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
try:
|
||||
from timm.models.layers import trunc_normal_
|
||||
except:
|
||||
from timm.layers import trunc_normal_
|
||||
|
||||
from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast
|
||||
from .utils import to_2tuple
|
||||
|
||||
if os.getenv('ENV_TYPE') == 'deepspeed':
|
||||
try:
|
||||
import deepspeed
|
||||
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
|
||||
except:
|
||||
print("Please 'pip install deepspeed'")
|
||||
deepspeed = None
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
else:
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
try:
|
||||
import xformers.ops as xops
|
||||
except ImportError:
|
||||
xops = None
|
||||
print("Please 'pip install xformers'")
|
||||
|
||||
class LayerNormFp32(nn.LayerNorm):
|
||||
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back)."""
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
output = F.layer_norm(
|
||||
x.float(),
|
||||
self.normalized_shape,
|
||||
self.weight.float() if self.weight is not None else None,
|
||||
self.bias.float() if self.bias is not None else None,
|
||||
self.eps,
|
||||
)
|
||||
return output.type_as(x)
|
||||
|
||||
|
||||
class LayerNorm(nn.LayerNorm):
|
||||
"""Subclass torch's LayerNorm (with cast back to input dtype)."""
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
orig_type = x.dtype
|
||||
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
||||
return x.to(orig_type)
|
||||
|
||||
class QuickGELU(nn.Module):
|
||||
# NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
|
||||
def forward(self, x: torch.Tensor):
|
||||
return x * torch.sigmoid(1.702 * x)
|
||||
|
||||
|
||||
class LayerScale(nn.Module):
|
||||
def __init__(self, dim, init_values=1e-5, inplace=False):
|
||||
super().__init__()
|
||||
self.inplace = inplace
|
||||
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
||||
|
||||
def forward(self, x):
|
||||
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
||||
|
||||
class PatchDropout(nn.Module):
|
||||
"""
|
||||
https://arxiv.org/abs/2212.00794
|
||||
"""
|
||||
|
||||
def __init__(self, prob, exclude_first_token=True):
|
||||
super().__init__()
|
||||
assert 0 <= prob < 1.
|
||||
self.prob = prob
|
||||
self.exclude_first_token = exclude_first_token # exclude CLS token
|
||||
logging.info(f"os.getenv('RoPE')={os.getenv('RoPE')}")
|
||||
|
||||
def forward(self, x):
|
||||
if not self.training or self.prob == 0.:
|
||||
return x
|
||||
|
||||
if self.exclude_first_token:
|
||||
cls_tokens, x = x[:, :1], x[:, 1:]
|
||||
else:
|
||||
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
|
||||
|
||||
batch = x.size()[0]
|
||||
num_tokens = x.size()[1]
|
||||
|
||||
batch_indices = torch.arange(batch)
|
||||
batch_indices = batch_indices[..., None]
|
||||
|
||||
keep_prob = 1 - self.prob
|
||||
num_patches_keep = max(1, int(num_tokens * keep_prob))
|
||||
|
||||
rand = torch.randn(batch, num_tokens)
|
||||
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
|
||||
|
||||
x = x[batch_indices, patch_indices_keep]
|
||||
|
||||
if self.exclude_first_token:
|
||||
x = torch.cat((cls_tokens, x), dim=1)
|
||||
|
||||
if self.training and os.getenv('RoPE') == '1':
|
||||
return x, patch_indices_keep
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def _in_projection_packed(
|
||||
q: torch.Tensor,
|
||||
k: torch.Tensor,
|
||||
v: torch.Tensor,
|
||||
w: torch.Tensor,
|
||||
b: Optional[torch.Tensor] = None,
|
||||
):
|
||||
"""
|
||||
https://github.com/pytorch/pytorch/blob/db2a237763eb8693a20788be94f8c192e762baa8/torch/nn/functional.py#L4726
|
||||
"""
|
||||
E = q.size(-1)
|
||||
if k is v:
|
||||
if q is k:
|
||||
# self-attention
|
||||
return F.linear(q, w, b).chunk(3, dim=-1)
|
||||
else:
|
||||
# encoder-decoder attention
|
||||
w_q, w_kv = w.split([E, E * 2])
|
||||
if b is None:
|
||||
b_q = b_kv = None
|
||||
else:
|
||||
b_q, b_kv = b.split([E, E * 2])
|
||||
return (F.linear(q, w_q, b_q),) + F.linear(k, w_kv, b_kv).chunk(2, dim=-1)
|
||||
else:
|
||||
w_q, w_k, w_v = w.chunk(3)
|
||||
if b is None:
|
||||
b_q = b_k = b_v = None
|
||||
else:
|
||||
b_q, b_k, b_v = b.chunk(3)
|
||||
return F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v)
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
num_heads=8,
|
||||
qkv_bias=True,
|
||||
scaled_cosine=False,
|
||||
scale_heads=False,
|
||||
logit_scale_max=math.log(1. / 0.01),
|
||||
attn_drop=0.,
|
||||
proj_drop=0.,
|
||||
xattn=False,
|
||||
rope=False
|
||||
):
|
||||
super().__init__()
|
||||
self.scaled_cosine = scaled_cosine
|
||||
self.scale_heads = scale_heads
|
||||
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = dim // num_heads
|
||||
self.scale = self.head_dim ** -0.5
|
||||
self.logit_scale_max = logit_scale_max
|
||||
|
||||
# keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
|
||||
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
|
||||
if qkv_bias:
|
||||
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
|
||||
else:
|
||||
self.in_proj_bias = None
|
||||
|
||||
if self.scaled_cosine:
|
||||
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
|
||||
else:
|
||||
self.logit_scale = None
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
if self.scale_heads:
|
||||
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
|
||||
else:
|
||||
self.head_scale = None
|
||||
self.out_proj = nn.Linear(dim, dim)
|
||||
self.out_drop = nn.Dropout(proj_drop)
|
||||
self.xattn = xattn
|
||||
self.xattn_drop = attn_drop
|
||||
self.rope = rope
|
||||
|
||||
def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
|
||||
L, N, C = x.shape
|
||||
q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1)
|
||||
if self.xattn:
|
||||
q = q.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
|
||||
k = k.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
|
||||
v = v.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
|
||||
|
||||
x = xops.memory_efficient_attention(
|
||||
q, k, v,
|
||||
p=self.xattn_drop,
|
||||
scale=self.scale if self.logit_scale is None else None,
|
||||
attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None,
|
||||
)
|
||||
else:
|
||||
q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
|
||||
k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
|
||||
v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
|
||||
|
||||
if self.logit_scale is not None:
|
||||
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
|
||||
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
|
||||
attn = attn.view(N, self.num_heads, L, L) * logit_scale
|
||||
attn = attn.view(-1, L, L)
|
||||
else:
|
||||
q = q * self.scale
|
||||
attn = torch.bmm(q, k.transpose(-1, -2))
|
||||
|
||||
if attn_mask is not None:
|
||||
if attn_mask.dtype == torch.bool:
|
||||
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
|
||||
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
|
||||
attn_mask = new_attn_mask
|
||||
attn += attn_mask
|
||||
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = torch.bmm(attn, v)
|
||||
|
||||
if self.head_scale is not None:
|
||||
x = x.view(N, self.num_heads, L, C) * self.head_scale
|
||||
x = x.view(-1, L, C)
|
||||
x = x.transpose(0, 1).reshape(L, N, C)
|
||||
x = self.out_proj(x)
|
||||
x = self.out_drop(x)
|
||||
return x
|
||||
|
||||
class CustomAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
num_heads=8,
|
||||
qkv_bias=True,
|
||||
scaled_cosine=True,
|
||||
scale_heads=False,
|
||||
logit_scale_max=math.log(1. / 0.01),
|
||||
attn_drop=0.,
|
||||
proj_drop=0.,
|
||||
xattn=False
|
||||
):
|
||||
super().__init__()
|
||||
self.scaled_cosine = scaled_cosine
|
||||
self.scale_heads = scale_heads
|
||||
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = dim // num_heads
|
||||
self.scale = self.head_dim ** -0.5
|
||||
self.logit_scale_max = logit_scale_max
|
||||
|
||||
# keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
|
||||
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
|
||||
if qkv_bias:
|
||||
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
|
||||
else:
|
||||
self.in_proj_bias = None
|
||||
|
||||
if self.scaled_cosine:
|
||||
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
|
||||
else:
|
||||
self.logit_scale = None
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
if self.scale_heads:
|
||||
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
|
||||
else:
|
||||
self.head_scale = None
|
||||
self.out_proj = nn.Linear(dim, dim)
|
||||
self.out_drop = nn.Dropout(proj_drop)
|
||||
self.xattn = xattn
|
||||
self.xattn_drop = attn_drop
|
||||
|
||||
def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
||||
q, k, v = _in_projection_packed(query, key, value, self.in_proj_weight, self.in_proj_bias)
|
||||
N_q, B_q, C_q = q.shape
|
||||
N_k, B_k, C_k = k.shape
|
||||
N_v, B_v, C_v = v.shape
|
||||
if self.xattn:
|
||||
# B, N, C -> B, N, num_heads, C
|
||||
q = q.permute(1, 0, 2).reshape(B_q, N_q, self.num_heads, -1)
|
||||
k = k.permute(1, 0, 2).reshape(B_k, N_k, self.num_heads, -1)
|
||||
v = v.permute(1, 0, 2).reshape(B_v, N_v, self.num_heads, -1)
|
||||
|
||||
x = xops.memory_efficient_attention(
|
||||
q, k, v,
|
||||
p=self.xattn_drop,
|
||||
scale=self.scale if self.logit_scale is None else None,
|
||||
attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None
|
||||
)
|
||||
else:
|
||||
# B*H, L, C
|
||||
q = q.contiguous().view(N_q, B_q * self.num_heads, -1).transpose(0, 1)
|
||||
k = k.contiguous().view(N_k, B_k * self.num_heads, -1).transpose(0, 1)
|
||||
v = v.contiguous().view(N_v, B_v * self.num_heads, -1).transpose(0, 1)
|
||||
|
||||
if self.logit_scale is not None:
|
||||
# B*H, N_q, N_k
|
||||
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
|
||||
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
|
||||
attn = attn.view(B_q, self.num_heads, N_q, N_k) * logit_scale
|
||||
attn = attn.view(-1, N_q, N_k)
|
||||
else:
|
||||
q = q * self.scale
|
||||
attn = torch.bmm(q, k.transpose(-1, -2))
|
||||
|
||||
if attn_mask is not None:
|
||||
if attn_mask.dtype == torch.bool:
|
||||
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
|
||||
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
|
||||
attn_mask = new_attn_mask
|
||||
attn += attn_mask
|
||||
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = torch.bmm(attn, v)
|
||||
|
||||
if self.head_scale is not None:
|
||||
x = x.view(B_q, self.num_heads, N_q, C_q) * self.head_scale
|
||||
x = x.view(-1, N_q, C_q)
|
||||
x = x.transpose(0, 1).reshape(N_q, B_q, C_q)
|
||||
x = self.out_proj(x)
|
||||
x = self.out_drop(x)
|
||||
return x
|
||||
|
||||
class CustomResidualAttentionBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
n_head: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
ls_init_value: float = None,
|
||||
act_layer: Callable = nn.GELU,
|
||||
norm_layer: Callable = LayerNorm,
|
||||
scale_cosine_attn: bool = False,
|
||||
scale_heads: bool = False,
|
||||
scale_attn: bool = False,
|
||||
scale_fc: bool = False,
|
||||
cross_attn: bool = False,
|
||||
xattn: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.ln_1 = norm_layer(d_model)
|
||||
self.ln_1_k = norm_layer(d_model) if cross_attn else self.ln_1
|
||||
self.ln_1_v = norm_layer(d_model) if cross_attn else self.ln_1
|
||||
self.attn = CustomAttention(
|
||||
d_model, n_head,
|
||||
qkv_bias=True,
|
||||
attn_drop=0.,
|
||||
proj_drop=0.,
|
||||
scaled_cosine=scale_cosine_attn,
|
||||
scale_heads=scale_heads,
|
||||
xattn=xattn
|
||||
)
|
||||
|
||||
self.ln_attn = norm_layer(d_model) if scale_attn else nn.Identity()
|
||||
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
||||
|
||||
self.ln_2 = norm_layer(d_model)
|
||||
mlp_width = int(d_model * mlp_ratio)
|
||||
self.mlp = nn.Sequential(OrderedDict([
|
||||
("c_fc", nn.Linear(d_model, mlp_width)),
|
||||
('ln', norm_layer(mlp_width) if scale_fc else nn.Identity()),
|
||||
("gelu", act_layer()),
|
||||
("c_proj", nn.Linear(mlp_width, d_model))
|
||||
]))
|
||||
|
||||
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
||||
|
||||
def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
||||
q = q + self.ls_1(self.ln_attn(self.attn(self.ln_1(q), self.ln_1_k(k), self.ln_1_v(v), attn_mask=attn_mask)))
|
||||
q = q + self.ls_2(self.mlp(self.ln_2(q)))
|
||||
return q
|
||||
|
||||
class CustomTransformer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
width: int,
|
||||
layers: int,
|
||||
heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
ls_init_value: float = None,
|
||||
act_layer: Callable = nn.GELU,
|
||||
norm_layer: Callable = LayerNorm,
|
||||
scale_cosine_attn: bool = True,
|
||||
scale_heads: bool = False,
|
||||
scale_attn: bool = False,
|
||||
scale_fc: bool = False,
|
||||
cross_attn: bool = False,
|
||||
xattn: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self.width = width
|
||||
self.layers = layers
|
||||
self.grad_checkpointing = False
|
||||
self.xattn = xattn
|
||||
|
||||
self.resblocks = nn.ModuleList([
|
||||
CustomResidualAttentionBlock(
|
||||
width,
|
||||
heads,
|
||||
mlp_ratio,
