From dd60660feed8c322bc52498c7cb43a73e0bd5bd5 Mon Sep 17 00:00:00 2001 From: kijai <40791699+kijai@users.noreply.github.com> Date: Wed, 18 Sep 2024 17:00:03 +0300 Subject: [PATCH] initial CogVideoX-Fun support --- cogvideox_fun/autoencoder_magvit.py | 1296 +++++++++++++++++++ cogvideox_fun/pipeline_cogvideox_inpaint.py | 862 ++++++++++++ cogvideox_fun/transformer_3d.py | 605 +++++++++ cogvideox_fun/utils.py | 246 ++++ nodes.py | 162 ++- pipeline_cogvideox.py | 19 + 6 files changed, 3177 insertions(+), 13 deletions(-) create mode 100644 cogvideox_fun/autoencoder_magvit.py create mode 100644 cogvideox_fun/pipeline_cogvideox_inpaint.py create mode 100644 cogvideox_fun/transformer_3d.py create mode 100644 cogvideox_fun/utils.py diff --git a/cogvideox_fun/autoencoder_magvit.py b/cogvideox_fun/autoencoder_magvit.py new file mode 100644 index 0000000..9c2b906 --- /dev/null +++ b/cogvideox_fun/autoencoder_magvit.py @@ -0,0 +1,1296 @@ +# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team. +# All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import Optional, Tuple, Union + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F + +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.loaders.single_file_model import FromOriginalModelMixin +from diffusers.utils import logging +from diffusers.utils.accelerate_utils import apply_forward_hook +from diffusers.models.activations import get_activation +from diffusers.models.downsampling import CogVideoXDownsample3D +from diffusers.models.modeling_outputs import AutoencoderKLOutput +from diffusers.models.modeling_utils import ModelMixin +from diffusers.models.upsampling import CogVideoXUpsample3D +from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +class CogVideoXSafeConv3d(nn.Conv3d): + r""" + A 3D convolution layer that splits the input tensor into smaller parts to avoid OOM in CogVideoX Model. + """ + + def forward(self, input: torch.Tensor) -> torch.Tensor: + memory_count = torch.prod(torch.tensor(input.shape)).item() * 2 / 1024**3 + + # Set to 2GB, suitable for CuDNN + if memory_count > 2: + kernel_size = self.kernel_size[0] + part_num = int(memory_count / 2) + 1 + input_chunks = torch.chunk(input, part_num, dim=2) + + if kernel_size > 1: + input_chunks = [input_chunks[0]] + [ + torch.cat((input_chunks[i - 1][:, :, -kernel_size + 1 :], input_chunks[i]), dim=2) + for i in range(1, len(input_chunks)) + ] + + output_chunks = [] + for input_chunk in input_chunks: + output_chunks.append(super().forward(input_chunk)) + output = torch.cat(output_chunks, dim=2) + return output + else: + return super().forward(input) + + +class CogVideoXCausalConv3d(nn.Module): + r"""A 3D causal convolution layer that pads the input tensor to ensure causality in CogVideoX Model. + + Args: + in_channels (`int`): Number of channels in the input tensor. + out_channels (`int`): Number of output channels produced by the convolution. + kernel_size (`int` or `Tuple[int, int, int]`): Kernel size of the convolutional kernel. + stride (`int`, defaults to `1`): Stride of the convolution. + dilation (`int`, defaults to `1`): Dilation rate of the convolution. + pad_mode (`str`, defaults to `"constant"`): Padding mode. + """ + + def __init__( + self, + in_channels: int, + out_channels: int, + kernel_size: Union[int, Tuple[int, int, int]], + stride: int = 1, + dilation: int = 1, + pad_mode: str = "constant", + ): + super().__init__() + + if isinstance(kernel_size, int): + kernel_size = (kernel_size,) * 3 + + time_kernel_size, height_kernel_size, width_kernel_size = kernel_size + + self.pad_mode = pad_mode + time_pad = dilation * (time_kernel_size - 1) + (1 - stride) + height_pad = height_kernel_size // 2 + width_pad = width_kernel_size // 2 + + self.height_pad = height_pad + self.width_pad = width_pad + self.time_pad = time_pad + self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0) + + self.temporal_dim = 2 + self.time_kernel_size = time_kernel_size + + stride = (stride, 1, 1) + dilation = (dilation, 1, 1) + self.conv = CogVideoXSafeConv3d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=kernel_size, + stride=stride, + dilation=dilation, + ) + + self.conv_cache = None + + def fake_context_parallel_forward(self, inputs: torch.Tensor) -> torch.Tensor: + kernel_size = self.time_kernel_size + if kernel_size > 1: + cached_inputs = ( + [self.conv_cache] if self.conv_cache is not None else [inputs[:, :, :1]] * (kernel_size - 1) + ) + inputs = torch.cat(cached_inputs + [inputs], dim=2) + return inputs + + def _clear_fake_context_parallel_cache(self): + del self.conv_cache + self.conv_cache = None + + def forward(self, inputs: torch.Tensor) -> torch.Tensor: + inputs = self.fake_context_parallel_forward(inputs) + + self._clear_fake_context_parallel_cache() + # Note: we could move these to the cpu for a lower maximum memory usage but its only a few + # hundred megabytes and so let's not do it for now + self.conv_cache = inputs[:, :, -self.time_kernel_size + 1 :].clone() + + padding_2d = (self.width_pad, self.width_pad, self.height_pad, self.height_pad) + inputs = F.pad(inputs, padding_2d, mode="constant", value=0) + + output = self.conv(inputs) + return output + + +class CogVideoXSpatialNorm3D(nn.Module): + r""" + Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002. This implementation is specific + to 3D-video like data. + + CogVideoXSafeConv3d is used instead of nn.Conv3d to avoid OOM in CogVideoX Model. + + Args: + f_channels (`int`): + The number of channels for input to group normalization layer, and output of the spatial norm layer. + zq_channels (`int`): + The number of channels for the quantized vector as described in the paper. + groups (`int`): + Number of groups to separate the channels into for group normalization. + """ + + def __init__( + self, + f_channels: int, + zq_channels: int, + groups: int = 32, + ): + super().__init__() + self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=groups, eps=1e-6, affine=True) + self.conv_y = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1) + self.conv_b = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1) + + def forward(self, f: torch.Tensor, zq: torch.Tensor) -> torch.Tensor: + if f.shape[2] > 1 and f.shape[2] % 2 == 1: + f_first, f_rest = f[:, :, :1], f[:, :, 1:] + f_first_size, f_rest_size = f_first.shape[-3:], f_rest.shape[-3:] + z_first, z_rest = zq[:, :, :1], zq[:, :, 1:] + z_first = F.interpolate(z_first, size=f_first_size) + z_rest = F.interpolate(z_rest, size=f_rest_size) + zq = torch.cat([z_first, z_rest], dim=2) + else: + zq = F.interpolate(zq, size=f.shape[-3:]) + + norm_f = self.norm_layer(f) + new_f = norm_f * self.conv_y(zq) + self.conv_b(zq) + return new_f + + +class CogVideoXResnetBlock3D(nn.Module): + r""" + A 3D ResNet block used in the CogVideoX model. + + Args: + in_channels (`int`): + Number of input channels. + out_channels (`int`, *optional*): + Number of output channels. If None, defaults to `in_channels`. + dropout (`float`, defaults to `0.0`): + Dropout rate. + temb_channels (`int`, defaults to `512`): + Number of time embedding channels. + groups (`int`, defaults to `32`): + Number of groups to separate the channels into for group normalization. + eps (`float`, defaults to `1e-6`): + Epsilon value for normalization layers. + non_linearity (`str`, defaults to `"swish"`): + Activation function to use. + conv_shortcut (bool, defaults to `False`): + Whether or not to use a convolution shortcut. + spatial_norm_dim (`int`, *optional*): + The dimension to use for spatial norm if it is to be used instead of group norm. + pad_mode (str, defaults to `"first"`): + Padding mode. + """ + + def __init__( + self, + in_channels: int, + out_channels: Optional[int] = None, + dropout: float = 0.0, + temb_channels: int = 512, + groups: int = 32, + eps: float = 1e-6, + non_linearity: str = "swish", + conv_shortcut: bool = False, + spatial_norm_dim: Optional[int] = None, + pad_mode: str = "first", + ): + super().__init__() + + out_channels = out_channels or in_channels + + self.in_channels = in_channels + self.out_channels = out_channels + self.nonlinearity = get_activation(non_linearity) + self.use_conv_shortcut = conv_shortcut + + if spatial_norm_dim is None: + self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=groups, eps=eps) + self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=groups, eps=eps) + else: + self.norm1 = CogVideoXSpatialNorm3D( + f_channels=in_channels, + zq_channels=spatial_norm_dim, + groups=groups, + ) + self.norm2 = CogVideoXSpatialNorm3D( + f_channels=out_channels, + zq_channels=spatial_norm_dim, + groups=groups, + ) + + self.conv1 = CogVideoXCausalConv3d( + in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode + ) + + if temb_channels > 0: + self.temb_proj = nn.Linear(in_features=temb_channels, out_features=out_channels) + + self.dropout = nn.Dropout(dropout) + self.conv2 = CogVideoXCausalConv3d( + in_channels=out_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode + ) + + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + self.conv_shortcut = CogVideoXCausalConv3d( + in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode + ) + else: + self.conv_shortcut = CogVideoXSafeConv3d( + in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0 + ) + + def forward( + self, + inputs: torch.Tensor, + temb: Optional[torch.Tensor] = None, + zq: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + hidden_states = inputs + + if zq is not None: + hidden_states = self.norm1(hidden_states, zq) + else: + hidden_states = self.norm1(hidden_states) + + hidden_states = self.nonlinearity(hidden_states) + hidden_states = self.conv1(hidden_states) + + if temb is not None: + hidden_states = hidden_states + self.temb_proj(self.nonlinearity(temb))[:, :, None, None, None] + + if zq is not None: + hidden_states = self.norm2(hidden_states, zq) + else: + hidden_states = self.norm2(hidden_states) + + hidden_states = self.nonlinearity(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.conv2(hidden_states) + + if self.in_channels != self.out_channels: + inputs = self.conv_shortcut(inputs) + + hidden_states = hidden_states + inputs + return hidden_states + + +class CogVideoXDownBlock3D(nn.Module): + r""" + A downsampling block used in the CogVideoX model. + + Args: + in_channels (`int`): + Number of input channels. + out_channels (`int`, *optional*): + Number of output channels. If None, defaults to `in_channels`. + temb_channels (`int`, defaults to `512`): + Number of time embedding channels. + num_layers (`int`, defaults to `1`): + Number of resnet layers. + dropout (`float`, defaults to `0.0`): + Dropout rate. + resnet_eps (`float`, defaults to `1e-6`): + Epsilon value for normalization layers. + resnet_act_fn (`str`, defaults to `"swish"`): + Activation function to use. + resnet_groups (`int`, defaults to `32`): + Number of groups to separate the channels into for group normalization. + add_downsample (`bool`, defaults to `True`): + Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension. + compress_time (`bool`, defaults to `False`): + Whether or not to downsample across temporal dimension. + pad_mode (str, defaults to `"first"`): + Padding mode. + """ + + _supports_gradient_checkpointing = True + + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + add_downsample: bool = True, + downsample_padding: int = 0, + compress_time: bool = False, + pad_mode: str = "first", + ): + super().