|
||||
ls_init_value=ls_init_value,
|
||||
act_layer=act_layer,
|
||||
norm_layer=norm_layer,
|
||||
scale_cosine_attn=scale_cosine_attn,
|
||||
scale_heads=scale_heads,
|
||||
scale_attn=scale_attn,
|
||||
scale_fc=scale_fc,
|
||||
cross_attn=cross_attn,
|
||||
xattn=xattn)
|
||||
for _ in range(layers)
|
||||
])
|
||||
|
||||
def get_cast_dtype(self) -> torch.dtype:
|
||||
return self.resblocks[0].mlp.c_fc.weight.dtype
|
||||
|
||||
def forward(self, q: torch.Tensor, k: torch.Tensor = None, v: torch.Tensor = None, attn_mask: Optional[torch.Tensor] = None):
|
||||
if k is None and v is None:
|
||||
k = v = q
|
||||
for r in self.resblocks:
|
||||
if self.grad_checkpointing and not torch.jit.is_scripting():
|
||||
q = checkpoint(r, q, k, v, attn_mask)
|
||||
else:
|
||||
q = r(q, k, v, attn_mask=attn_mask)
|
||||
return q
|
||||
|
||||
|
||||
class ResidualAttentionBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
n_head: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
ls_init_value: float = None,
|
||||
act_layer: Callable = nn.GELU,
|
||||
norm_layer: Callable = LayerNorm,
|
||||
xattn: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.ln_1 = norm_layer(d_model)
|
||||
if xattn:
|
||||
self.attn = Attention(d_model, n_head, xattn=True)
|
||||
else:
|
||||
self.attn = nn.MultiheadAttention(d_model, n_head)
|
||||
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
||||
|
||||
self.ln_2 = norm_layer(d_model)
|
||||
mlp_width = int(d_model * mlp_ratio)
|
||||
self.mlp = nn.Sequential(OrderedDict([
|
||||
("c_fc", nn.Linear(d_model, mlp_width)),
|
||||
("gelu", act_layer()),
|
||||
("c_proj", nn.Linear(mlp_width, d_model))
|
||||
]))
|
||||
|
||||
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
||||
self.xattn = xattn
|
||||
|
||||
def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
||||
attn_mask = attn_mask.to(x.dtype) if attn_mask is not None else None
|
||||
if self.xattn:
|
||||
return self.attn(x, attn_mask=attn_mask)
|
||||
return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0]
|
||||
|
||||
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
||||
x = x + self.ls_1(self.attention(self.ln_1(x), attn_mask=attn_mask))
|
||||
x = x + self.ls_2(self.mlp(self.ln_2(x)))
|
||||
return x
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
width: int,
|
||||
layers: int,
|
||||
heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
ls_init_value: float = None,
|
||||
act_layer: Callable = nn.GELU,
|
||||
norm_layer: Callable = LayerNorm,
|
||||
xattn: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self.width = width
|
||||
self.layers = layers
|
||||
self.grad_checkpointing = False
|
||||
|
||||
self.resblocks = nn.ModuleList([
|
||||
ResidualAttentionBlock(
|
||||
width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, xattn=xattn)
|
||||
for _ in range(layers)
|
||||
])
|
||||
|
||||
def get_cast_dtype(self) -> torch.dtype:
|
||||
return self.resblocks[0].mlp.c_fc.weight.dtype
|
||||
|
||||
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
||||
for r in self.resblocks:
|
||||
if self.grad_checkpointing and not torch.jit.is_scripting():
|
||||
x = checkpoint(r, x, attn_mask)
|
||||
else:
|
||||
x = r(x, attn_mask=attn_mask)
|
||||
return x
|
||||
|
||||
|
||||
class VisionTransformer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
image_size: int,
|
||||
patch_size: int,
|
||||
width: int,
|
||||
layers: int,
|
||||
heads: int,
|
||||
mlp_ratio: float,
|
||||
ls_init_value: float = None,
|
||||
patch_dropout: float = 0.,
|
||||
global_average_pool: bool = False,
|
||||
output_dim: int = 512,
|
||||
act_layer: Callable = nn.GELU,
|
||||
norm_layer: Callable = LayerNorm,
|
||||
xattn: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self.image_size = to_2tuple(image_size)
|
||||
self.patch_size = to_2tuple(patch_size)
|
||||
self.grid_size = (self.image_size[0] // self.patch_size[0], self.image_size[1] // self.patch_size[1])
|
||||
self.output_dim = output_dim
|
||||
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
||||
|
||||
scale = width ** -0.5
|
||||
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
||||
self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width))
|
||||
|
||||
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
|
||||
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
|
||||
self.ln_pre = norm_layer(width)
|
||||
|
||||
self.transformer = Transformer(
|
||||
width,
|
||||
layers,
|
||||
heads,
|
||||
mlp_ratio,
|
||||
ls_init_value=ls_init_value,
|
||||
act_layer=act_layer,
|
||||
norm_layer=norm_layer,
|
||||
xattn=xattn
|
||||
)
|
||||
|
||||
self.global_average_pool = global_average_pool
|
||||
self.ln_post = norm_layer(width)
|
||||
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
||||
|
||||
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
if unlocked_groups != 0:
|
||||
groups = [
|
||||
[
|
||||
self.conv1,
|
||||
self.class_embedding,
|
||||
self.positional_embedding,
|
||||
self.ln_pre,
|
||||
],
|
||||
*self.transformer.resblocks[:-1],
|
||||
[
|
||||
self.transformer.resblocks[-1],
|
||||
self.ln_post,
|
||||
],
|
||||
self.proj,
|
||||
]
|
||||
|
||||
def _unlock(x):
|
||||
if isinstance(x, Sequence):
|
||||
for g in x:
|
||||
_unlock(g)
|
||||
else:
|
||||
if isinstance(x, torch.nn.Parameter):
|
||||
x.requires_grad = True
|
||||
else:
|
||||
for p in x.parameters():
|
||||
p.requires_grad = True
|
||||
|
||||
_unlock(groups[-unlocked_groups:])
|
||||
|
||||
def get_num_layers(self):
|
||||
return self.transformer.layers
|
||||
|
||||
@torch.jit.ignore
|
||||
def set_grad_checkpointing(self, enable=True):
|
||||
self.transformer.grad_checkpointing = enable
|
||||
|
||||
@torch.jit.ignore
|
||||
def no_weight_decay(self):
|
||||
return {'positional_embedding', 'class_embedding'}
|
||||
|
||||
def forward(self, x: torch.Tensor, return_all_features: bool=False):
|
||||
x = self.conv1(x) # shape = [*, width, grid, grid]
|
||||
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
||||
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
||||
x = torch.cat(
|
||||
[self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
|
||||
x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
||||
x = x + self.positional_embedding.to(x.dtype)
|
||||
|
||||
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
|
||||
x = self.patch_dropout(x)
|
||||
x = self.ln_pre(x)
|
||||
|
||||
x = x.permute(1, 0, 2) # NLD -> LND
|
||||
x = self.transformer(x)
|
||||
x = x.permute(1, 0, 2) # LND -> NLD
|
||||
|
||||
if not return_all_features:
|
||||
if self.global_average_pool:
|
||||
x = x.mean(dim=1) #x = x[:,1:,:].mean(dim=1)
|
||||
else:
|
||||
x = x[:, 0]
|
||||
|
||||
x = self.ln_post(x)
|
||||
|
||||
if self.proj is not None:
|
||||
x = x @ self.proj
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class TextTransformer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
context_length: int = 77,
|
||||
vocab_size: int = 49408,
|
||||
width: int = 512,
|
||||
heads: int = 8,
|
||||
layers: int = 12,
|
||||
ls_init_value: float = None,
|
||||
output_dim: int = 512,
|
||||
act_layer: Callable = nn.GELU,
|
||||
norm_layer: Callable = LayerNorm,
|
||||
xattn: bool= False,
|
||||
attn_mask: bool = True
|
||||
):
|
||||
super().__init__()
|
||||
self.context_length = context_length
|
||||
self.vocab_size = vocab_size
|
||||
self.width = width
|
||||
self.output_dim = output_dim
|
||||
|
||||
self.token_embedding = nn.Embedding(vocab_size, width)
|
||||
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, width))
|
||||
self.transformer = Transformer(
|
||||
width=width,
|
||||
layers=layers,
|
||||
heads=heads,
|
||||
ls_init_value=ls_init_value,
|
||||
act_layer=act_layer,
|
||||
norm_layer=norm_layer,
|
||||
xattn=xattn
|
||||
)
|
||||
|
||||
self.xattn = xattn
|
||||
self.ln_final = norm_layer(width)
|
||||
self.text_projection = nn.Parameter(torch.empty(width, output_dim))
|
||||
|
||||
if attn_mask:
|
||||
self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False)
|
||||
else:
|
||||
self.attn_mask = None
|
||||
|
||||
self.init_parameters()
|
||||
|
||||
def init_parameters(self):
|
||||
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
||||
nn.init.normal_(self.positional_embedding, std=0.01)
|
||||
|
||||
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
||||
attn_std = self.transformer.width ** -0.5
|
||||
fc_std = (2 * self.transformer.width) ** -0.5
|
||||
for block in self.transformer.resblocks:
|
||||
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
||||
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
||||
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
||||
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
||||
|
||||
if self.text_projection is not None:
|
||||
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
||||
|
||||
@torch.jit.ignore
|
||||
def set_grad_checkpointing(self, enable=True):
|
||||
self.transformer.grad_checkpointing = enable
|
||||
|
||||
@torch.jit.ignore
|
||||
def no_weight_decay(self):
|
||||
# return {'positional_embedding', 'token_embedding'}
|
||||
return {'positional_embedding'}
|
||||
|
||||
def get_num_layers(self):
|
||||
return self.transformer.layers
|
||||
|
||||
def build_attention_mask(self):
|
||||
# lazily create causal attention mask, with full attention between the vision tokens
|
||||
# pytorch uses additive attention mask; fill with -inf
|
||||
mask = torch.empty(self.context_length, self.context_length)
|
||||
mask.fill_(float("-inf"))
|
||||
mask.triu_(1) # zero out the lower diagonal
|
||||
return mask
|
||||
|
||||
def forward(self, text, return_all_features: bool=False):
|
||||
cast_dtype = self.transformer.get_cast_dtype()
|
||||
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
|
||||
|
||||
x = x + self.positional_embedding.to(cast_dtype)
|
||||
x = x.permute(1, 0, 2) # NLD -> LND
|
||||
x = self.transformer(x, attn_mask=self.attn_mask)
|
||||
# x = self.transformer(x) # no attention mask is applied
|
||||
x = x.permute(1, 0, 2) # LND -> NLD
|
||||
x = self.ln_final(x)
|
||||
|
||||
if not return_all_features:
|
||||
# x.shape = [batch_size, n_ctx, transformer.width]
|
||||
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
||||
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
||||
return x
|
||||
326
consis_id/models/eva_clip/utils.py
Normal file
326
consis_id/models/eva_clip/utils.py
Normal file
@ -0,0 +1,326 @@
|
||||
from itertools import repeat
|
||||
import collections.abc
|
||||
import logging
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
import torch
|
||||
from torch import nn as nn
|
||||
from torchvision.ops.misc import FrozenBatchNorm2d
|
||||
import torch.nn.functional as F
|
||||
|
||||
# open CLIP
|
||||
def resize_clip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
||||
# Rescale the grid of position embeddings when loading from state_dict
|
||||
old_pos_embed = state_dict.get('visual.positional_embedding', None)
|
||||
if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
|
||||
return
|
||||
grid_size = to_2tuple(model.visual.grid_size)
|
||||
extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
|
||||
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
|
||||
if new_seq_len == old_pos_embed.shape[0]:
|
||||
return
|
||||
|
||||
if extra_tokens:
|
||||
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
|
||||
else:
|
||||
pos_emb_tok, pos_emb_img = None, old_pos_embed
|
||||
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
|
||||
|
||||
logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
|
||||
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
|
||||
pos_emb_img = F.interpolate(
|
||||
pos_emb_img,
|
||||
size=grid_size,
|
||||
mode=interpolation,
|
||||
align_corners=True,
|
||||
)
|
||||
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
|
||||
if pos_emb_tok is not None:
|
||||
new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
|
||||
else:
|
||||
new_pos_embed = pos_emb_img
|
||||
state_dict['visual.positional_embedding'] = new_pos_embed
|
||||
|
||||
|
||||
def resize_visual_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
||||
# Rescale the grid of position embeddings when loading from state_dict
|
||||
old_pos_embed = state_dict.get('positional_embedding', None)
|
||||
if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
|
||||
return
|
||||
grid_size = to_2tuple(model.visual.grid_size)
|
||||
extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
|
||||
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
|
||||
if new_seq_len == old_pos_embed.shape[0]:
|
||||
return
|
||||
|
||||
if extra_tokens:
|
||||
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
|
||||
else:
|
||||
pos_emb_tok, pos_emb_img = None, old_pos_embed
|
||||
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
|
||||
|
||||
logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
|
||||
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
|
||||
pos_emb_img = F.interpolate(
|
||||
pos_emb_img,
|
||||
size=grid_size,
|
||||
mode=interpolation,
|
||||
align_corners=True,
|
||||
)
|
||||
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
|
||||
if pos_emb_tok is not None:
|
||||
new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
|
||||
else:
|
||||
new_pos_embed = pos_emb_img
|
||||
state_dict['positional_embedding'] = new_pos_embed
|
||||
|
||||
def resize_evaclip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
||||
all_keys = list(state_dict.keys())
|
||||
# interpolate position embedding
|
||||
if 'visual.pos_embed' in state_dict:
|
||||
pos_embed_checkpoint = state_dict['visual.pos_embed']
|
||||
embedding_size = pos_embed_checkpoint.shape[-1]
|
||||
num_patches = model.visual.patch_embed.num_patches
|
||||
num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
|
||||
# height (== width) for the checkpoint position embedding
|
||||
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
||||
# height (== width) for the new position embedding
|
||||
new_size = int(num_patches ** 0.5)
|
||||
# class_token and dist_token are kept unchanged
|
||||
if orig_size != new_size:
|
||||
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
||||
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
||||
# only the position tokens are interpolated
|
||||
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
||||
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
||||
pos_tokens = torch.nn.functional.interpolate(
|
||||
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
||||
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
||||
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
||||
state_dict['visual.pos_embed'] = new_pos_embed
|
||||
|
||||
patch_embed_proj = state_dict['visual.patch_embed.proj.weight']
|
||||
patch_size = model.visual.patch_embed.patch_size
|
||||
state_dict['visual.patch_embed.proj.weight'] = torch.nn.functional.interpolate(
|
||||
patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
|
||||
|
||||
|
||||
def resize_eva_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
||||
all_keys = list(state_dict.keys())
|
||||
# interpolate position embedding
|
||||
if 'pos_embed' in state_dict:
|
||||
pos_embed_checkpoint = state_dict['pos_embed']
|
||||
embedding_size = pos_embed_checkpoint.shape[-1]
|
||||
num_patches = model.visual.patch_embed.num_patches
|
||||
num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
|
||||
# height (== width) for the checkpoint position embedding
|
||||
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
||||
# height (== width) for the new position embedding
|
||||
new_size = int(num_patches ** 0.5)
|
||||
# class_token and dist_token are kept unchanged
|
||||
if orig_size != new_size:
|
||||
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
||||
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
||||
# only the position tokens are interpolated
|
||||
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
||||
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
||||
pos_tokens = torch.nn.functional.interpolate(
|
||||
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
||||
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
||||
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
||||
state_dict['pos_embed'] = new_pos_embed
|
||||
|
||||
patch_embed_proj = state_dict['patch_embed.proj.weight']
|
||||
patch_size = model.visual.patch_embed.patch_size
|
||||
state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate(
|
||||
patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
|
||||
|
||||
|
||||
def resize_rel_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
||||
all_keys = list(state_dict.keys())
|
||||
for key in all_keys:
|
||||
if "relative_position_index" in key:
|
||||
state_dict.pop(key)
|
||||
|
||||
if "relative_position_bias_table" in key:
|
||||
rel_pos_bias = state_dict[key]
|
||||
src_num_pos, num_attn_heads = rel_pos_bias.size()
|
||||
dst_num_pos, _ = model.visual.state_dict()[key].size()
|
||||
dst_patch_shape = model.visual.patch_embed.patch_shape
|
||||
if dst_patch_shape[0] != dst_patch_shape[1]:
|
||||
raise NotImplementedError()
|
||||
num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1)
|
||||
src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
|
||||
dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5)
|
||||
if src_size != dst_size:
|
||||
print("Position interpolate for %s from %dx%d to %dx%d" % (
|
||||
key, src_size, src_size, dst_size, dst_size))
|
||||
extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
|
||||
rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
|
||||
|
||||
def geometric_progression(a, r, n):
|
||||
return a * (1.0 - r ** n) / (1.0 - r)
|
||||
|
||||
left, right = 1.01, 1.5
|
||||
while right - left > 1e-6:
|
||||
q = (left + right) / 2.0
|
||||
gp = geometric_progression(1, q, src_size // 2)
|
||||
if gp > dst_size // 2:
|
||||
right = q
|
||||
else:
|
||||
left = q
|
||||
|
||||
# if q > 1.090307:
|
||||
# q = 1.090307
|
||||
|
||||
dis = []
|
||||
cur = 1
|
||||
for i in range(src_size // 2):
|
||||
dis.append(cur)
|
||||
cur += q ** (i + 1)
|
||||
|
||||
r_ids = [-_ for _ in reversed(dis)]
|
||||
|
||||
x = r_ids + [0] + dis
|
||||
y = r_ids + [0] + dis
|
||||
|
||||
t = dst_size // 2.0
|
||||
dx = np.arange(-t, t + 0.1, 1.0)
|
||||
dy = np.arange(-t, t + 0.1, 1.0)
|
||||
|
||||
print("Original positions = %s" % str(x))
|
||||
print("Target positions = %s" % str(dx))
|
||||
|
||||
all_rel_pos_bias = []
|
||||
|
||||
for i in range(num_attn_heads):
|
||||
z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy()
|
||||
f = F.interpolate.interp2d(x, y, z, kind='cubic')
|
||||
all_rel_pos_bias.append(
|
||||
torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device))
|
||||
|
||||
rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
|
||||
|
||||
new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
|
||||
state_dict[key] = new_rel_pos_bias
|
||||
|
||||
# interpolate position embedding
|
||||
if 'pos_embed' in state_dict:
|
||||
pos_embed_checkpoint = state_dict['pos_embed']
|
||||
embedding_size = pos_embed_checkpoint.shape[-1]
|
||||
num_patches = model.visual.patch_embed.num_patches
|
||||
num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
|
||||
# height (== width) for the checkpoint position embedding
|
||||
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
||||
# height (== width) for the new position embedding
|
||||
new_size = int(num_patches ** 0.5)
|
||||
# class_token and dist_token are kept unchanged
|
||||
if orig_size != new_size:
|
||||
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
||||
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
||||
# only the position tokens are interpolated
|
||||
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
||||
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
||||
pos_tokens = torch.nn.functional.interpolate(
|
||||
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
||||
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
||||
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
||||
state_dict['pos_embed'] = new_pos_embed
|
||||
|
||||
patch_embed_proj = state_dict['patch_embed.proj.weight']
|
||||
patch_size = model.visual.patch_embed.patch_size
|
||||
state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate(
|
||||
patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
|
||||
|
||||
|
||||
def freeze_batch_norm_2d(module, module_match={}, name=''):
|
||||
"""
|
||||
Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is
|
||||
itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and
|
||||
returned. Otherwise, the module is walked recursively and submodules are converted in place.
|
||||
|
||||
Args:
|
||||
module (torch.nn.Module): Any PyTorch module.
|
||||
module_match (dict): Dictionary of full module names to freeze (all if empty)
|
||||
name (str): Full module name (prefix)
|
||||
|
||||
Returns:
|
||||
torch.nn.Module: Resulting module
|
||||
|
||||
Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
|
||||
"""
|
||||
res = module
|
||||
is_match = True
|
||||
if module_match:
|
||||
is_match = name in module_match
|
||||
if is_match and isinstance(module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)):
|
||||
res = FrozenBatchNorm2d(module.num_features)
|
||||
res.num_features = module.num_features
|
||||
res.affine = module.affine
|
||||
if module.affine:
|
||||
res.weight.data = module.weight.data.clone().detach()
|
||||
res.bias.data = module.bias.data.clone().detach()
|
||||
res.running_mean.data = module.running_mean.data
|
||||
res.running_var.data = module.running_var.data
|
||||
res.eps = module.eps
|
||||
else:
|
||||
for child_name, child in module.named_children():
|
||||
full_child_name = '.'.join([name, child_name]) if name else child_name
|
||||
new_child = freeze_batch_norm_2d(child, module_match, full_child_name)
|
||||
if new_child is not child:
|
||||
res.add_module(child_name, new_child)
|
||||
return res
|
||||
|
||||
|
||||
# From PyTorch internals
|
||||
def _ntuple(n):
|
||||
def parse(x):
|
||||
if isinstance(x, collections.abc.Iterable):
|
||||
return x
|
||||
return tuple(repeat(x, n))
|
||||
return parse
|
||||
|
||||
|
||||
to_1tuple = _ntuple(1)
|
||||
to_2tuple = _ntuple(2)
|
||||
to_3tuple = _ntuple(3)
|
||||
to_4tuple = _ntuple(4)
|
||||
to_ntuple = lambda n, x: _ntuple(n)(x)
|
||||
|
||||
|
||||
def is_logging(args):
|
||||
def is_global_master(args):
|
||||
return args.rank == 0
|
||||
|
||||
def is_local_master(args):
|
||||
return args.local_rank == 0
|
||||
|
||||
def is_master(args, local=False):
|
||||
return is_local_master(args) if local else is_global_master(args)
|
||||
return is_master
|
||||
|
||||
|
||||
class AllGather(torch.autograd.Function):
|
||||
"""An autograd function that performs allgather on a tensor.
|
||||
Performs all_gather operation on the provided tensors.
|
||||
*** Warning ***: torch.distributed.all_gather has no gradient.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, tensor, rank, world_size):
|
||||
tensors_gather = [torch.empty_like(tensor) for _ in range(world_size)]
|
||||
torch.distributed.all_gather(tensors_gather, tensor)
|
||||
ctx.rank = rank
|
||||
ctx.batch_size = tensor.shape[0]
|
||||
return torch.cat(tensors_gather, 0)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
return (
|
||||
grad_output[ctx.batch_size * ctx.rank: ctx.batch_size * (ctx.rank + 1)],
|
||||
None,
|
||||
None
|
||||
)
|
||||
|
||||
allgather = AllGather.apply
|
||||
166
consis_id/models/eva_clip/utils_qformer.py
Normal file
166
consis_id/models/eva_clip/utils_qformer.py
Normal file
@ -0,0 +1,166 @@
|
||||
import importlib
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torchvision.utils import make_grid
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
|
||||
def seed_everything(seed):
|
||||
os.environ["PL_GLOBAL_SEED"] = str(seed)
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
|
||||
|
||||
def is_torch2_available():
|
||||
return hasattr(F, "scaled_dot_product_attention")
|
||||
|
||||
|
||||
def instantiate_from_config(config):
|
||||
if "target" not in config:
|
||||
if config == '__is_first_stage__' or config == "__is_unconditional__":
|
||||
return None
|
||||
raise KeyError("Expected key `target` to instantiate.")
|
||||
return get_obj_from_str(config["target"])(**config.get("params", {}))
|
||||
|
||||
|
||||
def get_obj_from_str(string, reload=False):
|
||||
module, cls = string.rsplit(".", 1)
|
||||
if reload:
|
||||
module_imp = importlib.import_module(module)
|
||||
importlib.reload(module_imp)
|
||||
return getattr(importlib.import_module(module, package=None), cls)
|
||||
|
||||
|
||||
def drop_seq_token(seq, drop_rate=0.5):
|
||||
idx = torch.randperm(seq.size(1))
|
||||
num_keep_tokens = int(len(idx) * (1 - drop_rate))
|
||||
idx = idx[:num_keep_tokens]
|
||||
seq = seq[:, idx]
|
||||
return seq
|
||||
|
||||
|
||||
def import_model_class_from_model_name_or_path(
|
||||
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
|
||||
):
|
||||
text_encoder_config = PretrainedConfig.from_pretrained(
|
||||
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
|
||||
)
|
||||
model_class = text_encoder_config.architectures[0]
|
||||
|
||||
if model_class == "CLIPTextModel":
|
||||
from transformers import CLIPTextModel
|
||||
|
||||
return CLIPTextModel
|
||||
elif model_class == "CLIPTextModelWithProjection": # noqa RET505
|
||||
from transformers import CLIPTextModelWithProjection
|
||||
|
||||
return CLIPTextModelWithProjection
|
||||
else:
|
||||
raise ValueError(f"{model_class} is not supported.")
|
||||
|
||||
|
||||
def resize_numpy_image_long(image, resize_long_edge=768):
|
||||
h, w = image.shape[:2]
|
||||
if max(h, w) <= resize_long_edge:
|
||||
return image
|
||||
k = resize_long_edge / max(h, w)
|
||||
h = int(h * k)
|
||||
w = int(w * k)
|
||||
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4)
|
||||
return image
|
||||
|
||||
|
||||
# from basicsr
|
||||
def img2tensor(imgs, bgr2rgb=True, float32=True):
|
||||
"""Numpy array to tensor.
|
||||
|
||||
Args:
|
||||
imgs (list[ndarray] | ndarray): Input images.