__init__() + + resnets = [] + for i in range(num_layers): + in_channel = in_channels if i == 0 else out_channels + resnets.append( + CogVideoXResnetBlock3D( + in_channels=in_channel, + out_channels=out_channels, + dropout=dropout, + temb_channels=temb_channels, + groups=resnet_groups, + eps=resnet_eps, + non_linearity=resnet_act_fn, + pad_mode=pad_mode, + ) + ) + + self.resnets = nn.ModuleList(resnets) + self.downsamplers = None + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + CogVideoXDownsample3D( + out_channels, out_channels, padding=downsample_padding, compress_time=compress_time + ) + ] + ) + + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + temb: Optional[torch.Tensor] = None, + zq: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + for resnet in self.resnets: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def create_forward(*inputs): + return module(*inputs) + + return create_forward + + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb, zq + ) + else: + hidden_states = resnet(hidden_states, temb, zq) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + + return hidden_states + + +class CogVideoXMidBlock3D(nn.Module): + r""" + A middle block used in the CogVideoX model. + + Args: + in_channels (`int`): + Number of input channels. + temb_channels (`int`, defaults to `512`): + Number of time embedding channels. + dropout (`float`, defaults to `0.0`): + Dropout rate. + num_layers (`int`, defaults to `1`): + Number of resnet layers. + resnet_eps (`float`, defaults to `1e-6`): + Epsilon value for normalization layers. + resnet_act_fn (`str`, defaults to `"swish"`): + Activation function to use. + resnet_groups (`int`, defaults to `32`): + Number of groups to separate the channels into for group normalization. + spatial_norm_dim (`int`, *optional*): + The dimension to use for spatial norm if it is to be used instead of group norm. + pad_mode (str, defaults to `"first"`): + Padding mode. + """ + + _supports_gradient_checkpointing = True + + def __init__( + self, + in_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + spatial_norm_dim: Optional[int] = None, + pad_mode: str = "first", + ): + super().__init__() + + resnets = [] + for _ in range(num_layers): + resnets.append( + CogVideoXResnetBlock3D( + in_channels=in_channels, + out_channels=in_channels, + dropout=dropout, + temb_channels=temb_channels, + groups=resnet_groups, + eps=resnet_eps, + spatial_norm_dim=spatial_norm_dim, + non_linearity=resnet_act_fn, + pad_mode=pad_mode, + ) + ) + self.resnets = nn.ModuleList(resnets) + + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + temb: Optional[torch.Tensor] = None, + zq: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + for resnet in self.resnets: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def create_forward(*inputs): + return module(*inputs) + + return create_forward + + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb, zq + ) + else: + hidden_states = resnet(hidden_states, temb, zq) + + return hidden_states + + +class CogVideoXUpBlock3D(nn.Module): + r""" + An upsampling block used in the CogVideoX model. + + Args: + in_channels (`int`): + Number of input channels. + out_channels (`int`, *optional*): + Number of output channels. If None, defaults to `in_channels`. + temb_channels (`int`, defaults to `512`): + Number of time embedding channels. + dropout (`float`, defaults to `0.0`): + Dropout rate. + num_layers (`int`, defaults to `1`): + Number of resnet layers. + resnet_eps (`float`, defaults to `1e-6`): + Epsilon value for normalization layers. + resnet_act_fn (`str`, defaults to `"swish"`): + Activation function to use. + resnet_groups (`int`, defaults to `32`): + Number of groups to separate the channels into for group normalization. + spatial_norm_dim (`int`, defaults to `16`): + The dimension to use for spatial norm if it is to be used instead of group norm. + add_upsample (`bool`, defaults to `True`): + Whether or not to use a upsampling layer. If not used, output dimension would be same as input dimension. + compress_time (`bool`, defaults to `False`): + Whether or not to downsample across temporal dimension. + pad_mode (str, defaults to `"first"`): + Padding mode. + """ + + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + spatial_norm_dim: int = 16, + add_upsample: bool = True, + upsample_padding: int = 1, + compress_time: bool = False, + pad_mode: str = "first", + ): + super().__init__() + + resnets = [] + for i in range(num_layers): + in_channel = in_channels if i == 0 else out_channels + resnets.append( + CogVideoXResnetBlock3D( + in_channels=in_channel, + out_channels=out_channels, + dropout=dropout, + temb_channels=temb_channels, + groups=resnet_groups, + eps=resnet_eps, + non_linearity=resnet_act_fn, + spatial_norm_dim=spatial_norm_dim, + pad_mode=pad_mode, + ) + ) + + self.resnets = nn.ModuleList(resnets) + self.upsamplers = None + + if add_upsample: + self.upsamplers = nn.ModuleList( + [ + CogVideoXUpsample3D( + out_channels, out_channels, padding=upsample_padding, compress_time=compress_time + ) + ] + ) + + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + temb: Optional[torch.Tensor] = None, + zq: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + r"""Forward method of the `CogVideoXUpBlock3D` class.""" + for resnet in self.resnets: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def create_forward(*inputs): + return module(*inputs) + + return create_forward + + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb, zq + ) + else: + hidden_states = resnet(hidden_states, temb, zq) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + + return hidden_states + + +class CogVideoXEncoder3D(nn.Module): + r""" + The `CogVideoXEncoder3D` layer of a variational autoencoder that encodes its input into a latent representation. + + Args: + in_channels (`int`, *optional*, defaults to 3): + The number of input channels. + out_channels (`int`, *optional*, defaults to 3): + The number of output channels. + down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`): + The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available + options. + block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): + The number of output channels for each block. + act_fn (`str`, *optional*, defaults to `"silu"`): + The activation function to use. See `~diffusers.models.activations.get_activation` for available options. + layers_per_block (`int`, *optional*, defaults to 2): + The number of layers per block. + norm_num_groups (`int`, *optional*, defaults to 32): + The number of groups for normalization. + """ + + _supports_gradient_checkpointing = True + + def __init__( + self, + in_channels: int = 3, + out_channels: int = 16, + down_block_types: Tuple[str, ...] = ( + "CogVideoXDownBlock3D", + "CogVideoXDownBlock3D", + "CogVideoXDownBlock3D", + "CogVideoXDownBlock3D", + ), + block_out_channels: Tuple[int, ...] = (128, 256, 256, 512), + layers_per_block: int = 3, + act_fn: str = "silu", + norm_eps: float = 1e-6, + norm_num_groups: int = 32, + dropout: float = 0.0, + pad_mode: str = "first", + temporal_compression_ratio: float = 4, + ): + super().__init__() + + # log2 of temporal_compress_times + temporal_compress_level = int(np.log2(temporal_compression_ratio)) + + self.conv_in = CogVideoXCausalConv3d(in_channels, block_out_channels[0], kernel_size=3, pad_mode=pad_mode) + self.down_blocks = nn.ModuleList([]) + + # down blocks + output_channel = block_out_channels[0] + for i, down_block_type in enumerate(down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + compress_time = i < temporal_compress_level + + if down_block_type == "CogVideoXDownBlock3D": + down_block = CogVideoXDownBlock3D( + in_channels=input_channel, + out_channels=output_channel, + temb_channels=0, + dropout=dropout, + num_layers=layers_per_block, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + add_downsample=not is_final_block, + compress_time=compress_time, + ) + else: + raise ValueError("Invalid `down_block_type` encountered. Must be `CogVideoXDownBlock3D`") + + self.down_blocks.append(down_block) + + # mid block + self.mid_block = CogVideoXMidBlock3D( + in_channels=block_out_channels[-1], + temb_channels=0, + dropout=dropout, + num_layers=2, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + pad_mode=pad_mode, + ) + + self.norm_out = nn.GroupNorm(norm_num_groups, block_out_channels[-1], eps=1e-6) + self.conv_act = nn.SiLU() + self.conv_out = CogVideoXCausalConv3d( + block_out_channels[-1], 2 * out_channels, kernel_size=3, pad_mode=pad_mode + ) + + self.gradient_checkpointing = False + + def forward(self, sample: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor: + r"""The forward method of the `CogVideoXEncoder3D` class.""" + hidden_states = self.conv_in(sample) + + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + # 1. Down + for down_block in self.down_blocks: + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(down_block), hidden_states, temb, None + ) + + # 2. Mid + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(self.mid_block), hidden_states, temb, None + ) + else: + # 1. Down + for down_block in self.down_blocks: + hidden_states = down_block(hidden_states, temb, None) + + # 2. Mid + hidden_states = self.mid_block(hidden_states, temb, None) + + # 3. Post-process + hidden_states = self.norm_out(hidden_states) + hidden_states = self.conv_act(hidden_states) + hidden_states = self.conv_out(hidden_states) + return hidden_states + + +class CogVideoXDecoder3D(nn.Module): + r""" + The `CogVideoXDecoder3D` layer of a variational autoencoder that decodes its latent representation into an output + sample. + + Args: + in_channels (`int`, *optional*, defaults to 3): + The number of input channels. + out_channels (`int`, *optional*, defaults to 3): + The number of output channels. + up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`): + The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options. + block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): + The number of output channels for each block. + act_fn (`str`, *optional*, defaults to `"silu"`): + The activation function to use. See `~diffusers.models.activations.get_activation` for available options. + layers_per_block (`int`, *optional*, defaults to 2): + The number of layers per block. + norm_num_groups (`int`, *optional*, defaults to 32): + The number of groups for normalization. + """ + + _supports_gradient_checkpointing = True + + def __init__( + self, + in_channels: int = 16, + out_channels: int = 3, + up_block_types: Tuple[str, ...] = ( + "CogVideoXUpBlock3D", + "CogVideoXUpBlock3D", + "CogVideoXUpBlock3D", + "CogVideoXUpBlock3D", + ), + block_out_channels: Tuple[int, ...] = (128, 256, 256, 512), + layers_per_block: int = 3, + act_fn: str = "silu", + norm_eps: float = 1e-6, + norm_num_groups: int = 32, + dropout: float = 0.0, + pad_mode: str = "first", + temporal_compression_ratio: float = 4, + ): + super().