|
||||
bgr2rgb (bool): Whether to change bgr to rgb.
|
||||
float32 (bool): Whether to change to float32.
|
||||
|
||||
Returns:
|
||||
list[tensor] | tensor: Tensor images. If returned results only have
|
||||
one element, just return tensor.
|
||||
"""
|
||||
|
||||
def _totensor(img, bgr2rgb, float32):
|
||||
if img.shape[2] == 3 and bgr2rgb:
|
||||
if img.dtype == 'float64':
|
||||
img = img.astype('float32')
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
img = torch.from_numpy(img.transpose(2, 0, 1))
|
||||
if float32:
|
||||
img = img.float()
|
||||
return img
|
||||
|
||||
if isinstance(imgs, list):
|
||||
return [_totensor(img, bgr2rgb, float32) for img in imgs]
|
||||
return _totensor(imgs, bgr2rgb, float32)
|
||||
|
||||
|
||||
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
|
||||
"""Convert torch Tensors into image numpy arrays.
|
||||
|
||||
After clamping to [min, max], values will be normalized to [0, 1].
|
||||
|
||||
Args:
|
||||
tensor (Tensor or list[Tensor]): Accept shapes:
|
||||
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
|
||||
2) 3D Tensor of shape (3/1 x H x W);
|
||||
3) 2D Tensor of shape (H x W).
|
||||
Tensor channel should be in RGB order.
|
||||
rgb2bgr (bool): Whether to change rgb to bgr.
|
||||
out_type (numpy type): output types. If ``np.uint8``, transform outputs
|
||||
to uint8 type with range [0, 255]; otherwise, float type with
|
||||
range [0, 1]. Default: ``np.uint8``.
|
||||
min_max (tuple[int]): min and max values for clamp.
|
||||
|
||||
Returns:
|
||||
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
|
||||
shape (H x W). The channel order is BGR.
|
||||
"""
|
||||
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
|
||||
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
|
||||
|
||||
if torch.is_tensor(tensor):
|
||||
tensor = [tensor]
|
||||
result = []
|
||||
for _tensor in tensor:
|
||||
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
|
||||
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
|
||||
|
||||
n_dim = _tensor.dim()
|
||||
if n_dim == 4:
|
||||
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
|
||||
img_np = img_np.transpose(1, 2, 0)
|
||||
if rgb2bgr:
|
||||
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
||||
elif n_dim == 3:
|
||||
img_np = _tensor.numpy()
|
||||
img_np = img_np.transpose(1, 2, 0)
|
||||
if img_np.shape[2] == 1: # gray image
|
||||
img_np = np.squeeze(img_np, axis=2)
|
||||
else:
|
||||
if rgb2bgr:
|
||||
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
||||
elif n_dim == 2:
|
||||
img_np = _tensor.numpy()
|
||||
else:
|
||||
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
|
||||
if out_type == np.uint8:
|
||||
# Unlike MATLAB, numpy.unit8() WILL NOT round by default.
|
||||
img_np = (img_np * 255.0).round()
|
||||
img_np = img_np.astype(out_type)
|
||||
result.append(img_np)
|
||||
if len(result) == 1:
|
||||
result = result[0]
|
||||
return result
|
||||
269
consis_id/models/local_facial_extractor.py
Normal file
269
consis_id/models/local_facial_extractor.py
Normal file
@ -0,0 +1,269 @@
|
||||
import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
# FFN
|
||||
def FeedForward(dim, mult=4):
|
||||
inner_dim = int(dim * mult)
|
||||
return nn.Sequential(
|
||||
nn.LayerNorm(dim),
|
||||
nn.Linear(dim, inner_dim, bias=False),
|
||||
nn.GELU(),
|
||||
nn.Linear(inner_dim, dim, bias=False),
|
||||
)
|
||||
|
||||
|
||||
def reshape_tensor(x, heads):
|
||||
bs, length, width = x.shape
|
||||
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
||||
x = x.view(bs, length, heads, -1)
|
||||
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
||||
x = x.transpose(1, 2)
|
||||
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
||||
x = x.reshape(bs, heads, length, -1)
|
||||
return x
|
||||
|
||||
|
||||
class PerceiverAttention(nn.Module):
|
||||
def __init__(self, *, dim, dim_head=64, heads=8, kv_dim=None):
|
||||
super().__init__()
|
||||
self.scale = dim_head ** -0.5
|
||||
self.dim_head = dim_head
|
||||
self.heads = heads
|
||||
inner_dim = dim_head * heads
|
||||
|
||||
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
|
||||
self.norm2 = nn.LayerNorm(dim)
|
||||
|
||||
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
||||
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
|
||||
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
||||
|
||||
def forward(self, x, latents):
|
||||
"""
|
||||
Args:
|
||||
x (torch.Tensor): image features
|
||||
shape (b, n1, D)
|
||||
latent (torch.Tensor): latent features
|
||||
shape (b, n2, D)
|
||||
"""
|
||||
x = self.norm1(x)
|
||||
latents = self.norm2(latents)
|
||||
|
||||
b, seq_len, _ = latents.shape
|
||||
|
||||
q = self.to_q(latents)
|
||||
kv_input = torch.cat((x, latents), dim=-2)
|
||||
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
||||
|
||||
q = reshape_tensor(q, self.heads)
|
||||
k = reshape_tensor(k, self.heads)
|
||||
v = reshape_tensor(v, self.heads)
|
||||
|
||||
# attention
|
||||
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
||||
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
||||
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||
out = weight @ v
|
||||
|
||||
out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1)
|
||||
|
||||
return self.to_out(out)
|
||||
|
||||
|
||||
class LocalFacialExtractor(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim=1024,
|
||||
depth=10,
|
||||
dim_head=64,
|
||||
heads=16,
|
||||
num_id_token=5,
|
||||
num_queries=32,
|
||||
output_dim=2048,
|
||||
ff_mult=4,
|
||||
):
|
||||
"""
|
||||
Initializes the LocalFacialExtractor class.
|
||||
|
||||
Parameters:
|
||||
- dim (int): The dimensionality of latent features.
|
||||
- depth (int): Total number of PerceiverAttention and FeedForward layers.
|
||||
- dim_head (int): Dimensionality of each attention head.
|
||||
- heads (int): Number of attention heads.
|
||||
- num_id_token (int): Number of tokens used for identity features.
|
||||
- num_queries (int): Number of query tokens for the latent representation.
|
||||
- output_dim (int): Output dimension after projection.
|
||||
- ff_mult (int): Multiplier for the feed-forward network hidden dimension.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
# Storing identity token and query information
|
||||
self.num_id_token = num_id_token
|
||||
self.dim = dim
|
||||
self.num_queries = num_queries
|
||||
assert depth % 5 == 0
|
||||
self.depth = depth // 5
|
||||
scale = dim ** -0.5
|
||||
|
||||
# Learnable latent query embeddings
|
||||
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) * scale)
|
||||
# Projection layer to map the latent output to the desired dimension
|
||||
self.proj_out = nn.Parameter(scale * torch.randn(dim, output_dim))
|
||||
|
||||
# Attention and FeedForward layer stack
|
||||
self.layers = nn.ModuleList([])
|
||||
for _ in range(depth):
|
||||
self.layers.append(
|
||||
nn.ModuleList(
|
||||
[
|
||||
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), # Perceiver Attention layer
|
||||
FeedForward(dim=dim, mult=ff_mult), # FeedForward layer
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
# Mappings for each of the 5 different ViT features
|
||||
for i in range(5):
|
||||
setattr(
|
||||
self,
|
||||
f'mapping_{i}',
|
||||
nn.Sequential(
|
||||
nn.Linear(1024, 1024),
|
||||
nn.LayerNorm(1024),
|
||||
nn.LeakyReLU(),
|
||||
nn.Linear(1024, 1024),
|
||||
nn.LayerNorm(1024),
|
||||
nn.LeakyReLU(),
|
||||
nn.Linear(1024, dim),
|
||||
),
|
||||
)
|
||||
|
||||
# Mapping for identity embedding vectors
|
||||
self.id_embedding_mapping = nn.Sequential(
|
||||
nn.Linear(1280, 1024),
|
||||
nn.LayerNorm(1024),
|
||||
nn.LeakyReLU(),
|
||||
nn.Linear(1024, 1024),
|
||||
nn.LayerNorm(1024),
|
||||
nn.LeakyReLU(),
|
||||
nn.Linear(1024, dim * num_id_token),
|
||||
)
|
||||
|
||||
def forward(self, x, y):
|
||||
"""
|
||||
Forward pass for LocalFacialExtractor.
|
||||
|
||||
Parameters:
|
||||
- x (Tensor): The input identity embedding tensor of shape (batch_size, 1280).
|
||||
- y (list of Tensor): A list of 5 visual feature tensors each of shape (batch_size, 1024).
|
||||
|
||||
Returns:
|
||||
- Tensor: The extracted latent features of shape (batch_size, num_queries, output_dim).
|
||||
"""
|
||||
|
||||
# Repeat latent queries for the batch size
|
||||
latents = self.latents.repeat(x.size(0), 1, 1)
|
||||
|
||||
# Map the identity embedding to tokens
|
||||
x = self.id_embedding_mapping(x)
|
||||
x = x.reshape(-1, self.num_id_token, self.dim)
|
||||
|
||||
# Concatenate identity tokens with the latent queries
|
||||
latents = torch.cat((latents, x), dim=1)
|
||||
|
||||
# Process each of the 5 visual feature inputs
|
||||
for i in range(5):
|
||||
vit_feature = getattr(self, f'mapping_{i}')(y[i])
|
||||
ctx_feature = torch.cat((x, vit_feature), dim=1)
|
||||
|
||||
# Pass through the PerceiverAttention and FeedForward layers
|
||||
for attn, ff in self.layers[i * self.depth: (i + 1) * self.depth]:
|
||||
latents = attn(ctx_feature, latents) + latents
|
||||
latents = ff(latents) + latents
|
||||
|
||||
# Retain only the query latents
|
||||
latents = latents[:, :self.num_queries]
|
||||
# Project the latents to the output dimension
|
||||
latents = latents @ self.proj_out
|
||||
return latents
|
||||
|
||||
|
||||
class PerceiverCrossAttention(nn.Module):
|
||||
"""
|
||||
|
||||
Args:
|
||||
dim (int): Dimension of the input latent and output. Default is 3072.
|
||||
dim_head (int): Dimension of each attention head. Default is 128.
|
||||
heads (int): Number of attention heads. Default is 16.
|
||||
kv_dim (int): Dimension of the key/value input, allowing flexible cross-attention. Default is 2048.
|
||||
|
||||
Attributes:
|
||||
scale (float): Scaling factor used in dot-product attention for numerical stability.
|
||||
norm1 (nn.LayerNorm): Layer normalization applied to the input image features.
|
||||
norm2 (nn.LayerNorm): Layer normalization applied to the latent features.
|
||||
to_q (nn.Linear): Linear layer for projecting the latent features into queries.
|
||||
to_kv (nn.Linear): Linear layer for projecting the input features into keys and values.
|
||||
to_out (nn.Linear): Linear layer for outputting the final result after attention.
|
||||
|
||||
"""
|
||||
def __init__(self, *, dim=3072, dim_head=128, heads=16, kv_dim=2048):
|
||||
super().__init__()
|
||||
self.scale = dim_head ** -0.5
|
||||
self.dim_head = dim_head
|
||||
self.heads = heads
|
||||
inner_dim = dim_head * heads
|
||||
|
||||
# Layer normalization to stabilize training
|
||||
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
|
||||
self.norm2 = nn.LayerNorm(dim)
|
||||
|
||||
# Linear transformations to produce queries, keys, and values
|
||||
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
||||
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
|
||||
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
||||
|
||||
def forward(self, x, latents):
|
||||
"""
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input image features with shape (batch_size, n1, D), where:
|
||||
- batch_size (b): Number of samples in the batch.
|
||||
- n1: Sequence length (e.g., number of patches or tokens).
|
||||
- D: Feature dimension.
|
||||
|
||||
latents (torch.Tensor): Latent feature representations with shape (batch_size, n2, D), where:
|
||||
- n2: Number of latent elements.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Attention-modulated features with shape (batch_size, n2, D).
|
||||
|
||||
"""
|
||||
# Apply layer normalization to the input image and latent features
|
||||
x = self.norm1(x)
|
||||
latents = self.norm2(latents)
|
||||
|
||||
b, seq_len, _ = latents.shape
|
||||
|
||||
# Compute queries, keys, and values
|
||||
q = self.to_q(latents)
|
||||
k, v = self.to_kv(x).chunk(2, dim=-1)
|
||||
|
||||
# Reshape tensors to split into attention heads
|
||||
q = reshape_tensor(q, self.heads)
|
||||
k = reshape_tensor(k, self.heads)
|
||||
v = reshape_tensor(v, self.heads)
|
||||
|
||||
# Compute attention weights
|
||||
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
||||
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable scaling than post-division
|
||||
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||
|
||||
# Compute the output via weighted combination of values
|
||||
out = weight @ v
|
||||
|
||||
# Reshape and permute to prepare for final linear transformation
|
||||
out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1)
|
||||
|
||||
return self.to_out(out)
|
||||
273
consis_id/models/utils.py
Normal file
273
consis_id/models/utils.py
Normal file
@ -0,0 +1,273 @@
|
||||
import cv2
|
||||
import math
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
import torch
|
||||
from torchvision.transforms import InterpolationMode
|
||||
from torchvision.transforms.functional import normalize, resize
|
||||
from transformers import T5EncoderModel, T5Tokenizer
|
||||
from typing import List, Optional, Tuple, Union
|
||||
from diffusers.models.embeddings import get_3d_rotary_pos_embed
|
||||
from diffusers.pipelines.cogvideo.pipeline_cogvideox import get_resize_crop_region_for_grid
|
||||
|
||||
|
||||
def tensor_to_pil(src_img_tensor):
|
||||
img = src_img_tensor.clone().detach()
|
||||
if img.dtype == torch.bfloat16:
|
||||
img = img.to(torch.float32)
|
||||
img = img.cpu().numpy()
|
||||
img = np.transpose(img, (1, 2, 0))
|
||||
img = img.astype(np.uint8)
|
||||
pil_image = Image.fromarray(img)
|
||||
return pil_image
|
||||
|
||||
|
||||
def _get_t5_prompt_embeds(
|
||||
tokenizer: T5Tokenizer,
|
||||
text_encoder: T5EncoderModel,
|
||||
prompt: Union[str, List[str]],
|
||||
num_videos_per_prompt: int = 1,
|
||||
max_sequence_length: int = 226,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
text_input_ids=None,
|
||||
):
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
batch_size = len(prompt)
|
||||
|
||||
if tokenizer is not None:
|
||||
text_inputs = tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=max_sequence_length,
|
||||
truncation=True,
|
||||
add_special_tokens=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
else:
|
||||
if text_input_ids is None:
|
||||
raise ValueError("`text_input_ids` must be provided when the tokenizer is not specified.")
|
||||
|
||||
prompt_embeds = text_encoder(text_input_ids.to(device))[0]
|
||||
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
||||
|
||||
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
||||
_, seq_len, _ = prompt_embeds.shape
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
||||
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
||||
|
||||
return prompt_embeds
|
||||
|
||||
|
||||
def encode_prompt(
|
||||
tokenizer: T5Tokenizer,
|
||||
text_encoder: T5EncoderModel,
|
||||
prompt: Union[str, List[str]],
|
||||
num_videos_per_prompt: int = 1,
|
||||
max_sequence_length: int = 226,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
text_input_ids=None,
|
||||
):
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
prompt_embeds = _get_t5_prompt_embeds(
|
||||
tokenizer,
|
||||
text_encoder,
|
||||
prompt=prompt,
|
||||
num_videos_per_prompt=num_videos_per_prompt,
|
||||
max_sequence_length=max_sequence_length,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
text_input_ids=text_input_ids,
|
||||
)
|
||||
return prompt_embeds
|
||||
|
||||
|
||||
def compute_prompt_embeddings(
|
||||
tokenizer, text_encoder, prompt, max_sequence_length, device, dtype, requires_grad: bool = False
|
||||
):
|
||||
if requires_grad:
|
||||
prompt_embeds = encode_prompt(
|
||||
tokenizer,
|
||||
text_encoder,
|
||||
prompt,
|
||||
num_videos_per_prompt=1,
|
||||
max_sequence_length=max_sequence_length,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
else:
|
||||
with torch.no_grad():
|
||||
prompt_embeds = encode_prompt(
|
||||
tokenizer,
|
||||
text_encoder,
|
||||
prompt,
|
||||
num_videos_per_prompt=1,
|
||||
max_sequence_length=max_sequence_length,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
return prompt_embeds
|
||||
|
||||
|
||||
def prepare_rotary_positional_embeddings(
|
||||
height: int,
|
||||
width: int,
|
||||
num_frames: int,
|
||||
vae_scale_factor_spatial: int = 8,
|
||||
patch_size: int = 2,
|
||||
attention_head_dim: int = 64,
|
||||
device: Optional[torch.device] = None,
|
||||
base_height: int = 480,
|
||||
base_width: int = 720,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
grid_height = height // (vae_scale_factor_spatial * patch_size)
|
||||
grid_width = width // (vae_scale_factor_spatial * patch_size)
|
||||
base_size_width = base_width // (vae_scale_factor_spatial * patch_size)
|
||||
base_size_height = base_height // (vae_scale_factor_spatial * patch_size)
|
||||
|
||||
grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size_width, base_size_height)
|
||||
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
|
||||
embed_dim=attention_head_dim,
|
||||
crops_coords=grid_crops_coords,
|
||||
grid_size=(grid_height, grid_width),
|
||||
temporal_size=num_frames,
|
||||
)
|
||||
|
||||
freqs_cos = freqs_cos.to(device=device)
|
||||
freqs_sin = freqs_sin.to(device=device)
|
||||
return freqs_cos, freqs_sin
|
||||
|
||||
|
||||
def img2tensor(imgs, bgr2rgb=True, float32=True):
|
||||
"""Numpy array to tensor.
|
||||
|
||||
Args:
|
||||
imgs (list[ndarray] | ndarray): Input images.
|
||||
bgr2rgb (bool): Whether to change bgr to rgb.
|
||||
float32 (bool): Whether to change to float32.
|
||||
|
||||
Returns:
|
||||
list[tensor] | tensor: Tensor images. If returned results only have
|
||||
one element, just return tensor.
|
||||
"""
|
||||
|
||||
def _totensor(img, bgr2rgb, float32):
|
||||
if img.shape[2] == 3 and bgr2rgb:
|
||||
if img.dtype == 'float64':
|
||||
img = img.astype('float32')
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
img = torch.from_numpy(img.transpose(2, 0, 1))
|
||||
if float32:
|
||||
img = img.float()
|
||||
return img
|
||||
|
||||
if isinstance(imgs, list):
|
||||
return [_totensor(img, bgr2rgb, float32) for img in imgs]
|
||||
return _totensor(imgs, bgr2rgb, float32)
|
||||
|
||||
|
||||
def to_gray(img):
|
||||
x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3]
|
||||
x = x.repeat(1, 3, 1, 1)
|
||||
return x
|
||||
|
||||
|
||||
def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
|
||||
stickwidth = 4
|
||||
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
||||
kps = np.array(kps)
|
||||
|
||||
w, h = image_pil.size
|
||||
out_img = np.zeros([h, w, 3])
|
||||
|
||||
for i in range(len(limbSeq)):
|
||||
index = limbSeq[i]
|
||||
color = color_list[index[0]]
|
||||
|
||||
x = kps[index][:, 0]
|
||||
y = kps[index][:, 1]
|
||||
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
|
||||
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
|
||||
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
|
||||
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
|
||||
out_img = (out_img * 0.6).astype(np.uint8)
|
||||
|
||||
for idx_kp, kp in enumerate(kps):
|
||||
color = color_list[idx_kp]
|
||||
x, y = kp
|
||||
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
|
||||
|
||||
out_img_pil = Image.fromarray(out_img.astype(np.uint8))
|
||||
return out_img_pil
|
||||
|
||||
|
||||
def process_face_embeddings(face_helper, clip_vision_model, handler_ante, eva_transform_mean, eva_transform_std, app, device, weight_dtype, image, original_id_image=None, is_align_face=True, cal_uncond=False):
|
||||
"""
|
||||
Args:
|
||||
image: numpy rgb image, range [0, 255]
|
||||
"""
|
||||
face_helper.clean_all()
|
||||
image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # (724, 502, 3)
|
||||
# get antelopev2 embedding
|
||||
face_info = app.get(image_bgr)
|
||||
if len(face_info) > 0:
|
||||
face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[
|
||||
-1
|
||||
] # only use the maximum face
|
||||
id_ante_embedding = face_info['embedding'] # (512,)
|
||||
face_kps = face_info['kps']
|
||||
else:
|
||||
id_ante_embedding = None
|
||||
face_kps = None
|
||||
|
||||
# using facexlib to detect and align face
|
||||
face_helper.read_image(image_bgr)
|
||||
face_helper.get_face_landmarks_5(only_center_face=True)
|
||||
if face_kps is None:
|
||||
face_kps = face_helper.all_landmarks_5[0]
|
||||
face_helper.align_warp_face()
|
||||
if len(face_helper.cropped_faces) == 0:
|
||||
raise RuntimeError('facexlib align face fail')
|
||||
align_face = face_helper.cropped_faces[0] # (512, 512, 3) # RGB
|
||||
|
||||
# incase insightface didn't detect face
|
||||
if id_ante_embedding is None:
|
||||
print('fail to detect face using insightface, extract embedding on align face')
|
||||
id_ante_embedding = handler_ante.get_feat(align_face)
|
||||
|
||||
id_ante_embedding = torch.from_numpy(id_ante_embedding).to(device, weight_dtype) # torch.Size([512])
|
||||
if id_ante_embedding.ndim == 1:
|
||||
id_ante_embedding = id_ante_embedding.unsqueeze(0) # torch.Size([1, 512])
|
||||
|
||||
# parsing
|
||||
if is_align_face:
|
||||
input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0 # torch.Size([1, 3, 512, 512])
|
||||
input = input.to(device)
|
||||
parsing_out = face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
|
||||
parsing_out = parsing_out.argmax(dim=1, keepdim=True) # torch.Size([1, 1, 512, 512])
|
||||
bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
|
||||
bg = sum(parsing_out == i for i in bg_label).bool()
|
||||
white_image = torch.ones_like(input) # torch.Size([1, 3, 512, 512])
|
||||
# only keep the face features
|
||||
return_face_features_image = torch.where(bg, white_image, to_gray(input)) # torch.Size([1, 3, 512, 512])
|
||||
return_face_features_image_2 = torch.where(bg, white_image, input) # torch.Size([1, 3, 512, 512])
|
||||
else:
|
||||
original_image_bgr = cv2.cvtColor(original_id_image, cv2.COLOR_RGB2BGR)
|
||||
input = img2tensor(original_image_bgr, bgr2rgb=True).unsqueeze(0) / 255.0 # torch.Size([1, 3, 512, 512])
|
||||
input = input.to(device)
|
||||
return_face_features_image = return_face_features_image_2 = input
|
||||
|
||||
# transform img before sending to eva-clip-vit
|
||||
face_features_image = resize(return_face_features_image, clip_vision_model.image_size,
|
||||
InterpolationMode.BICUBIC) # torch.Size([1, 3, 336, 336])
|
||||
face_features_image = normalize(face_features_image, eva_transform_mean, eva_transform_std)
|
||||
id_cond_vit, id_vit_hidden = clip_vision_model(face_features_image.to(weight_dtype), return_all_features=False, return_hidden=True, shuffle=False) # torch.Size([1, 768]), list(torch.Size([1, 577, 1024]))
|
||||
id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True)
|
||||
id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm)
|
||||
|
||||
id_cond = torch.cat([id_ante_embedding, id_cond_vit], dim=-1) # torch.Size([1, 512]), torch.Size([1, 768]) -> torch.Size([1, 1280])
|
||||
|
||||
return id_cond, id_vit_hidden, return_face_features_image_2, face_kps # torch.Size([1, 1280]), list(torch.Size([1, 577, 1024]))
|
||||
@ -19,6 +19,10 @@ import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import os
|
||||
import json
|
||||
import glob
|
||||
|
||||
import numpy as np
|
||||
from einops import rearrange
|
||||
|
||||
@ -35,6 +39,8 @@ from diffusers.loaders import PeftAdapterMixin
|
||||
from diffusers.models.embeddings import apply_rotary_emb
|
||||
from .embeddings import CogVideoXPatchEmbed
|
||||
|
||||
from .consis_id.models.local_facial_extractor import LocalFacialExtractor, PerceiverCrossAttention
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
@ -408,6 +414,13 @@ class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
||||
use_rotary_positional_embeddings: bool = False,
|
||||
use_learned_positional_embeddings: bool = False,
|
||||
patch_bias: bool = True,
|
||||
is_train_face: bool = False,
|
||||
is_kps: bool = False,
|
||||
cross_attn_interval: int = 1,
|
||||
LFE_num_tokens: int = 32,
|
||||
LFE_output_dim: int = 768,
|
||||
LFE_heads: int = 12,
|
||||
local_face_scale: float = 1.0,
|
||||
):
|
||||
super().__init__()
|
||||
inner_dim = num_attention_heads * attention_head_dim
|
||||
@ -497,11 +510,101 @@ class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
||||
self.fastercache_device = "cuda"
|
||||
self.fastercache_num_blocks_to_cache = len(self.transformer_blocks)
|
||||
self.attention_mode = "sdpa"
|
||||
|
||||
if is_train_face:
|
||||
self.inner_dim = inner_dim
|
||||
self.cross_attn_interval = cross_attn_interval
|
||||
self.num_ca = num_layers // cross_attn_interval
|
||||
self.LFE_num_tokens = LFE_num_tokens
|
||||
self.LFE_output_dim = LFE_output_dim
|
||||
self.LFE_heads = LFE_heads
|
||||
self.LFE_final_output_dim = int(self.inner_dim / 3 * 2)
|
||||
self.local_face_scale = local_face_scale
|
||||
self._init_face_inputs()
|
||||
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
self.gradient_checkpointing = value
|
||||
|
||||
def _init_face_inputs(self):
|
||||
device = self.device
|
||||
weight_dtype = next(self.transformer_blocks.parameters()).dtype
|
||||
self.local_facial_extractor = LocalFacialExtractor()
|
||||
self.local_facial_extractor.to(device, dtype=weight_dtype)
|
||||
self.perceiver_cross_attention = nn.ModuleList([
|
||||
PerceiverCrossAttention(dim=self.inner_dim, dim_head=128, heads=16, kv_dim=self.LFE_final_output_dim).to(device, dtype=weight_dtype) for _ in range(self.num_ca)
|
||||
])
|
||||
@classmethod
|
||||
def from_pretrained_cus(cls, pretrained_model_path, subfolder=None, config_path=None, transformer_additional_kwargs={}):
|
||||
if subfolder:
|
||||
config_path = config_path or pretrained_model_path
|
||||
config_file = os.path.join(config_path, subfolder, 'config.json')
|
||||
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
|
||||
else:
|
||||
config_file = os.path.join(config_path or pretrained_model_path, 'config.json')
|
||||
|
||||
print(f"Loading 3D transformer's pretrained weights from {pretrained_model_path} ...")