__init__() + + reversed_block_out_channels = list(reversed(block_out_channels)) + + self.conv_in = CogVideoXCausalConv3d( + in_channels, reversed_block_out_channels[0], kernel_size=3, pad_mode=pad_mode + ) + + # mid block + self.mid_block = CogVideoXMidBlock3D( + in_channels=reversed_block_out_channels[0], + temb_channels=0, + num_layers=2, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + spatial_norm_dim=in_channels, + pad_mode=pad_mode, + ) + + # up blocks + self.up_blocks = nn.ModuleList([]) + + output_channel = reversed_block_out_channels[0] + temporal_compress_level = int(np.log2(temporal_compression_ratio)) + + for i, up_block_type in enumerate(up_block_types): + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + compress_time = i < temporal_compress_level + + if up_block_type == "CogVideoXUpBlock3D": + up_block = CogVideoXUpBlock3D( + in_channels=prev_output_channel, + out_channels=output_channel, + temb_channels=0, + dropout=dropout, + num_layers=layers_per_block + 1, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + spatial_norm_dim=in_channels, + add_upsample=not is_final_block, + compress_time=compress_time, + pad_mode=pad_mode, + ) + prev_output_channel = output_channel + else: + raise ValueError("Invalid `up_block_type` encountered. Must be `CogVideoXUpBlock3D`") + + self.up_blocks.append(up_block) + + self.norm_out = CogVideoXSpatialNorm3D(reversed_block_out_channels[-1], in_channels, groups=norm_num_groups) + self.conv_act = nn.SiLU() + self.conv_out = CogVideoXCausalConv3d( + reversed_block_out_channels[-1], out_channels, kernel_size=3, pad_mode=pad_mode + ) + + self.gradient_checkpointing = False + + def forward(self, sample: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor: + r"""The forward method of the `CogVideoXDecoder3D` class.""" + hidden_states = self.conv_in(sample) + + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + # 1. Mid + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(self.mid_block), hidden_states, temb, sample + ) + + # 2. Up + for up_block in self.up_blocks: + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(up_block), hidden_states, temb, sample + ) + else: + # 1. Mid + hidden_states = self.mid_block(hidden_states, temb, sample) + + # 2. Up + for up_block in self.up_blocks: + hidden_states = up_block(hidden_states, temb, sample) + + # 3. Post-process + hidden_states = self.norm_out(hidden_states, sample) + hidden_states = self.conv_act(hidden_states) + hidden_states = self.conv_out(hidden_states) + return hidden_states + + +class AutoencoderKLCogVideoX(ModelMixin, ConfigMixin, FromOriginalModelMixin): + r""" + A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in + [CogVideoX](https://github.com/THUDM/CogVideo). + + This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented + for all models (such as downloading or saving). + + Parameters: + in_channels (int, *optional*, defaults to 3): Number of channels in the input image. + out_channels (int, *optional*, defaults to 3): Number of channels in the output. + down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): + Tuple of downsample block types. + up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`): + Tuple of upsample block types. + block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): + Tuple of block output channels. + act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. + sample_size (`int`, *optional*, defaults to `32`): Sample input size. + scaling_factor (`float`, *optional*, defaults to `1.15258426`): + The component-wise standard deviation of the trained latent space computed using the first batch of the + training set. This is used to scale the latent space to have unit variance when training the diffusion + model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the + diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 + / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image + Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. + force_upcast (`bool`, *optional*, default to `True`): + If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE + can be fine-tuned / trained to a lower range without loosing too much precision in which case + `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix + """ + + _supports_gradient_checkpointing = True + _no_split_modules = ["CogVideoXResnetBlock3D"] + + @register_to_config + def __init__( + self, + in_channels: int = 3, + out_channels: int = 3, + down_block_types: Tuple[str] = ( + "CogVideoXDownBlock3D", + "CogVideoXDownBlock3D", + "CogVideoXDownBlock3D", + "CogVideoXDownBlock3D", + ), + up_block_types: Tuple[str] = ( + "CogVideoXUpBlock3D", + "CogVideoXUpBlock3D", + "CogVideoXUpBlock3D", + "CogVideoXUpBlock3D", + ), + block_out_channels: Tuple[int] = (128, 256, 256, 512), + latent_channels: int = 16, + layers_per_block: int = 3, + act_fn: str = "silu", + norm_eps: float = 1e-6, + norm_num_groups: int = 32, + temporal_compression_ratio: float = 4, + sample_height: int = 480, + sample_width: int = 720, + scaling_factor: float = 1.15258426, + shift_factor: Optional[float] = None, + latents_mean: Optional[Tuple[float]] = None, + latents_std: Optional[Tuple[float]] = None, + force_upcast: float = True, + use_quant_conv: bool = False, + use_post_quant_conv: bool = False, + ): + super().__init__() + + self.encoder = CogVideoXEncoder3D( + in_channels=in_channels, + out_channels=latent_channels, + down_block_types=down_block_types, + block_out_channels=block_out_channels, + layers_per_block=layers_per_block, + act_fn=act_fn, + norm_eps=norm_eps, + norm_num_groups=norm_num_groups, + temporal_compression_ratio=temporal_compression_ratio, + ) + self.decoder = CogVideoXDecoder3D( + in_channels=latent_channels, + out_channels=out_channels, + up_block_types=up_block_types, + block_out_channels=block_out_channels, + layers_per_block=layers_per_block, + act_fn=act_fn, + norm_eps=norm_eps, + norm_num_groups=norm_num_groups, + temporal_compression_ratio=temporal_compression_ratio, + ) + self.quant_conv = CogVideoXSafeConv3d(2 * out_channels, 2 * out_channels, 1) if use_quant_conv else None + self.post_quant_conv = CogVideoXSafeConv3d(out_channels, out_channels, 1) if use_post_quant_conv else None + + self.use_slicing = False + self.use_tiling = False + + # Can be increased to decode more latent frames at once, but comes at a reasonable memory cost and it is not + # recommended because the temporal parts of the VAE, here, are tricky to understand. + # If you decode X latent frames together, the number of output frames is: + # (X + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) => X + 6 frames + # + # Example with num_latent_frames_batch_size = 2: + # - 12 latent frames: (0, 1), (2, 3), (4, 5), (6, 7), (8, 9), (10, 11) are processed together + # => (12 // 2 frame slices) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) + # => 6 * 8 = 48 frames + # - 13 latent frames: (0, 1, 2) (special case), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12) are processed together + # => (1 frame slice) * ((3 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) + + # ((13 - 3) // 2) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) + # => 1 * 9 + 5 * 8 = 49 frames + # It has been implemented this way so as to not have "magic values" in the code base that would be hard to explain. Note that + # setting it to anything other than 2 would give poor results because the VAE hasn't been trained to be adaptive with different + # number of temporal frames. + self.num_latent_frames_batch_size = 2 + + # We make the minimum height and width of sample for tiling half that of the generally supported + self.tile_sample_min_height = sample_height // 2 + self.tile_sample_min_width = sample_width // 2 + self.tile_latent_min_height = int( + self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1)) + ) + self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1))) + + # These are experimental overlap factors that were chosen based on experimentation and seem to work best for + # 720x480 (WxH) resolution. The above resolution is the strongly recommended generation resolution in CogVideoX + # and so the tiling implementation has only been tested on those specific resolutions. + self.tile_overlap_factor_height = 1 / 6 + self.tile_overlap_factor_width = 1 / 5 + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, (CogVideoXEncoder3D, CogVideoXDecoder3D)): + module.gradient_checkpointing = value + + def _clear_fake_context_parallel_cache(self): + for name, module in self.named_modules(): + if isinstance(module, CogVideoXCausalConv3d): + logger.debug(f"Clearing fake Context Parallel cache for layer: {name}") + module._clear_fake_context_parallel_cache() + + def enable_tiling( + self, + tile_sample_min_height: Optional[int] = None, + tile_sample_min_width: Optional[int] = None, + tile_overlap_factor_height: Optional[float] = None, + tile_overlap_factor_width: Optional[float] = None, + ) -> None: + r""" + Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to + compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow + processing larger images. + + Args: + tile_sample_min_height (`int`, *optional*): + The minimum height required for a sample to be separated into tiles across the height dimension. + tile_sample_min_width (`int`, *optional*): + The minimum width required for a sample to be separated into tiles across the width dimension. + tile_overlap_factor_height (`int`, *optional*): + The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are + no tiling artifacts produced across the height dimension. Must be between 0 and 1. Setting a higher + value might cause more tiles to be processed leading to slow down of the decoding process. + tile_overlap_factor_width (`int`, *optional*): + The minimum amount of overlap between two consecutive horizontal tiles. This is to ensure that there + are no tiling artifacts produced across the width dimension. Must be between 0 and 1. Setting a higher + value might cause more tiles to be processed leading to slow down of the decoding process. + """ + self.use_tiling = True + self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height + self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width + self.tile_latent_min_height = int( + self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1)) + ) + self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1))) + self.tile_overlap_factor_height = tile_overlap_factor_height or self.tile_overlap_factor_height + self.tile_overlap_factor_width = tile_overlap_factor_width or self.tile_overlap_factor_width + + def disable_tiling(self) -> None: + r""" + Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing + decoding in one step. + """ + self.use_tiling = False + + def enable_slicing(self) -> None: + r""" + Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to + compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. + """ + self.use_slicing = True + + def disable_slicing(self) -> None: + r""" + Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing + decoding in one step. + """ + self.use_slicing = False + + @apply_forward_hook + def encode( + self, x: torch.Tensor, return_dict: bool = True + ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: + """ + Encode a batch of images into latents. + + Args: + x (`torch.Tensor`): Input batch of images. + return_dict (`bool`, *optional*, defaults to `True`): + Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. + + Returns: + The latent representations of the encoded images. If `return_dict` is True, a + [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. + """ + batch_size, num_channels, num_frames, height, width = x.shape + if num_frames == 1: + h = self.encoder(x) + if self.quant_conv is not None: + h = self.quant_conv(h) + posterior = DiagonalGaussianDistribution(h) + else: + frame_batch_size = 4 + h = [] + for i in range(num_frames // frame_batch_size): + remaining_frames = num_frames % frame_batch_size + start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames) + end_frame = frame_batch_size * (i + 1) + remaining_frames + z_intermediate = x[:, :, start_frame:end_frame] + z_intermediate = self.encoder(z_intermediate) + if self.quant_conv is not None: + z_intermediate = self.quant_conv(z_intermediate) + h.append(z_intermediate) + self._clear_fake_context_parallel_cache() + h = torch.cat(h, dim=2) + posterior = DiagonalGaussianDistribution(h) + if not return_dict: + return (posterior,) + return AutoencoderKLOutput(latent_dist=posterior) + + def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: + batch_size, num_channels, num_frames, height, width = z.shape + + if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height): + return self.tiled_decode(z, return_dict=return_dict) + + if num_frames == 1: + dec = [] + z_intermediate = z + if self.post_quant_conv is not None: + z_intermediate = self.post_quant_conv(z_intermediate) + z_intermediate = self.decoder(z_intermediate) + dec.append(z_intermediate) + else: + frame_batch_size = self.num_latent_frames_batch_size + dec = [] + for i in range(num_frames // frame_batch_size): + remaining_frames = num_frames % frame_batch_size + start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames) + end_frame = frame_batch_size * (i + 1) + remaining_frames + z_intermediate = z[:, :, start_frame:end_frame] + if self.post_quant_conv is not None: + z_intermediate = self.post_quant_conv(z_intermediate) + z_intermediate = self.decoder(z_intermediate) + dec.append(z_intermediate) + + self._clear_fake_context_parallel_cache() + dec = torch.cat(dec, dim=2) + + if not return_dict: + return (dec,) + + return DecoderOutput(sample=dec) + + @apply_forward_hook + def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: + """ + Decode a batch of images. + + Args: + z (`torch.Tensor`): Input batch of latent vectors. + return_dict (`bool`, *optional*, defaults to `True`): + Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. + + Returns: + [`~models.vae.DecoderOutput`] or `tuple`: + If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is + returned. + """ + if self.use_slicing and z.shape[0] > 1: + decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] + decoded = torch.cat(decoded_slices) + else: + decoded = self._decode(z).sample + + if not return_dict: + return (decoded,) + return DecoderOutput(sample=decoded) + + def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: + blend_extent = min(a.shape[3], b.shape[3], blend_extent) + for y in range(blend_extent): + b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * ( + y / blend_extent + ) + return b + + def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: + blend_extent = min(a.shape[4], b.shape[4], blend_extent) + for x in range(blend_extent): + b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * ( + x / blend_extent + ) + return b + + def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: + r""" + Decode a batch of images using a tiled decoder. + + Args: + z (`torch.Tensor`): Input batch of latent vectors. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. + + Returns: + [`~models.vae.DecoderOutput`] or `tuple`: + If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is + returned. + """ + # Rough memory assessment: + # - In CogVideoX-2B, there are a total of 24 CausalConv3d layers. + # - The biggest intermediate dimensions are: [1, 128, 9, 480, 720]. + # - Assume fp16 (2 bytes per value). + # Memory required: 1 * 128 * 9 * 480 * 720 * 24 * 2 / 1024**3 = 17.8 GB + # + # Memory assessment when using tiling: + # - Assume everything as above but now HxW is 240x360 by tiling in half + # Memory required: 1 * 128 * 9 * 240 * 360 * 24 * 2 / 1024**3 = 4.5 GB + + batch_size, num_channels, num_frames, height, width = z.shape + + overlap_height = int(self.tile_latent_min_height * (1 - self.tile_overlap_factor_height)) + overlap_width = int(self.tile_latent_min_width * (1 - self.tile_overlap_factor_width)) + blend_extent_height = int(self.tile_sample_min_height * self.tile_overlap_factor_height) + blend_extent_width = int(self.tile_sample_min_width * self.tile_overlap_factor_width) + row_limit_height = self.tile_sample_min_height - blend_extent_height + row_limit_width = self.tile_sample_min_width - blend_extent_width + frame_batch_size = self.num_latent_frames_batch_size + + # Split z into overlapping tiles and decode them separately. + # The tiles have an overlap to avoid seams between tiles. + rows = [] + for i in range(0, height, overlap_height): + row = [] + for j in range(0, width, overlap_width): + time = [] + for k in range(num_frames // frame_batch_size): + remaining_frames = num_frames % frame_batch_size + start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames) + end_frame = frame_batch_size * (k + 1) + remaining_frames + tile = z[ + :, + :, + start_frame:end_frame, + i : i + self.tile_latent_min_height, + j : j + self.tile_latent_min_width, + ] + if self.post_quant_conv is not None: + tile = self.post_quant_conv(tile) + tile = self.decoder(tile) + time.append(tile) + self._clear_fake_context_parallel_cache() + row.append(torch.cat(time, dim=2)) + rows.append(row) + + result_rows = [] + for i, row in enumerate(rows): + result_row = [] + for j, tile in enumerate(row): + # blend the above tile and the left tile + # to the current tile and add the current tile to the result row + if i > 0: + tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height) + if j > 0: + tile = self.blend_h(row[j - 1], tile, blend_extent_width) + result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width]) + result_rows.append(torch.cat(result_row, dim=4)) + + dec = torch.cat(result_rows, dim=3) + + if not return_dict: + return (dec,) + + return DecoderOutput(sample=dec) + + def forward( + self, + sample: torch.Tensor, + sample_posterior: bool = False, + return_dict: bool = True, + generator: Optional[torch.Generator] = None, + ) -> Union[torch.Tensor, torch.Tensor]: + x = sample + posterior = self.encode(x).latent_dist + if sample_posterior: + z = posterior.sample(generator=generator) + else: + z = posterior.mode() + dec = self.decode(z) + if not return_dict: + return (dec,) + return dec diff --git a/cogvideox_fun/pipeline_cogvideox_inpaint.py b/cogvideox_fun/pipeline_cogvideox_inpaint.py new file mode 100644 index 0000000..01fc8ac --- /dev/null +++ b/cogvideox_fun/pipeline_cogvideox_inpaint.py @@ -0,0 +1,862 @@ +# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team. +# All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import inspect +import math +from dataclasses import dataclass +from typing import Callable, Dict, List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +from einops import rearrange +from transformers import T5EncoderModel, T5Tokenizer + +from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback +from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel +from diffusers.models.embeddings import get_3d_rotary_pos_embed +from diffusers.pipelines.pipeline_utils import DiffusionPipeline +from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler +from diffusers.utils import BaseOutput, logging, replace_example_docstring +from diffusers.utils.torch_utils import randn_tensor +from diffusers.video_processor import VideoProcessor +from diffusers.image_processor import VaeImageProcessor +from einops import rearrange + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +EXAMPLE_DOC_STRING = """ + Examples: + ```python + >>> import torch + >>> from diffusers import CogVideoX_Fun_Pipeline + >>> from diffusers.utils import export_to_video + + >>> # Models: "THUDM/CogVideoX-2b" or "THUDM/CogVideoX-5b" + >>> pipe = CogVideoX_Fun_Pipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=torch.float16).to("cuda") + >>> prompt = ( + ... "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. " + ... "The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other " + ... "pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, " + ... "casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. " + ... "The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical " + ... "atmosphere of this unique musical performance." + ... ) + >>> video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0] + >>> export_to_video(video, "output.mp4", fps=8) + ``` +""" + + +# Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid +def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): + tw = tgt_width + th = tgt_height + h, w = src + r = h / w + if r > (th / tw): + resize_height = th + resize_width = int(round(th / h * w)) + else: + resize_width = tw + resize_height = int(round(tw / w * h)) + + crop_top = int(round((th - resize_height) / 2.0)) + crop_left = int(round((tw - resize_width) / 2.0)) + + return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps +def retrieve_timesteps( + scheduler, + num_inference_steps: Optional[int] = None, + device: Optional[Union[str, torch.device]] = None, + timesteps: Optional[List[int]] = None, + sigmas: Optional[List[float]] = None, + **kwargs, +): + """ + Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles + custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. + + Args: + scheduler (`SchedulerMixin`): + The scheduler to get timesteps from. + num_inference_steps (`int`): + The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` + must be `None`. + device (`str` or `torch.device`, *optional*): + The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. + timesteps (`List[int]`, *optional*): + Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, + `num_inference_steps` and `sigmas` must be `None`. + sigmas (`List[float]`, *optional*): + Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, + `num_inference_steps` and `timesteps` must be `None`. + + Returns: + `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the + second element is the number of inference steps. + """ + if timesteps is not None and sigmas is not None: + raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") + if timesteps is not None: + accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" timestep schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" sigmas schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return timesteps, num_inference_steps + + +def resize_mask(mask, latent, process_first_frame_only=True): + latent_size = latent.size() + batch_size, channels, num_frames, height, width = mask.shape + + if process_first_frame_only: + target_size = list(latent_size[2:]) + target_size[0] = 1 + first_frame_resized = F.interpolate( + mask[:, :, 0:1, :, :], + size=target_size, + mode='trilinear', + align_corners=False + ) + + target_size = list(latent_size[2:]) + target_size[0] = target_size[0] - 1 + if target_size[0] != 0: + remaining_frames_resized = F.interpolate( + mask[:, :, 1:, :, :], + size=target_size, + mode='trilinear', + align_corners=False + ) + resized_mask = torch.cat([first_frame_resized, remaining_frames_resized], dim=2) + else: + resized_mask = first_frame_resized + else: + target_size = list(latent_size[2:]) + resized_mask = F.interpolate( + mask, + size=target_size, + mode='trilinear', + align_corners=False + ) + return resized_mask + + +@dataclass +class CogVideoX_Fun_PipelineOutput(BaseOutput): + r""" + Output class for CogVideo pipelines. + + Args: + video (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]): + List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing + denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape + `(batch_size, num_frames, channels, height, width)`. + """ + + videos: torch.Tensor + + +class CogVideoX_Fun_Pipeline_Inpaint(DiffusionPipeline): + r""" + Pipeline for text-to-video generation using CogVideoX. + + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the + library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) + + Args: + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations. + transformer ([`CogVideoXTransformer3DModel`]): + A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents. + scheduler ([`SchedulerMixin`]): + A scheduler to be used in combination with `transformer` to denoise the encoded video latents. + """ + + _optional_components = [] + model_cpu_offload_seq = "text_encoder->vae->transformer->vae" + + _callback_tensor_inputs = [ + "latents", + "prompt_embeds", + "negative_prompt_embeds", + ] + + def __init__( + self, + vae: AutoencoderKLCogVideoX, + transformer: CogVideoXTransformer3DModel, + scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler], + ): + super().