|
||||
|
||||
# Check if config file exists
|
||||
if not os.path.isfile(config_file):
|
||||
raise RuntimeError(f"Configuration file '{config_file}' does not exist")
|
||||
|
||||
# Load the configuration
|
||||
with open(config_file, "r") as f:
|
||||
config = json.load(f)
|
||||
|
||||
from diffusers.utils import WEIGHTS_NAME
|
||||
model = cls.from_config(config, **transformer_additional_kwargs)
|
||||
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
|
||||
model_file_safetensors = model_file.replace(".bin", ".safetensors")
|
||||
if os.path.exists(model_file):
|
||||
state_dict = torch.load(model_file, map_location="cpu")
|
||||
elif os.path.exists(model_file_safetensors):
|
||||
from safetensors.torch import load_file
|
||||
state_dict = load_file(model_file_safetensors)
|
||||
else:
|
||||
from safetensors.torch import load_file
|
||||
model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors"))
|
||||
state_dict = {}
|
||||
for model_file_safetensors in model_files_safetensors:
|
||||
_state_dict = load_file(model_file_safetensors)
|
||||
for key in _state_dict:
|
||||
state_dict[key] = _state_dict[key]
|
||||
|
||||
if model.state_dict()['patch_embed.proj.weight'].size() != state_dict['patch_embed.proj.weight'].size():
|
||||
new_shape = model.state_dict()['patch_embed.proj.weight'].size()
|
||||
if len(new_shape) == 5:
|
||||
state_dict['patch_embed.proj.weight'] = state_dict['patch_embed.proj.weight'].unsqueeze(2).expand(new_shape).clone()
|
||||
state_dict['patch_embed.proj.weight'][:, :, :-1] = 0
|
||||
else:
|
||||
if model.state_dict()['patch_embed.proj.weight'].size()[1] > state_dict['patch_embed.proj.weight'].size()[1]:
|
||||
model.state_dict()['patch_embed.proj.weight'][:, :state_dict['patch_embed.proj.weight'].size()[1], :, :] = state_dict['patch_embed.proj.weight']
|
||||
model.state_dict()['patch_embed.proj.weight'][:, state_dict['patch_embed.proj.weight'].size()[1]:, :, :] = 0
|
||||
state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight']
|
||||
else:
|
||||
model.state_dict()['patch_embed.proj.weight'][:, :, :, :] = state_dict['patch_embed.proj.weight'][:, :model.state_dict()['patch_embed.proj.weight'].size()[1], :, :]
|
||||
state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight']
|
||||
|
||||
tmp_state_dict = {}
|
||||
for key in state_dict:
|
||||
if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size():
|
||||
tmp_state_dict[key] = state_dict[key]
|
||||
else:
|
||||
print(key, "Size don't match, skip")
|
||||
state_dict = tmp_state_dict
|
||||
|
||||
m, u = model.load_state_dict(state_dict, strict=False)
|
||||
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
|
||||
print(m)
|
||||
|
||||
params = [p.numel() if "mamba" in n else 0 for n, p in model.named_parameters()]
|
||||
print(f"### Mamba Parameters: {sum(params) / 1e6} M")
|
||||
|
||||
params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()]
|
||||
print(f"### attn1 Parameters: {sum(params) / 1e6} M")
|
||||
|
||||
return model
|
||||
|
||||
@property
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
||||
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
||||
@ -574,6 +677,7 @@ class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
||||
controlnet_states: torch.Tensor = None,
|
||||
controlnet_weights: Optional[Union[float, int, list, np.ndarray, torch.FloatTensor]] = 1.0,
|
||||
video_flow_features: Optional[torch.Tensor] = None,
|
||||
consis_id: Optional[dict] = None,
|
||||
return_dict: bool = True,
|
||||
):
|
||||
batch_size, num_frames, channels, height, width = hidden_states.shape
|
||||
@ -608,6 +712,13 @@ class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
||||
encoder_hidden_states = hidden_states[:, :text_seq_length]
|
||||
hidden_states = hidden_states[:, text_seq_length:]
|
||||
#print("hidden_states after split", hidden_states.shape) #1.5: torch.Size([2, 2700, 3072]) #1.0: torch.Size([2, 5400, 3072])
|
||||
|
||||
# ConsisID: fuse clip and insightface
|
||||
if self.is_train_face:
|
||||
id_cond = consis_id["id_cond"]
|
||||
id_vit_hidden = consis_id["id_vit_hidden"]
|
||||
assert id_cond is not None and id_vit_hidden is not None
|
||||
valid_face_emb = self.local_facial_extractor(id_cond, id_vit_hidden) # torch.Size([1, 1280]), list[5](torch.Size([1, 577, 1024])) -> torch.Size([1, 32, 2048])
|
||||
|
||||
if self.use_fastercache:
|
||||
self.fastercache_counter+=1
|
||||
@ -684,6 +795,7 @@ class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
||||
recovered_uncond = rearrange(recovered_uncond.to(output.dtype), "(B T) C H W -> B T C H W", B=bb, C=cc, T=tt, H=hh, W=ww)
|
||||
output = torch.cat([output, recovered_uncond])
|
||||
else:
|
||||
ca_idx = 0
|
||||
for i, block in enumerate(self.transformer_blocks):
|
||||
hidden_states, encoder_hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
@ -712,6 +824,12 @@ class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
||||
elif isinstance(controlnet_weights, (float, int)):
|
||||
controlnet_block_weight = controlnet_weights
|
||||
hidden_states = hidden_states + controlnet_states_block * controlnet_block_weight
|
||||
|
||||
# ConsisID
|
||||
if self.is_train_face:
|
||||
if i % self.cross_attn_interval == 0 and valid_face_emb is not None:
|
||||
hidden_states = hidden_states + self.local_face_scale * self.perceiver_cross_attention[ca_idx](valid_face_emb, hidden_states) # torch.Size([2, 32, 2048]) torch.Size([2, 17550, 3072])
|
||||
ca_idx += 1
|
||||
|
||||
if not self.config.use_rotary_positional_embeddings:
|
||||
# CogVideoX-2B
|
||||
@ -754,4 +872,4 @@ class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
||||
if not return_dict:
|
||||
return (output,)
|
||||
return Transformer2DModelOutput(sample=output)
|
||||
|
||||
|
||||
|
||||
924
examples/cogvideox_consis_id_test.json
Normal file
924
examples/cogvideox_consis_id_test.json
Normal file
@ -0,0 +1,924 @@
|
||||
{
|
||||
"last_node_id": 89,
|
||||
"last_link_id": 184,
|
||||
"nodes": [
|
||||
{
|
||||
"id": 78,
|
||||
"type": "CLIPLoader",
|
||||
"pos": [
|
||||
504,
|
||||
631
|
||||
],
|
||||
"size": [
|
||||
454.6266784667969,
|
||||
82
|
||||
],
|
||||
"flags": {},
|
||||
"order": 0,
|
||||
"mode": 0,
|
||||
"inputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "CLIP",
|
||||
"type": "CLIP",
|
||||
"links": [
|
||||
164
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "CLIPLoader"
|
||||
},
|
||||
"widgets_values": [
|
||||
"t5\\google_t5-v1_1-xxl_encoderonly-fp8_e4m3fn.safetensors",
|
||||
"sd3"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 82,
|
||||
"type": "CogVideoImageEncode",
|
||||
"pos": [
|
||||
1627,
|
||||
801
|
||||
],
|
||||
"size": [
|
||||
315,
|
||||
194
|
||||
],
|
||||
"flags": {},
|
||||
"order": 10,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "vae",
|
||||
"type": "VAE",
|
||||
"link": 170
|
||||
},
|
||||
{
|
||||
"name": "start_image",
|
||||
"type": "IMAGE",
|
||||
"link": 184
|
||||
},
|
||||
{
|
||||
"name": "end_image",
|
||||
"type": "IMAGE",
|
||||
"link": null,
|
||||
"shape": 7
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "samples",
|
||||
"type": "LATENT",
|
||||
"links": [
|
||||
172
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "CogVideoImageEncode"
|
||||
},
|
||||
"widgets_values": [
|
||||
false,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 68,
|
||||
"type": "DownloadAndLoadConsisIDModel",
|
||||
"pos": [
|
||||
513,
|
||||
383
|
||||
],
|
||||
"size": [
|
||||
352.79998779296875,
|
||||
106
|
||||
],
|
||||
"flags": {},
|
||||
"order": 1,
|
||||
"mode": 0,
|
||||
"inputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "consis_id_model",
|
||||
"type": "CONSISIDMODEL",
|
||||
"links": [
|
||||
152
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "DownloadAndLoadConsisIDModel"
|
||||
},
|
||||
"widgets_values": [
|
||||
"BestWishYsh/ConsisID-preview",
|
||||
"CPU",
|
||||
"bf16"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 69,
|
||||
"type": "ConsisIDFaceEncode",
|
||||
"pos": [
|
||||
983,
|
||||
224
|
||||
],
|
||||
"size": [
|
||||
393,
|
||||
46
|
||||
],
|
||||
"flags": {},
|
||||
"order": 7,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "consis_id_model",
|
||||
"type": "CONSISIDMODEL",
|
||||
"link": 152
|
||||
},
|
||||
{
|
||||
"name": "image",
|
||||
"type": "IMAGE",
|
||||
"link": 156
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "consis_id_conds",
|
||||
"type": "CONSISID_CONDS",
|
||||
"links": [
|
||||
157
|
||||
],
|
||||
"slot_index": 0
|
||||
},
|
||||
{
|
||||
"name": "face_image",
|
||||
"type": "IMAGE",
|
||||
"links": [
|
||||
174,
|
||||
176
|
||||
],
|
||||
"slot_index": 1
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "ConsisIDFaceEncode"
|
||||
},
|
||||
"widgets_values": []
|
||||
},
|
||||
{
|
||||
"id": 75,
|
||||
"type": "DownloadAndLoadCogVideoModel",
|
||||
"pos": [
|
||||
1327,
|
||||
-133
|
||||
],
|
||||
"size": [
|
||||
315,
|
||||
218
|
||||
],
|
||||
"flags": {},
|
||||
"order": 2,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "block_edit",
|
||||
"type": "TRANSFORMERBLOCKS",
|
||||
"link": null,
|
||||
"shape": 7
|
||||
},
|
||||
{
|
||||
"name": "lora",
|
||||
"type": "COGLORA",
|
||||
"link": null,
|
||||
"shape": 7
|
||||
},
|
||||
{
|
||||
"name": "compile_args",
|
||||
"type": "COMPILEARGS",
|
||||
"link": null,
|
||||
"shape": 7
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "model",
|
||||
"type": "COGVIDEOMODEL",
|
||||
"links": [
|
||||
159
|
||||
],
|
||||
"slot_index": 0
|
||||
},
|
||||
{
|
||||
"name": "vae",
|
||||
"type": "VAE",
|
||||
"links": [
|
||||
170,
|
||||
181
|
||||
],
|
||||
"slot_index": 1
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "DownloadAndLoadCogVideoModel"
|
||||
},
|
||||
"widgets_values": [
|
||||
"BestWishYsh/ConsisID-preview",
|
||||
"bf16",
|
||||
"disabled",
|
||||
false,
|
||||
"sageattn",
|
||||
"main_device"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 83,
|
||||
"type": "ImageResizeKJ",
|
||||
"pos": [
|
||||
765,
|
||||
803
|
||||
],
|
||||
"size": [
|
||||
315,
|
||||
266
|
||||
],
|
||||
"flags": {},
|
||||
"order": 9,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "image",
|
||||
"type": "IMAGE",
|
||||
"link": 176
|
||||
},
|
||||
{
|
||||
"name": "get_image_size",
|
||||
"type": "IMAGE",
|
||||
"link": null,
|
||||
"shape": 7
|
||||
},
|
||||
{
|
||||
"name": "width_input",
|
||||
"type": "INT",
|
||||
"link": null,
|
||||
"widget": {
|
||||
"name": "width_input"
|
||||
},
|
||||
"shape": 7
|
||||
},
|
||||
{
|
||||
"name": "height_input",
|
||||
"type": "INT",
|
||||
"link": null,
|
||||
"widget": {
|
||||
"name": "height_input"
|
||||
},
|
||||
"shape": 7
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "IMAGE",
|
||||
"type": "IMAGE",
|
||||
"links": [
|
||||
184
|
||||
],
|
||||
"slot_index": 0
|
||||
},
|
||||
{
|
||||
"name": "width",
|
||||
"type": "INT",
|
||||
"links": null
|
||||
},
|
||||
{
|
||||
"name": "height",
|
||||
"type": "INT",
|
||||
"links": null
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "ImageResizeKJ"
|
||||
},
|
||||
"widgets_values": [
|
||||
720,
|
||||
480,
|
||||
"nearest-exact",
|
||||
false,
|
||||
2,
|
||||
0,
|
||||
0,
|
||||
"disabled"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 81,
|
||||
"type": "CogVideoTextEncode",
|
||||
"pos": [
|
||||
1125,
|
||||
658
|
||||
],
|
||||
"size": [
|
||||
400,
|
||||
200
|
||||
],
|
||||
"flags": {},
|
||||
"order": 6,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "clip",
|
||||
"type": "CLIP",
|
||||
"link": 168
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "conditioning",
|
||||
"type": "CONDITIONING",
|
||||
"links": [
|
||||
169
|
||||
],
|
||||
"slot_index": 0
|
||||
},
|
||||
{
|
||||
"name": "clip",
|
||||
"type": "CLIP",
|
||||
"links": [],
|
||||
"slot_index": 1
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "CogVideoTextEncode"
|
||||
},
|
||||
"widgets_values": [
|
||||
"bad quality, blurry",
|
||||
1,
|
||||
true
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 87,
|
||||
"type": "CogVideoDecode",
|
||||
"pos": [
|
||||
2207,
|
||||
-108
|
||||
],
|
||||
"size": [
|
||||
315,
|
||||
198
|
||||
],
|
||||
"flags": {},
|
||||
"order": 12,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "vae",
|
||||
"type": "VAE",
|
||||
"link": 181
|
||||
},
|
||||
{
|
||||
"name": "samples",
|
||||
"type": "LATENT",
|
||||
"link": 182
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "images",
|
||||
"type": "IMAGE",
|
||||
"links": [
|
||||
183
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "CogVideoDecode"
|
||||
},
|
||||
"widgets_values": [
|
||||
true,
|
||||
240,
|
||||
360,
|
||||
0.2,
|
||||
0.2,
|
||||
true
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 72,
|
||||
"type": "ImageResizeKJ",
|
||||
"pos": [
|
||||
584,
|
||||
-223
|
||||
],
|
||||
"size": [
|
||||
315,
|
||||
266
|
||||
],
|
||||
"flags": {},
|
||||
"order": 5,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "image",
|
||||
"type": "IMAGE",
|
||||
"link": 155
|
||||
},
|
||||
{
|
||||
"name": "get_image_size",
|
||||
"type": "IMAGE",
|
||||
"link": null,
|
||||
"shape": 7
|
||||
},
|
||||
{
|
||||
"name": "width_input",
|
||||
"type": "INT",
|
||||
"link": null,
|
||||
"widget": {
|
||||
"name": "width_input"
|
||||
},
|
||||
"shape": 7
|
||||
},
|
||||
{
|
||||
"name": "height_input",
|
||||
"type": "INT",
|
||||
"link": null,
|
||||
"widget": {
|
||||
"name": "height_input"
|
||||
},
|
||||
"shape": 7
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "IMAGE",
|
||||
"type": "IMAGE",
|
||||
"links": [
|
||||
156
|
||||
],
|
||||
"slot_index": 0
|
||||
},
|
||||
{
|
||||
"name": "width",
|
||||
"type": "INT",
|
||||
"links": null
|
||||
},
|
||||
{
|
||||
"name": "height",
|
||||
"type": "INT",
|
||||
"links": null
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "ImageResizeKJ"
|
||||
},
|
||||
"widgets_values": [
|
||||
512,
|
||||
512,
|
||||
"lanczos",
|
||||
false,
|
||||
2,
|
||||
0,
|
||||
0,
|
||||
"center"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 84,
|
||||
"type": "PreviewImage",
|
||||
"pos": [
|
||||
1011,
|
||||
-100
|
||||
],
|
||||
"size": [
|
||||
210,
|
||||
246
|
||||
],
|
||||
"flags": {},
|
||||
"order": 8,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "images",
|
||||
"type": "IMAGE",
|
||||
"link": 174
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"properties": {
|
||||
"Node name for S&R": "PreviewImage"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": 80,
|
||||
"type": "CogVideoTextEncode",
|
||||
"pos": [
|
||||
1109,
|
||||
360
|
||||
],
|
||||
"size": [
|
||||
442.14453125,
|
||||
234.34109497070312
|
||||
],
|
||||
"flags": {},
|
||||
"order": 4,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "clip",
|
||||
"type": "CLIP",
|
||||
"link": 164
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "conditioning",
|
||||
"type": "CONDITIONING",
|
||||
"links": [
|
||||
167
|
||||
],
|
||||
"slot_index": 0
|
||||
},
|
||||
{
|
||||
"name": "clip",
|
||||
"type": "CLIP",
|
||||
"links": [
|
||||
168
|
||||
],
|
||||
"slot_index": 1
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "CogVideoTextEncode"
|
||||
},
|
||||
"widgets_values": [
|
||||
"A woman adorned with a delicate flower crown, is standing amidst a field of gently swaying wildflowers. Her eyes sparkle with a serene gaze, and a faint smile graces her lips, suggesting a moment of peaceful contentment. The shot is framed from the waist up, highlighting the gentle breeze lightly tousling her hair. The background reveals an expansive meadow under a bright blue sky, capturing the tranquility of a sunny afternoon.",
|
||||
1,
|
||||
false
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 71,
|
||||
"type": "LoadImage",
|
||||
"pos": [
|
||||
213,
|
||||
-225
|
||||
],
|
||||
"size": [
|
||||
315,
|
||||
314
|
||||
],
|
||||
"flags": {},
|
||||
"order": 3,
|
||||
"mode": 0,
|
||||
"inputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "IMAGE",
|
||||
"type": "IMAGE",
|
||||
"links": [
|
||||
155
|
||||
],
|
||||
"slot_index": 0
|
||||
},
|
||||
{
|
||||
"name": "MASK",
|
||||
"type": "MASK",
|
||||
"links": null
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "LoadImage"
|
||||
},
|
||||
"widgets_values": [
|
||||
"2 (2).jpg",
|
||||
"image"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 88,
|
||||
"type": "VHS_VideoCombine",
|
||||
"pos": [
|
||||
2726,
|
||||
-72
|
||||
],
|
||||
"size": [
|
||||
632.8847045898438,
|
||||
732.5897827148438
|
||||
],
|
||||
"flags": {},
|
||||
"order": 13,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "images",
|
||||
"type": "IMAGE",
|
||||
"link": 183
|
||||
},
|
||||
{
|
||||
"name": "audio",
|
||||
"type": "AUDIO",
|
||||
"link": null,
|
||||
"shape": 7
|
||||
},
|
||||
{
|
||||
"name": "meta_batch",
|
||||
"type": "VHS_BatchManager",
|
||||
"link": null,
|
||||
"shape": 7
|
||||
},
|
||||
{
|
||||
"name": "vae",
|
||||
"type": "VAE",
|
||||
"link": null,
|
||||
"shape": 7
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "Filenames",
|
||||
"type": "VHS_FILENAMES",
|
||||
"links": null
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "VHS_VideoCombine"
|
||||
},
|
||||
"widgets_values": {
|
||||
"frame_rate": 8,
|
||||
"loop_count": 0,
|
||||
"filename_prefix": "ConsisID",
|
||||
"format": "video/h264-mp4",
|
||||
"pix_fmt": "yuv420p",
|
||||
"crf": 19,
|
||||
"save_metadata": true,
|
||||
"pingpong": false,
|
||||
"save_output": false,
|
||||
"videopreview": {
|
||||
"hidden": false,
|
||||
"paused": false,
|
||||
"params": {
|
||||
"filename": "ConsisID_00006.mp4",
|
||||
"subfolder": "",
|
||||
"type": "temp",
|
||||
"format": "video/h264-mp4",
|
||||
"frame_rate": 8
|
||||
},
|
||||
"muted": false
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": 73,
|
||||
"type": "CogVideoSampler",
|
||||
"pos": [
|
||||
1753,
|
||||
-1
|
||||
],
|
||||
"size": [
|
||||
330,
|
||||
594
|
||||
],
|
||||
"flags": {},
|
||||
"order": 11,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "model",
|
||||
"type": "COGVIDEOMODEL",
|
||||
"link": 159
|
||||
},
|
||||
{
|
||||
"name": "positive",
|
||||
"type": "CONDITIONING",
|
||||
"link": 167
|
||||
},
|
||||
{
|
||||
"name": "negative",
|
||||
"type": "CONDITIONING",
|
||||
"link": 169
|
||||
},
|
||||
{
|
||||
"name": "samples",
|
||||
"type": "LATENT",
|
||||
"link": null,
|
||||
"shape": 7
|
||||
},
|
||||
{
|
||||
"name": "image_cond_latents",
|
||||
"type": "LATENT",
|
||||
"link": 172,
|
||||
"shape": 7
|
||||
},
|
||||
{
|
||||
"name": "context_options",
|
||||
"type": "COGCONTEXT",
|
||||
"link": null,
|
||||
"shape": 7
|
||||
},
|
||||
{
|
||||
"name": "controlnet",
|
||||
"type": "COGVIDECONTROLNET",
|
||||
"link": null,
|
||||
"shape": 7
|
||||
},
|
||||
{
|
||||
"name": "tora_trajectory",
|
||||
"type": "TORAFEATURES",
|
||||
"link": null,
|
||||
"shape": 7
|
||||
},
|
||||
{
|
||||
"name": "fastercache",
|
||||
"type": "FASTERCACHEARGS",
|
||||
"link": null,
|
||||
"shape": 7
|
||||
},
|
||||
{
|
||||
"name": "consis_id_cond",
|
||||
"type": "CONSISID_CONDS",
|
||||
"link": 157,
|
||||
"shape": 7
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "samples",
|
||||
"type": "LATENT",
|
||||
"links": [
|
||||
182
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "CogVideoSampler"
|
||||
},
|
||||
"widgets_values": [
|
||||
49,
|
||||
40,
|
||||
6,
|
||||
3,
|
||||
"fixed",
|
||||
"CogVideoXDPMScheduler",
|
||||
1
|
||||
]
|
||||
}
|
||||
],
|
||||
"links": [
|
||||
[
|
||||
152,
|
||||
68,
|
||||
0,
|
||||
69,
|
||||
0,
|
||||
"CONSISIDMODEL"
|
||||
],
|
||||
[
|
||||
155,
|
||||
71,
|
||||
0,
|
||||
72,
|
||||
0,
|
||||
"IMAGE"
|
||||
],
|
||||
[
|
||||
156,
|
||||
72,
|
||||
0,
|
||||
69,
|
||||
1,
|
||||
"IMAGE"
|
||||
],
|
||||
[
|
||||
157,
|
||||
69,
|
||||
0,
|
||||
73,
|
||||
9,
|
||||
"CONSISID_CONDS"
|
||||
],
|
||||
[
|
||||
159,
|
||||
75,
|
||||
0,
|
||||
73,
|
||||
0,
|
||||
"COGVIDEOMODEL"
|
||||
],
|
||||
[
|
||||
164,
|
||||
78,
|
||||
0,
|
||||
80,
|
||||
0,
|
||||
"CLIP"
|
||||
],
|
||||
[
|
||||
167,
|
||||
80,
|
||||
0,
|
||||
73,
|
||||
1,
|
||||
"CONDITIONING"
|
||||
],
|
||||
[
|
||||
168,
|
||||
80,
|
||||
1,
|
||||
81,
|
||||
0,
|
||||
"CLIP"
|
||||
],
|
||||
[
|
||||
169,
|
||||
81,
|
||||
0,
|
||||
73,
|
||||
2,
|
||||
"CONDITIONING"
|
||||
],
|
||||
[
|
||||
170,
|
||||
75,
|
||||
1,
|
||||
82,
|
||||
0,
|
||||
"VAE"
|
||||
],
|
||||
[
|
||||
172,
|
||||
82,
|
||||
0,
|
||||
73,
|
||||
4,
|
||||
"LATENT"
|
||||
],
|
||||
[
|
||||
174,
|
||||
69,
|
||||
1,
|
||||
84,
|
||||
0,
|
||||
"IMAGE"
|
||||
],
|
||||
[
|
||||
176,
|
||||
69,
|
||||
1,
|
||||
83,
|
||||
0,
|
||||
"IMAGE"
|
||||
],
|
||||
[
|
||||
181,
|
||||
75,
|
||||
1,
|
||||
87,
|
||||
0,
|
||||
"VAE"
|
||||
],
|
||||
[
|
||||
182,
|
||||
73,
|
||||
0,
|
||||
87,
|
||||
1,
|
||||
"LATENT"
|
||||
],
|
||||
[
|
||||
183,
|
||||
87,
|
||||
0,
|
||||
88,
|
||||
0,
|
||||
"IMAGE"
|
||||
],
|
||||
[
|
||||
184,
|
||||
83,
|
||||
0,
|
||||
82,
|
||||
1,
|
||||
"IMAGE"
|
||||
]
|
||||
],
|
||||
"groups": [],
|
||||
"config": {},
|
||||
"extra": {
|
||||
"ds": {
|
||||
"scale": 0.7513148009015777,
|
||||
"offset": [
|
||||
-62.54456298631729,
|
||||
363.8127925482066
|
||||
]
|
||||
}
|
||||
},
|
||||
"version": 0.4
|
||||
}
|
||||
@ -110,7 +110,8 @@ class DownloadAndLoadCogVideoModel:
|
||||
"alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose",
|
||||
"alibaba-pai/CogVideoX-Fun-V1.1-5b-Control",
|
||||
"feizhengcong/CogvideoX-Interpolation",
|
||||
"NimVideo/cogvideox-2b-img2vid"
|
||||
"NimVideo/cogvideox-2b-img2vid",
|
||||
"BestWishYsh/ConsisID-preview",
|
||||
],
|
||||
),
|
||||
|
||||
@ -199,7 +200,7 @@ class DownloadAndLoadCogVideoModel:
|
||||
download_path = base_path
|
||||
repo_id = model
|
||||
subfolder = "transformer"
|
||||
allow_patterns = ["*transformer*", "*scheduler*", "*vae*"]
|
||||
allow_patterns = ["*transformer*", "*scheduler*", "*vae*", "*face_encoder*"]
|
||||
|
||||
if "2b" in model:
|
||||
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_2b.json')
|
||||
@ -217,8 +218,24 @@ class DownloadAndLoadCogVideoModel:
|
||||
local_dir=download_path,
|
||||
local_dir_use_symlinks=False,
|
||||
)
|
||||
|
||||
transformer = CogVideoXTransformer3DModel.from_pretrained(base_path, subfolder=subfolder)
|
||||
# transformer_additional_kwargs={}
|
||||
if "consisid" in model.lower():
|
||||
# transformer_additional_kwargs={
|
||||
# 'torch_dtype': dtype,
|
||||
# 'revision': None,
|
||||
# 'variant': None,
|
||||
# 'is_train_face': True,
|
||||
# 'is_kps': False,
|
||||
# 'LFE_num_tokens': 32,
|
||||
# 'LFE_output_dim': 768,
|
||||
# 'LFE_heads': 12,
|
||||
# 'cross_attn_interval': 2,
|
||||
# }
|
||||
transformer = CogVideoXTransformer3DModel.from_pretrained_cus(base_path, subfolder=subfolder)
|
||||
else:
|
||||
transformer = CogVideoXTransformer3DModel.from_pretrained(base_path, subfolder=subfolder)
|
||||
|
||||
|
||||
transformer = transformer.to(dtype).to(transformer_load_device)
|
||||
|
||||
if "1.5" in model:
|
||||
|
||||
7
nodes.py
7
nodes.py
@ -592,6 +592,7 @@ class CogVideoSampler:
|
||||
"controlnet": ("COGVIDECONTROLNET",),
|
||||
"tora_trajectory": ("TORAFEATURES", ),
|
||||
"fastercache": ("FASTERCACHEARGS", ),
|
||||
"consis_id_cond": ("CONSISID_CONDS", {"tooltip": "ConsisID conditioning"} ),
|
||||
}
|
||||
}
|
||||
|
||||
@ -601,7 +602,7 @@ class CogVideoSampler:
|
||||
CATEGORY = "CogVideoWrapper"
|
||||
|
||||
def process(self, model, positive, negative, steps, cfg, seed, scheduler, num_frames, samples=None,
|
||||
denoise_strength=1.0, image_cond_latents=None, context_options=None, controlnet=None, tora_trajectory=None, fastercache=None):
|
||||
denoise_strength=1.0, image_cond_latents=None, context_options=None, controlnet=None, tora_trajectory=None, fastercache=None, consis_id_cond=None):
|
||||
mm.unload_all_models()
|
||||
mm.soft_empty_cache()
|
||||
|
||||
@ -610,7 +611,8 @@ class CogVideoSampler:
|
||||
"I2V" in model_name or
|
||||
"interpolation" in model_name.lower() or
|
||||
"fun" in model_name.lower() or
|
||||
"img2vid" in model_name.lower()
|
||||
"img2vid" in model_name.lower() or
|
||||
"consisid" in model_name.lower()
|
||||
) else False
|
||||
if "fun" in model_name.lower() and not ("pose" in model_name.lower() or "control" in model_name.lower()) and image_cond_latents is not None:
|
||||
assert image_cond_latents["mask"] is not None, "For fun inpaint models use CogVideoImageEncodeFunInP"
|
||||
@ -722,6 +724,7 @@ class CogVideoSampler:
|
||||
tora=tora_trajectory if tora_trajectory is not None else None,
|
||||
image_cond_start_percent=image_cond_start_percent if image_cond_latents is not None else 0.0,
|
||||
image_cond_end_percent=image_cond_end_percent if image_cond_latents is not None else 1.0,
|
||||
consis_id=consis_id_cond,
|
||||
)
|
||||
if not model["cpu_offloading"] and model["manual_offloading"]:
|
||||
pipe.transformer.to(offload_device)
|
||||
|
||||
148
nodes_consis_id.py
Normal file
148
nodes_consis_id.py
Normal file
@ -0,0 +1,148 @@
|
||||
import os
|
||||
import json
|
||||
import torch
|
||||
|
||||
import folder_paths
|
||||
import comfy.model_management as mm
|
||||
|
||||
class DownloadAndLoadConsisIDModel:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"model": (["BestWishYsh/ConsisID-preview",],),
|
||||
"onnx_device": (
|
||||
['CPU', 'CUDA', 'ROCM', 'CoreML'], {
|
||||
"default": 'CPU'
|
||||
}),
|
||||
"precision": (["fp16", "fp32", "bf16"],
|
||||
{"default": "bf16", "tooltip": "official recommendation is that 2b model should be fp16, 5b model should be bf16"}),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("CONSISIDMODEL", )
|
||||
RETURN_NAMES = ("consis_id_model", )
|
||||
FUNCTION = "loadmodel"
|
||||
CATEGORY = "CogVideoWrapper"
|
||||
DESCRIPTION = "Downloads and loads the selected CogVideo model from Huggingface to 'ComfyUI/models/CogVideo'"
|
||||
|
||||
def loadmodel(self, model, precision, onnx_device):
|
||||
import insightface
|
||||
from insightface.app import FaceAnalysis
|
||||
from facexlib.parsing import init_parsing_model
|
||||
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
||||
from .consis_id.models.eva_clip import create_model_and_transforms
|
||||
from .consis_id.models.eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
||||
|
||||
device = mm.get_torch_device()
|
||||
offload_device = mm.unet_offload_device()
|
||||
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
|
||||
base_path = folder_paths.get_folder_paths("CogVideo")[0]
|
||||
model_path = os.path.join(base_path, "ConsisID-preview")
|
||||
face_encoder_path = os.path.join(model_path, "face_encoder")
|
||||
|
||||
# 1. load face helper models
|
||||
face_helper = FaceRestoreHelper(
|
||||
upscale_factor=1,
|
||||
face_size=512,
|
||||
crop_ratio=(1, 1),
|
||||
det_model='retinaface_resnet50',
|
||||
save_ext='png',
|
||||
device=device,
|
||||
model_rootpath=model_path
|
||||
)
|
||||
face_helper.face_parse = None
|
||||
face_helper.face_parse = init_parsing_model(model_name='bisenet', device=device, model_rootpath=model_path)
|
||||
face_helper.face_det.eval()
|
||||
face_helper.face_parse.eval()
|
||||
|
||||
model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', os.path.join(face_encoder_path, "EVA02_CLIP_L_336_psz14_s6B.pt"), force_custom_clip=True)
|
||||
face_clip_model = model.visual
|
||||
face_clip_model.eval()
|
||||
|
||||
eva_transform_mean = getattr(face_clip_model, 'image_mean', OPENAI_DATASET_MEAN)
|
||||
eva_transform_std = getattr(face_clip_model, 'image_std', OPENAI_DATASET_STD)
|
||||
if not isinstance(eva_transform_mean, (list, tuple)):
|
||||
eva_transform_mean = (eva_transform_mean,) * 3
|
||||
if not isinstance(eva_transform_std, (list, tuple)):
|
||||
eva_transform_std = (eva_transform_std,) * 3
|
||||
eva_transform_mean = eva_transform_mean
|
||||
eva_transform_std = eva_transform_std
|
||||
|
||||
face_main_model = FaceAnalysis(name='antelopev2', root=face_encoder_path, providers=[onnx_device + 'ExecutionProvider',])
|
||||
handler_ante = insightface.model_zoo.get_model(f'{face_encoder_path}/models/antelopev2/glintr100.onnx', providers=[onnx_device + 'ExecutionProvider',])
|
||||
face_main_model.prepare(ctx_id=0, det_size=(640, 640))
|
||||
handler_ante.prepare(ctx_id=0)
|
||||
|
||||
face_clip_model.to(device, dtype=dtype)
|
||||
face_helper.face_det.to(device)
|
||||
face_helper.face_parse.to(device)
|
||||
|
||||
mm.soft_empty_cache()
|
||||
|
||||
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
|
||||
consis_id_model = {
|
||||
"face_helper": face_helper,
|
||||
"face_clip_model": face_clip_model,
|
||||
"handler_ante": handler_ante,
|
||||
"eva_transform_mean": eva_transform_mean,
|
||||
"eva_transform_std": eva_transform_std,
|
||||
"face_main_model": face_main_model,
|
||||
"dtype": dtype,
|
||||
}
|
||||
|
||||
return consis_id_model,
|
||||
|
||||
class ConsisIDFaceEncode:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"consis_id_model": ("CONSISIDMODEL",),
|
||||
"image": ("IMAGE",),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("CONSISID_CONDS", "IMAGE",)
|
||||
RETURN_NAMES = ("consis_id_conds", "face_image", )
|
||||
FUNCTION = "faceencode"
|
||||
CATEGORY = "CogVideoWrapper"
|
||||
DESCRIPTION = "Downloads and loads the selected CogVideo model from Huggingface to 'ComfyUI/models/CogVideo'"
|
||||
|
||||
def faceencode(self, image, consis_id_model):
|
||||
from .consis_id.models.utils import process_face_embeddings
|
||||
|
||||
device = mm.get_torch_device()
|
||||
dtype = consis_id_model["dtype"]
|
||||
|
||||
id_image = image[0].cpu().numpy() * 255
|
||||
|
||||
face_helper = consis_id_model["face_helper"]
|
||||
face_clip_model = consis_id_model["face_clip_model"]
|
||||
handler_ante = consis_id_model["handler_ante"]
|
||||
eva_transform_mean = consis_id_model["eva_transform_mean"]
|
||||
eva_transform_std = consis_id_model["eva_transform_std"]
|
||||
face_main_model = consis_id_model["face_main_model"]
|
||||
id_cond, id_vit_hidden, align_crop_face_image, face_kps = process_face_embeddings(face_helper, face_clip_model, handler_ante,
|
||||
eva_transform_mean, eva_transform_std,
|
||||
face_main_model, device, dtype, id_image,
|
||||
original_id_image=id_image, is_align_face=True,
|
||||
cal_uncond=False)
|
||||
consis_id_conds = {
|
||||
"id_cond": id_cond,
|
||||
"id_vit_hidden": id_vit_hidden,
|
||||
#"align_crop_face_image": align_crop_face_image,
|
||||
#"face_kps": face_kps
|
||||
}
|
||||
print(align_crop_face_image.shape)
|
||||
align_crop_face_image = align_crop_face_image.permute(0, 2, 3, 1).float().cpu()
|
||||
return consis_id_conds, align_crop_face_image,
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"DownloadAndLoadConsisIDModel": DownloadAndLoadConsisIDModel,
|
||||
"ConsisIDFaceEncode": ConsisIDFaceEncode,
|
||||
}
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"DownloadAndLoadConsisIDModel": "DownloadAndLoadConsisIDModel",
|
||||
"ConsisIDFaceEncode": "ConsisID FaceEncode",
|
||||
}
|
||||
@ -351,6 +351,7 @@ class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
||||
tora: Optional[dict] = None,
|
||||
image_cond_start_percent: float = 0.0,
|
||||
image_cond_end_percent: float = 1.0,
|
||||
consis_id: Optional[dict] = None,
|
||||
|
||||
):
|
||||
"""
|
||||
@ -762,6 +763,7 @@ class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
||||
controlnet_states=controlnet_states,
|
||||
controlnet_weights=control_weights,
|
||||
video_flow_features=video_flow_features if (tora is not None and tora["start_percent"] <= current_step_percentage <= tora["end_percent"]) else None,
|
||||
consis_id=consis_id,
|
||||
)[0]
|
||||
noise_pred = noise_pred.float()
|
||||
if isinstance(self.scheduler, CogVideoXDPMScheduler):
|
||||
@ -798,5 +800,5 @@ class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
print("latents shape", latents.shape)
|
||||
return latents
|
||||
Loading…
x
Reference in New Issue
Block a user