__init__() + + self.register_modules( + vae=vae, transformer=transformer, scheduler=scheduler + ) + self.vae_scale_factor_spatial = ( + 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 + ) + self.vae_scale_factor_temporal = ( + self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4 + ) + + self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial) + + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.mask_processor = VaeImageProcessor( + vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True + ) + + def prepare_latents( + self, + batch_size, + num_channels_latents, + height, + width, + video_length, + dtype, + device, + generator, + latents=None, + video=None, + timestep=None, + is_strength_max=True, + return_noise=False, + return_video_latents=False, + ): + shape = ( + batch_size, + (video_length - 1) // self.vae_scale_factor_temporal + 1, + num_channels_latents, + height // self.vae_scale_factor_spatial, + width // self.vae_scale_factor_spatial, + ) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + if return_video_latents or (latents is None and not is_strength_max): + video = video.to(device=device, dtype=self.vae.dtype) + + bs = 1 + new_video = [] + for i in range(0, video.shape[0], bs): + video_bs = video[i : i + bs] + video_bs = self.vae.encode(video_bs)[0] + video_bs = video_bs.sample() + new_video.append(video_bs) + video = torch.cat(new_video, dim = 0) + video = video * self.vae.config.scaling_factor + + video_latents = video.repeat(batch_size // video.shape[0], 1, 1, 1, 1) + video_latents = video_latents.to(device=device, dtype=dtype) + video_latents = rearrange(video_latents, "b c f h w -> b f c h w") + + if latents is None: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + # if strength is 1. then initialise the latents to noise, else initial to image + noise + latents = noise if is_strength_max else self.scheduler.add_noise(video_latents, noise, timestep) + # if pure noise then scale the initial latents by the Scheduler's init sigma + latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents + else: + noise = latents.to(device) + latents = noise * self.scheduler.init_noise_sigma + + # scale the initial noise by the standard deviation required by the scheduler + outputs = (latents,) + + if return_noise: + outputs += (noise,) + + if return_video_latents: + outputs += (video_latents,) + + return outputs + + def prepare_mask_latents( + self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance + ): + # resize the mask to latents shape as we concatenate the mask to the latents + # we do that before converting to dtype to avoid breaking in case we're using cpu_offload + # and half precision + + if mask is not None: + mask = mask.to(device=device, dtype=self.vae.dtype) + bs = 1 + new_mask = [] + for i in range(0, mask.shape[0], bs): + mask_bs = mask[i : i + bs] + mask_bs = self.vae.encode(mask_bs)[0] + mask_bs = mask_bs.mode() + new_mask.append(mask_bs) + mask = torch.cat(new_mask, dim = 0) + mask = mask * self.vae.config.scaling_factor + + if masked_image is not None: + masked_image = masked_image.to(device=device, dtype=self.vae.dtype) + bs = 1 + new_mask_pixel_values = [] + for i in range(0, masked_image.shape[0], bs): + mask_pixel_values_bs = masked_image[i : i + bs] + mask_pixel_values_bs = self.vae.encode(mask_pixel_values_bs)[0] + mask_pixel_values_bs = mask_pixel_values_bs.mode() + new_mask_pixel_values.append(mask_pixel_values_bs) + masked_image_latents = torch.cat(new_mask_pixel_values, dim = 0) + masked_image_latents = masked_image_latents * self.vae.config.scaling_factor + else: + masked_image_latents = None + + return mask, masked_image_latents + + def decode_latents(self, latents: torch.Tensor) -> torch.Tensor: + latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width] + latents = 1 / self.vae.config.scaling_factor * latents + + frames = self.vae.decode(latents).sample + frames = (frames / 2 + 0.5).clamp(0, 1) + # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 + frames = frames.cpu().float().numpy() + return frames + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + # Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs + def check_inputs( + self, + prompt, + height, + width, + negative_prompt, + callback_on_step_end_tensor_inputs, + prompt_embeds=None, + negative_prompt_embeds=None, + ): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") + + if callback_on_step_end_tensor_inputs is not None and not all( + k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs + ): + raise ValueError( + f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" + ) + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + + if prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError( + "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" + f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" + f" {negative_prompt_embeds.shape}." + ) + + def fuse_qkv_projections(self) -> None: + r"""Enables fused QKV projections.""" + self.fusing_transformer = True + self.transformer.fuse_qkv_projections() + + def unfuse_qkv_projections(self) -> None: + r"""Disable QKV projection fusion if enabled.""" + if not self.fusing_transformer: + logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.") + else: + self.transformer.unfuse_qkv_projections() + self.fusing_transformer = False + + def _prepare_rotary_positional_embeddings( + self, + height: int, + width: int, + num_frames: int, + device: torch.device, + ) -> Tuple[torch.Tensor, torch.Tensor]: + grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) + grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) + base_size_width = 720 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) + base_size_height = 480 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) + + grid_crops_coords = get_resize_crop_region_for_grid( + (grid_height, grid_width), base_size_width, base_size_height + ) + freqs_cos, freqs_sin = get_3d_rotary_pos_embed( + embed_dim=self.transformer.config.attention_head_dim, + crops_coords=grid_crops_coords, + grid_size=(grid_height, grid_width), + temporal_size=num_frames, + use_real=True, + ) + + freqs_cos = freqs_cos.to(device=device) + freqs_sin = freqs_sin.to(device=device) + return freqs_cos, freqs_sin + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps + def get_timesteps(self, num_inference_steps, strength, device): + # get the original timestep using init_timestep + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] + + return timesteps, num_inference_steps - t_start + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + prompt: Optional[Union[str, List[str]]] = None, + negative_prompt: Optional[Union[str, List[str]]] = None, + height: int = 480, + width: int = 720, + video: Union[torch.FloatTensor] = None, + mask_video: Union[torch.FloatTensor] = None, + masked_video_latents: Union[torch.FloatTensor] = None, + num_frames: int = 49, + num_inference_steps: int = 50, + timesteps: Optional[List[int]] = None, + guidance_scale: float = 6, + use_dynamic_cfg: bool = False, + num_videos_per_prompt: int = 1, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + output_type: str = "numpy", + return_dict: bool = False, + callback_on_step_end: Optional[ + Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] + ] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], + max_sequence_length: int = 226, + strength: float = 1, + comfyui_progressbar: bool = False, + ) -> Union[CogVideoX_Fun_PipelineOutput, Tuple]: + """ + Function invoked when calling the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. + instead. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The height in pixels of the generated image. This is set to 1024 by default for the best results. + width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The width in pixels of the generated image. This is set to 1024 by default for the best results. + num_frames (`int`, defaults to `48`): + Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will + contain 1 extra frame because CogVideoX_Fun is conditioned with (num_seconds * fps + 1) frames where + num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that + needs to be satisfied is that of divisibility mentioned above. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + timesteps (`List[int]`, *optional*): + Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument + in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is + passed will be used. Must be in descending order. + guidance_scale (`float`, *optional*, defaults to 7.0): + Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). + `guidance_scale` is defined as `w` of equation 2. of [Imagen + Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > + 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, + usually at the expense of lower image quality. + num_videos_per_prompt (`int`, *optional*, defaults to 1): + The number of videos to generate per prompt. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) + to make generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor will ge generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generate image. Choose between + [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead + of a plain tuple. + callback_on_step_end (`Callable`, *optional*): + A function that calls at the end of each denoising steps during the inference. The function is called + with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, + callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by + `callback_on_step_end_tensor_inputs`. + callback_on_step_end_tensor_inputs (`List`, *optional*): + The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list + will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the + `._callback_tensor_inputs` attribute of your pipeline class. + max_sequence_length (`int`, defaults to `226`): + Maximum sequence length in encoded prompt. Must be consistent with + `self.transformer.config.max_text_seq_length` otherwise may lead to poor results. + + Examples: + + Returns: + [`~pipelines.cogvideo.pipeline_cogvideox.CogVideoX_Fun_PipelineOutput`] or `tuple`: + [`~pipelines.cogvideo.pipeline_cogvideox.CogVideoX_Fun_PipelineOutput`] if `return_dict` is True, otherwise a + `tuple`. When returning a tuple, the first element is a list with the generated images. + """ + + if num_frames > 49: + raise ValueError( + "The number of frames must be less than 49 for now due to static positional embeddings. This will be updated in the future to remove this limitation." + ) + + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + + height = height or self.transformer.config.sample_size * self.vae_scale_factor_spatial + width = width or self.transformer.config.sample_size * self.vae_scale_factor_spatial + num_videos_per_prompt = 1 + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + prompt, + height, + width, + negative_prompt, + callback_on_step_end_tensor_inputs, + prompt_embeds, + negative_prompt_embeds, + ) + self._guidance_scale = guidance_scale + self._interrupt = False + + # 2. Default call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + + self.vae.to(device) + + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + do_classifier_free_guidance = guidance_scale > 1.0 + + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + + # 4. set timesteps + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps, num_inference_steps = self.get_timesteps( + num_inference_steps=num_inference_steps, strength=strength, device=device + ) + self._num_timesteps = len(timesteps) + if comfyui_progressbar: + from comfy.utils import ProgressBar + pbar = ProgressBar(num_inference_steps + 2) + # at which timestep to set the initial noise (n.b. 50% if strength is 0.5) + latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt) + # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise + is_strength_max = strength == 1.0 + + # 5. Prepare latents. + if video is not None: + video_length = video.shape[2] + init_video = self.image_processor.preprocess(rearrange(video, "b c f h w -> (b f) c h w"), height=height, width=width) + init_video = init_video.to(dtype=torch.float32) + init_video = rearrange(init_video, "(b f) c h w -> b c f h w", f=video_length) + else: + init_video = None + + num_channels_latents = self.vae.config.latent_channels + num_channels_transformer = self.transformer.config.in_channels + return_image_latents = num_channels_transformer == num_channels_latents + + latents_outputs = self.prepare_latents( + batch_size * num_videos_per_prompt, + num_channels_latents, + height, + width, + video_length, + prompt_embeds.dtype, + device, + generator, + latents, + video=init_video, + timestep=latent_timestep, + is_strength_max=is_strength_max, + return_noise=True, + return_video_latents=return_image_latents, + ) + if return_image_latents: + latents, noise, image_latents = latents_outputs + else: + latents, noise = latents_outputs + if comfyui_progressbar: + pbar.update(1) + + if mask_video is not None: + if (mask_video == 255).all(): + mask_latents = torch.zeros_like(latents)[:, :, :1].to(latents.device, latents.dtype) + masked_video_latents = torch.zeros_like(latents).to(latents.device, latents.dtype) + + mask_input = torch.cat([mask_latents] * 2) if do_classifier_free_guidance else mask_latents + masked_video_latents_input = ( + torch.cat([masked_video_latents] * 2) if do_classifier_free_guidance else masked_video_latents + ) + inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=2).to(latents.dtype) + else: + # Prepare mask latent variables + video_length = video.shape[2] + mask_condition = self.mask_processor.preprocess(rearrange(mask_video, "b c f h w -> (b f) c h w"), height=height, width=width) + mask_condition = mask_condition.to(dtype=torch.float32) + mask_condition = rearrange(mask_condition, "(b f) c h w -> b c f h w", f=video_length) + + if num_channels_transformer != num_channels_latents: + mask_condition_tile = torch.tile(mask_condition, [1, 3, 1, 1, 1]) + if masked_video_latents is None: + masked_video = init_video * (mask_condition_tile < 0.5) + torch.ones_like(init_video) * (mask_condition_tile > 0.5) * -1 + else: + masked_video = masked_video_latents + + _, masked_video_latents = self.prepare_mask_latents( + None, + masked_video, + batch_size, + height, + width, + prompt_embeds.dtype, + device, + generator, + do_classifier_free_guidance, + ) + mask_latents = resize_mask(1 - mask_condition, masked_video_latents) + mask_latents = mask_latents.to(masked_video_latents.device) * self.vae.config.scaling_factor + + mask = torch.tile(mask_condition, [1, num_channels_latents, 1, 1, 1]) + mask = F.interpolate(mask, size=latents.size()[-3:], mode='trilinear', align_corners=True).to(latents.device, latents.dtype) + + mask_input = torch.cat([mask_latents] * 2) if do_classifier_free_guidance else mask_latents + masked_video_latents_input = ( + torch.cat([masked_video_latents] * 2) if do_classifier_free_guidance else masked_video_latents + ) + + mask = rearrange(mask, "b c f h w -> b f c h w") + mask_input = rearrange(mask_input, "b c f h w -> b f c h w") + masked_video_latents_input = rearrange(masked_video_latents_input, "b c f h w -> b f c h w") + + inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=2).to(latents.dtype) + else: + mask = torch.tile(mask_condition, [1, num_channels_latents, 1, 1, 1]) + mask = F.interpolate(mask, size=latents.size()[-3:], mode='trilinear', align_corners=True).to(latents.device, latents.dtype) + mask = rearrange(mask, "b c f h w -> b f c h w") + + inpaint_latents = None + else: + if num_channels_transformer != num_channels_latents: + mask = torch.zeros_like(latents).to(latents.device, latents.dtype) + masked_video_latents = torch.zeros_like(latents).to(latents.device, latents.dtype) + + mask_input = torch.cat([mask] * 2) if do_classifier_free_guidance else mask + masked_video_latents_input = ( + torch.cat([masked_video_latents] * 2) if do_classifier_free_guidance else masked_video_latents + ) + inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(latents.dtype) + else: + mask = torch.zeros_like(init_video[:, :1]) + mask = torch.tile(mask, [1, num_channels_latents, 1, 1, 1]) + mask = F.interpolate(mask, size=latents.size()[-3:], mode='trilinear', align_corners=True).to(latents.device, latents.dtype) + mask = rearrange(mask, "b c f h w -> b f c h w") + + inpaint_latents = None + if comfyui_progressbar: + pbar.update(1) + + # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 7. Create rotary embeds if required + image_rotary_emb = ( + self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device) + if self.transformer.config.use_rotary_positional_embeddings + else None + ) + + # 8. Denoising loop + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + + with self.progress_bar(total=num_inference_steps) as progress_bar: + # for DPM-solver++ + old_pred_original_sample = None + for i, t in enumerate(timesteps): + if self.interrupt: + continue + + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timestep = t.expand(latent_model_input.shape[0]) + + # predict noise model_output + noise_pred = self.transformer( + hidden_states=latent_model_input, + encoder_hidden_states=prompt_embeds, + timestep=timestep, + image_rotary_emb=image_rotary_emb, + return_dict=False, + inpaint_latents=inpaint_latents, + )[0] + noise_pred = noise_pred.float() + + # perform guidance + if use_dynamic_cfg: + self._guidance_scale = 1 + guidance_scale * ( + (1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2 + ) + if do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + + # compute the previous noisy sample x_t -> x_t-1 + if not isinstance(self.scheduler, CogVideoXDPMScheduler): + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + else: + latents, old_pred_original_sample = self.scheduler.step( + noise_pred, + old_pred_original_sample, + t, + timesteps[i - 1] if i > 0 else None, + latents, + **extra_step_kwargs, + return_dict=False, + ) + latents = latents.to(prompt_embeds.dtype) + + # call the callback, if provided + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + + latents = callback_outputs.pop("latents", latents) + prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) + negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) + + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if comfyui_progressbar: + pbar.update(1) + + # if output_type == "numpy": + # video = self.decode_latents(latents) + # elif not output_type == "latent": + # video = self.decode_latents(latents) + # video = self.video_processor.postprocess_video(video=video, output_type=output_type) + # else: + # video = latents + + # Offload all models + self.maybe_free_model_hooks() + + # if not return_dict: + # video = torch.from_numpy(video) + + return latents \ No newline at end of file diff --git a/cogvideox_fun/transformer_3d.py b/cogvideox_fun/transformer_3d.py new file mode 100644 index 0000000..b80af91 --- /dev/null +++ b/cogvideox_fun/transformer_3d.py @@ -0,0 +1,605 @@ +# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team. +# All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import Any, Dict, Optional, Tuple, Union + +import os +import json +import torch +import glob +import torch.nn.functional as F +from torch import nn + +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.utils import is_torch_version, logging +from diffusers.utils.torch_utils import maybe_allow_in_graph +from diffusers.models.attention import Attention, FeedForward +from diffusers.models.attention_processor import AttentionProcessor, CogVideoXAttnProcessor2_0, FusedCogVideoXAttnProcessor2_0 +from diffusers.models.embeddings import TimestepEmbedding, Timesteps, get_3d_sincos_pos_embed +from diffusers.models.modeling_outputs import Transformer2DModelOutput +from diffusers.models.modeling_utils import ModelMixin +from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +class CogVideoXPatchEmbed(nn.Module): + def __init__( + self, + patch_size: int = 2, + in_channels: int = 16, + embed_dim: int = 1920, + text_embed_dim: int = 4096, + bias: bool = True, + ) -> None: + super().__init__() + self.patch_size = patch_size + + self.proj = nn.Conv2d( + in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias + ) + self.text_proj = nn.Linear(text_embed_dim, embed_dim) + + def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor): + r""" + Args: + text_embeds (`torch.Tensor`): + Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim). + image_embeds (`torch.Tensor`): + Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width). + """ + text_embeds = self.text_proj(text_embeds) + + batch, num_frames, channels, height, width = image_embeds.shape + image_embeds = image_embeds.reshape(-1, channels, height, width) + image_embeds = self.proj(image_embeds) + image_embeds = image_embeds.view(batch, num_frames, *image_embeds.shape[1:]) + image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels] + image_embeds = image_embeds.flatten(1, 2) # [batch, num_frames x height x width, channels] + + embeds = torch.cat( + [text_embeds, image_embeds], dim=1 + ).contiguous() # [batch, seq_length + num_frames x height x width, channels] + return embeds + +@maybe_allow_in_graph +class CogVideoXBlock(nn.Module): + r""" + Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model. + + Parameters: + dim (`int`): + The number of channels in the input and output. + num_attention_heads (`int`): + The number of heads to use for multi-head attention. + attention_head_dim (`int`): + The number of channels in each head. + time_embed_dim (`int`): + The number of channels in timestep embedding. + dropout (`float`, defaults to `0.0`): + The dropout probability to use. + activation_fn (`str`, defaults to `"gelu-approximate"`): + Activation function to be used in feed-forward. + attention_bias (`bool`, defaults to `False`): + Whether or not to use bias in attention projection layers. + qk_norm (`bool`, defaults to `True`): + Whether or not to use normalization after query and key projections in Attention. + norm_elementwise_affine (`bool`, defaults to `True`): + Whether to use learnable elementwise affine parameters for normalization. + norm_eps (`float`, defaults to `1e-5`): + Epsilon value for normalization layers. + final_dropout (`bool` defaults to `False`): + Whether to apply a final dropout after the last feed-forward layer. + ff_inner_dim (`int`, *optional*, defaults to `None`): + Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used. + ff_bias (`bool`, defaults to `True`): + Whether or not to use bias in Feed-forward layer. + attention_out_bias (`bool`, defaults to `True`): + Whether or not to use bias in Attention output projection layer. + """ + + def __init__( + self, + dim: int, + num_attention_heads: int, + attention_head_dim: int, + time_embed_dim: int, + dropout: float = 0.0, + activation_fn: str = "gelu-approximate", + attention_bias: bool = False, + qk_norm: bool = True, + norm_elementwise_affine: bool = True, + norm_eps: float = 1e-5, + final_dropout: bool = True, + ff_inner_dim: Optional[int] = None, + ff_bias: bool = True, + attention_out_bias: bool = True, + ): + super().__init__() + + # 1. Self Attention + self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) + + self.attn1 = Attention( + query_dim=dim, + dim_head=attention_head_dim, + heads=num_attention_heads, + qk_norm="layer_norm" if qk_norm else None, + eps=1e-6, + bias=attention_bias, + out_bias=attention_out_bias, + processor=CogVideoXAttnProcessor2_0(), + ) + + # 2. Feed Forward + self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) + + self.ff = FeedForward( + dim, + dropout=dropout, + activation_fn=activation_fn, + final_dropout=final_dropout, + inner_dim=ff_inner_dim, + bias=ff_bias, + ) + + def forward( + self, + hidden_states: torch.Tensor, + encoder_hidden_states: torch.Tensor, + temb: torch.Tensor, + image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + ) -> torch.Tensor: + text_seq_length = encoder_hidden_states.size(1) + + # norm & modulate + norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1( + hidden_states, encoder_hidden_states, temb + ) + + # attention + attn_hidden_states, attn_encoder_hidden_states = self.attn1( + hidden_states=norm_hidden_states, + encoder_hidden_states=norm_encoder_hidden_states, + image_rotary_emb=image_rotary_emb, + ) + + hidden_states = hidden_states + gate_msa * attn_hidden_states + encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states + + # norm & modulate + norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2( + hidden_states, encoder_hidden_states, temb + ) + + # feed-forward + norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1) + ff_output = self.ff(norm_hidden_states) + + hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:] + encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length] + + return hidden_states, encoder_hidden_states + + +class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin): + """ + A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo). + + Parameters: + num_attention_heads (`int`, defaults to `30`): + The number of heads to use for multi-head attention. + attention_head_dim (`int`, defaults to `64`): + The number of channels in each head. + in_channels (`int`, defaults to `16`): + The number of channels in the input. + out_channels (`int`, *optional*, defaults to `16`): + The number of channels in the output. + flip_sin_to_cos (`bool`, defaults to `True`): + Whether to flip the sin to cos in the time embedding. + time_embed_dim (`int`, defaults to `512`): + Output dimension of timestep embeddings. + text_embed_dim (`int`, defaults to `4096`): + Input dimension of text embeddings from the text encoder. + num_layers (`int`, defaults to `30`): + The number of layers of Transformer blocks to use. + dropout (`float`, defaults to `0.0`): + The dropout probability to use. + attention_bias (`bool`, defaults to `True`): + Whether or not to use bias in the attention projection layers. + sample_width (`int`, defaults to `90`): + The width of the input latents. + sample_height (`int`, defaults to `60`): + The height of the input latents. + sample_frames (`int`, defaults to `49`): + The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49 + instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings, + but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with + K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1). + patch_size (`int`, defaults to `2`): + The size of the patches to use in the patch embedding layer. + temporal_compression_ratio (`int`, defaults to `4`): + The compression ratio across the temporal dimension. See documentation for `sample_frames`. + max_text_seq_length (`int`, defaults to `226`): + The maximum sequence length of the input text embeddings. + activation_fn (`str`, defaults to `"gelu-approximate"`): + Activation function to use in feed-forward. + timestep_activation_fn (`str`, defaults to `"silu"`): + Activation function to use when generating the timestep embeddings. + norm_elementwise_affine (`bool`, defaults to `True`): + Whether or not to use elementwise affine in normalization layers. + norm_eps (`float`, defaults to `1e-5`): + The epsilon value to use in normalization layers. + spatial_interpolation_scale (`float`, defaults to `1.875`): + Scaling factor to apply in 3D positional embeddings across spatial dimensions. + temporal_interpolation_scale (`float`, defaults to `1.0`): + Scaling factor to apply in 3D positional embeddings across temporal dimensions. + """ + + _supports_gradient_checkpointing = True + + @register_to_config + def __init__( + self, + num_attention_heads: int = 30, + attention_head_dim: int = 64, + in_channels: int = 16, + out_channels: Optional[int] = 16, + flip_sin_to_cos: bool = True, + freq_shift: int = 0, + time_embed_dim: int = 512, + text_embed_dim: int = 4096, + num_layers: int = 30, + dropout: float = 0.0, + attention_bias: bool = True, + sample_width: int = 90, + sample_height: int = 60, + sample_frames: int = 49, + patch_size: int = 2, + temporal_compression_ratio: int = 4, + max_text_seq_length: int = 226, + activation_fn: str = "gelu-approximate", + timestep_activation_fn: str = "silu", + norm_elementwise_affine: bool = True, + norm_eps: float = 1e-5, + spatial_interpolation_scale: float = 1.875, + temporal_interpolation_scale: float = 1.0, + use_rotary_positional_embeddings: bool = False, + ): + super().__init__() + inner_dim = num_attention_heads * attention_head_dim + + post_patch_height = sample_height // patch_size + post_patch_width = sample_width // patch_size + post_time_compression_frames = (sample_frames - 1) // temporal_compression_ratio + 1 + self.num_patches = post_patch_height * post_patch_width * post_time_compression_frames + self.post_patch_height = post_patch_height + self.post_patch_width = post_patch_width + self.post_time_compression_frames = post_time_compression_frames + self.patch_size = patch_size + + # 1. Patch embedding + self.patch_embed = CogVideoXPatchEmbed(patch_size, in_channels, inner_dim, text_embed_dim, bias=True) + self.embedding_dropout = nn.Dropout(dropout) + + # 2. 3D positional embeddings + spatial_pos_embedding = get_3d_sincos_pos_embed( + inner_dim, + (post_patch_width, post_patch_height), + post_time_compression_frames, + spatial_interpolation_scale, + temporal_interpolation_scale, + ) + spatial_pos_embedding = torch.from_numpy(spatial_pos_embedding).flatten(0, 1) + pos_embedding = torch.zeros(1, max_text_seq_length + self.num_patches, inner_dim, requires_grad=False) + pos_embedding.data[:, max_text_seq_length:].copy_(spatial_pos_embedding) + self.register_buffer("pos_embedding", pos_embedding, persistent=False) + + # 3. Time embeddings + self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift) + self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn) + + # 4. Define spatio-temporal transformers blocks + self.transformer_blocks = nn.ModuleList( + [ + CogVideoXBlock( + dim=inner_dim, + num_attention_heads=num_attention_heads, + attention_head_dim=attention_head_dim, + time_embed_dim=time_embed_dim, + dropout=dropout, + activation_fn=activation_fn, + attention_bias=attention_bias, + norm_elementwise_affine=norm_elementwise_affine, + norm_eps=norm_eps, + ) + for _ in range(num_layers) + ] + ) + self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine) + + # 5. Output blocks + self.norm_out = AdaLayerNorm( + embedding_dim=time_embed_dim, + output_dim=2 * inner_dim, + norm_elementwise_affine=norm_elementwise_affine, + norm_eps=norm_eps, + chunk_dim=1, + ) + self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels) + + self.gradient_checkpointing = False + + def _set_gradient_checkpointing(self, module, value=False): + self.gradient_checkpointing = value + + @property + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors + def attn_processors(self) -> Dict[str, AttentionProcessor]: + r""" + Returns: + `dict` of attention processors: A dictionary containing all attention processors used in the model with + indexed by its weight name. + """ + # set recursively + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, "get_processor"): + processors[f"{name}.processor"] = module.get_processor() + + for sub_name, child in module.named_children(): + fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) + + return processors + + for name, module in self.named_children(): + fn_recursive_add_processors(name, module, processors) + + return processors + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + r""" + Sets the attention processor to use to compute attention. + + Parameters: + processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): + The instantiated processor class or a dictionary of processor classes that will be set as the processor + for **all** `Attention` layers. + + If `processor` is a dict, the key needs to define the path to the corresponding cross attention + processor. This is strongly recommended when setting trainable attention processors. + + """ + count = len(self.attn_processors.keys()) + + if isinstance(processor, dict) and len(processor) != count: + raise ValueError( + f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" + f" number of attention layers: {count}. Please make sure to pass {count} processor classes." + ) + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, "set_processor"): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f"{name}.processor")) + + for sub_name, child in module.named_children(): + fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) + + for name, module in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedCogVideoXAttnProcessor2_0 + def fuse_qkv_projections(self): + """ + Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) + are fused. For cross-attention modules, key and value projection matrices are fused. + + + + This API is 🧪 experimental. + + + """ + self.original_attn_processors = None + + for _, attn_processor in self.attn_processors.items(): + if "Added" in str(attn_processor.__class__.__name__): + raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") + + self.original_attn_processors = self.attn_processors + + for module in self.modules(): + if isinstance(module, Attention): + module.fuse_projections(fuse=True) + + self.set_attn_processor(FusedCogVideoXAttnProcessor2_0()) + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections + def unfuse_qkv_projections(self): + """Disables the fused QKV projection if enabled. + + + + This API is 🧪 experimental. + + + + """ + if self.original_attn_processors is not None: + self.set_attn_processor(self.original_attn_processors) + + def forward( + self, + hidden_states: torch.Tensor, + encoder_hidden_states: torch.Tensor, + timestep: Union[int, float, torch.LongTensor], + timestep_cond: Optional[torch.Tensor] = None, + inpaint_latents: Optional[torch.Tensor] = None, + image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + return_dict: bool = True, + ): + batch_size, num_frames, channels, height, width = hidden_states.shape + + # 1. Time embedding + timesteps = timestep + t_emb = self.time_proj(timesteps) + + # timesteps does not contain any weights and will always return f32 tensors + # but time_embedding might actually be running in fp16. so we need to cast here. + # there might be better ways to encapsulate this. + t_emb = t_emb.to(dtype=hidden_states.dtype) + emb = self.time_embedding(t_emb, timestep_cond) + + # 2. Patch embedding + if inpaint_latents is not None: + hidden_states = torch.concat([hidden_states, inpaint_latents], 2) + hidden_states = self.patch_embed(encoder_hidden_states, hidden_states) + + # 3. Position embedding + text_seq_length = encoder_hidden_states.shape[1] + if not self.config.use_rotary_positional_embeddings: + seq_length = height * width * num_frames // (self.config.patch_size**2) + # pos_embeds = self.pos_embedding[:, : text_seq_length + seq_length] + pos_embeds = self.pos_embedding + emb_size = hidden_states.size()[-1] + pos_embeds_without_text = pos_embeds[:, text_seq_length: ].view(1, self.post_time_compression_frames, self.post_patch_height, self.post_patch_width, emb_size) + pos_embeds_without_text = pos_embeds_without_text.permute([0, 4, 1, 2, 3]) + pos_embeds_without_text = F.interpolate(pos_embeds_without_text,size=[self.post_time_compression_frames, height // self.config.patch_size, width // self.config.patch_size],mode='trilinear',align_corners=False) + pos_embeds_without_text = pos_embeds_without_text.permute([0, 2, 3, 4, 1]).view(1, -1, emb_size) + pos_embeds = torch.cat([pos_embeds[:, :text_seq_length], pos_embeds_without_text], dim = 1) + pos_embeds = pos_embeds[:, : text_seq_length + seq_length] + hidden_states = hidden_states + pos_embeds + hidden_states = self.embedding_dropout(hidden_states) + + encoder_hidden_states = hidden_states[:, :text_seq_length] + hidden_states = hidden_states[:, text_seq_length:] + + # 4. Transformer blocks + for i, block in enumerate(self.transformer_blocks): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(block), + hidden_states, + encoder_hidden_states, + emb, + image_rotary_emb, + **ckpt_kwargs, + ) + else: + hidden_states, encoder_hidden_states = block( + hidden_states=hidden_states, + encoder_hidden_states=encoder_hidden_states, + temb=emb, + image_rotary_emb=image_rotary_emb, + ) + + if not self.config.use_rotary_positional_embeddings: + # CogVideoX-2B + hidden_states = self.norm_final(hidden_states) + else: + # CogVideoX-5B + hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) + hidden_states = self.norm_final(hidden_states) + hidden_states = hidden_states[:, text_seq_length:] + + # 5. Final block + hidden_states = self.norm_out(hidden_states, temb=emb) + hidden_states = self.proj_out(hidden_states) + + # 6. Unpatchify + p = self.config.patch_size + output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, channels, p, p) + output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4) + + if not return_dict: + return (output,) + return Transformer2DModelOutput(sample=output) + + @classmethod + def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, transformer_additional_kwargs={}): + if subfolder is not None: + pretrained_model_path = os.path.join(pretrained_model_path, subfolder) + print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...") + + config_file = os.path.join(pretrained_model_path, 'config.json') + if not os.path.isfile(config_file): + raise RuntimeError(f"{config_file} does not exist") + with open(config_file, "r") as f: + config = json.load(f) + + from diffusers.utils import WEIGHTS_NAME + model = cls.from_config(config, **transformer_additional_kwargs) + model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) + model_file_safetensors = model_file.replace(".bin", ".safetensors") + if os.path.exists(model_file): + state_dict = torch.load(model_file, map_location="cpu") + elif os.path.exists(model_file_safetensors): + from safetensors.torch import load_file, safe_open + state_dict = load_file(model_file_safetensors) + else: + from safetensors.torch import load_file, safe_open + model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors")) + state_dict = {} + for model_file_safetensors in model_files_safetensors: + _state_dict = load_file(model_file_safetensors) + for key in _state_dict: + state_dict[key] = _state_dict[key] + + if model.state_dict()['patch_embed.proj.weight'].size() != state_dict['patch_embed.proj.weight'].size(): + new_shape = model.state_dict()['patch_embed.proj.weight'].size() + if len(new_shape) == 5: + state_dict['patch_embed.proj.weight'] = state_dict['patch_embed.proj.weight'].unsqueeze(2).expand(new_shape).clone() + state_dict['patch_embed.proj.weight'][:, :, :-1] = 0 + else: + if model.state_dict()['patch_embed.proj.weight'].size()[1] > state_dict['patch_embed.proj.weight'].size()[1]: + model.state_dict()['patch_embed.proj.weight'][:, :state_dict['patch_embed.proj.weight'].size()[1], :, :] = state_dict['patch_embed.proj.weight'] + model.state_dict()['patch_embed.proj.weight'][:, state_dict['patch_embed.proj.weight'].size()[1]:, :, :] = 0 + state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight'] + else: + model.state_dict()['patch_embed.proj.weight'][:, :, :, :] = state_dict['patch_embed.proj.weight'][:, :model.state_dict()['patch_embed.proj.weight'].size()[1], :, :] + state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight'] + + tmp_state_dict = {} + for key in state_dict: + if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size(): + tmp_state_dict[key] = state_dict[key] + else: + print(key, "Size don't match, skip") + state_dict = tmp_state_dict + + m, u = model.load_state_dict(state_dict, strict=False) + print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") + print(m) + + params = [p.numel() if "mamba" in n else 0 for n, p in model.named_parameters()] + print(f"### Mamba Parameters: {sum(params) / 1e6} M") + + params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()] + print(f"### attn1 Parameters: {sum(params) / 1e6} M") + + return model \ No newline at end of file diff --git a/cogvideox_fun/utils.py b/cogvideox_fun/utils.py new file mode 100644 index 0000000..e9c5cc7 --- /dev/null +++ b/cogvideox_fun/utils.py @@ -0,0 +1,246 @@ +import os +import gc +import imageio +import numpy as np +import torch +import torchvision +import cv2 +from einops import rearrange +from PIL import Image + +# Copyright (c) OpenMMLab. All rights reserved. +import os +import cv2 +import numpy as np +import torch +from PIL import Image + + +def tensor2pil(image): + return Image.fromarray(np.clip(255. * image.cpu().numpy(), 0, 255).astype(np.uint8)) + +def numpy2pil(image): + return Image.fromarray(np.clip(255. * image, 0, 255).astype(np.uint8)) + +def to_pil(image): + if isinstance(image, Image.Image): + return image + if isinstance(image, torch.Tensor): + return tensor2pil(image) + if isinstance(image, np.ndarray): + return numpy2pil(image) + raise ValueError(f"Cannot convert {type(image)} to PIL.Image") + +ASPECT_RATIO_512 = { + '0.25': [256.0, 1024.0], '0.26': [256.0, 992.0], '0.27': [256.0, 960.0], '0.28': [256.0, 928.0], + '0.32': [288.0, 896.0], '0.33': [288.0, 864.0], '0.35': [288.0, 832.0], '0.4': [320.0, 800.0], + '0.42': [320.0, 768.0], '0.48': [352.0, 736.0], '0.5': [352.0, 704.0], '0.52': [352.0, 672.0], + '0.57': [384.0, 672.0], '0.6': [384.0, 640.0], '0.68': [416.0, 608.0], '0.72': [416.0, 576.0], + '0.78': [448.0, 576.0], '0.82': [448.0, 544.0], '0.88': [480.0, 544.0], '0.94': [480.0, 512.0], + '1.0': [512.0, 512.0], '1.07': [512.0, 480.0], '1.13': [544.0, 480.0], '1.21': [544.0, 448.0], + '1.29': [576.0, 448.0], '1.38': [576.0, 416.0], '1.46': [608.0, 416.0], '1.67': [640.0, 384.0], + '1.75': [672.0, 384.0], '2.0': [704.0, 352.0], '2.09': [736.0, 352.0], '2.4': [768.0, 320.0], + '2.5': [800.0, 320.0], '2.89': [832.0, 288.0], '3.0': [864.0, 288.0], '3.11': [896.0, 288.0], + '3.62': [928.0, 256.0], '3.75': [960.0, 256.0], '3.88': [992.0, 256.0], '4.0': [1024.0, 256.0] +} +ASPECT_RATIO_RANDOM_CROP_512 = { + '0.42': [320.0, 768.0], '0.5': [352.0, 704.0], + '0.57': [384.0, 672.0], '0.68': [416.0, 608.0], '0.78': [448.0, 576.0], '0.88': [480.0, 544.0], + '0.94': [480.0, 512.0], '1.0': [512.0, 512.0], '1.07': [512.0, 480.0], + '1.13': [544.0, 480.0], '1.29': [576.0, 448.0], '1.46': [608.0, 416.0], '1.75': [672.0, 384.0], + '2.0': [704.0, 352.0], '2.4': [768.0, 320.0] +} +ASPECT_RATIO_RANDOM_CROP_PROB = [ + 1, 2, + 4, 4, 4, 4, + 8, 8, 8, + 4, 4, 4, 4, + 2, 1 +] +ASPECT_RATIO_RANDOM_CROP_PROB = np.array(ASPECT_RATIO_RANDOM_CROP_PROB) / sum(ASPECT_RATIO_RANDOM_CROP_PROB) + +def get_closest_ratio(height: float, width: float, ratios: dict = ASPECT_RATIO_512): + aspect_ratio = height / width + closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - aspect_ratio)) + return ratios[closest_ratio], float(closest_ratio) + + +def get_width_and_height_from_image_and_base_resolution(image, base_resolution): + target_pixels = int(base_resolution) * int(base_resolution) + original_width, original_height = Image.open(image).size + ratio = (target_pixels / (original_width * original_height)) ** 0.5 + width_slider = round(original_width * ratio) + height_slider = round(original_height * ratio) + return height_slider, width_slider + +def color_transfer(sc, dc): + """ + Transfer color distribution from of sc, referred to dc. + + Args: + sc (numpy.ndarray): input image to be transfered. + dc (numpy.ndarray): reference image + + Returns: + numpy.ndarray: Transferred color distribution on the sc. + """ + + def get_mean_and_std(img): + x_mean, x_std = cv2.meanStdDev(img) + x_mean = np.hstack(np.around(x_mean, 2)) + x_std = np.hstack(np.around(x_std, 2)) + return x_mean, x_std + + sc = cv2.cvtColor(sc, cv2.COLOR_RGB2LAB) + s_mean, s_std = get_mean_and_std(sc) + dc = cv2.cvtColor(dc, cv2.COLOR_RGB2LAB) + t_mean, t_std = get_mean_and_std(dc) + img_n = ((sc - s_mean) * (t_std / s_std)) + t_mean + np.putmask(img_n, img_n > 255, 255) + np.putmask(img_n, img_n < 0, 0) + dst = cv2.cvtColor(cv2.convertScaleAbs(img_n), cv2.COLOR_LAB2RGB) + return dst + +def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=12, imageio_backend=True, color_transfer_post_process=False): + videos = rearrange(videos, "b c t h w -> t b c h w") + outputs = [] + for x in videos: + x = torchvision.utils.make_grid(x, nrow=n_rows) + x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) + if rescale: + x = (x + 1.0) / 2.0 # -1,1 -> 0,1 + x = (x * 255).numpy().astype(np.uint8) + outputs.append(Image.fromarray(x)) + + if color_transfer_post_process: + for i in range(1, len(outputs)): + outputs[i] = Image.fromarray(color_transfer(np.uint8(outputs[i]), np.uint8(outputs[0]))) + + os.makedirs(os.path.dirname(path), exist_ok=True) + if imageio_backend: + if path.endswith("mp4"): + imageio.mimsave(path, outputs, fps=fps) + else: + imageio.mimsave(path, outputs, duration=(1000 * 1/fps)) + else: + if path.endswith("mp4"): + path = path.replace('.mp4', '.gif') + outputs[0].save(path, format='GIF', append_images=outputs, save_all=True, duration=100, loop=0) + +def get_image_to_video_latent(validation_image_start, validation_image_end, video_length, sample_size): + if validation_image_start is not None and validation_image_end is not None: + if type(validation_image_start) is str and os.path.isfile(validation_image_start): + image_start = clip_image = Image.open(validation_image_start).convert("RGB") + image_start = image_start.resize([sample_size[1], sample_size[0]]) + clip_image = clip_image.resize([sample_size[1], sample_size[0]]) + else: + image_start = clip_image = validation_image_start + image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start] + clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image] + + if type(validation_image_end) is str and os.path.isfile(validation_image_end): + image_end = Image.open(validation_image_end).convert("RGB") + image_end = image_end.resize([sample_size[1], sample_size[0]]) + else: + image_end = validation_image_end + image_end = [_image_end.resize([sample_size[1], sample_size[0]]) for _image_end in image_end] + + if type(image_start) is list: + clip_image = clip_image[0] + start_video = torch.cat( + [torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in image_start], + dim=2 + ) + input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1]) + input_video[:, :, :len(image_start)] = start_video + + input_video_mask = torch.zeros_like(input_video[:, :1]) + input_video_mask[:, :, len(image_start):] = 255 + else: + input_video = torch.tile( + torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0), + [1, 1, video_length, 1, 1] + ) + input_video_mask = torch.zeros_like(input_video[:, :1]) + input_video_mask[:, :, 1:] = 255 + + if type(image_end) is list: + image_end = [_image_end.resize(image_start[0].size if type(image_start) is list else image_start.size) for _image_end in image_end] + end_video = torch.cat( + [torch.from_numpy(np.array(_image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_end in image_end], + dim=2 + ) + input_video[:, :, -len(end_video):] = end_video + + input_video_mask[:, :, -len(image_end):] = 0 + else: + image_end = image_end.resize(image_start[0].size if type(image_start) is list else image_start.size) + input_video[:, :, -1:] = torch.from_numpy(np.array(image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) + input_video_mask[:, :, -1:] = 0 + + input_video = input_video / 255 + + elif validation_image_start is not None: + if type(validation_image_start) is str and os.path.isfile(validation_image_start): + image_start = clip_image = Image.open(validation_image_start).convert("RGB") + image_start = image_start.resize([sample_size[1], sample_size[0]]) + clip_image = clip_image.resize([sample_size[1], sample_size[0]]) + else: + image_start = clip_image = validation_image_start + image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start] + clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image] + image_end = None + + if type(image_start) is list: + clip_image = clip_image[0] + start_video = torch.cat( + [torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in image_start], + dim=2 + ) + input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1]) + input_video[:, :, :len(image_start)] = start_video + input_video = input_video / 255 + + input_video_mask = torch.zeros_like(input_video[:, :1]) + input_video_mask[:, :, len(image_start):] = 255 + else: + input_video = torch.tile( + torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0), + [1, 1, video_length, 1, 1] + ) / 255 + input_video_mask = torch.zeros_like(input_video[:, :1]) + input_video_mask[:, :, 1:, ] = 255 + else: + image_start = None + image_end = None + input_video = torch.zeros([1, 3, video_length, sample_size[0], sample_size[1]]) + input_video_mask = torch.ones([1, 1, video_length, sample_size[0], sample_size[1]]) * 255 + clip_image = None + + del image_start + del image_end + gc.collect() + + return input_video, input_video_mask, clip_image + +def get_video_to_video_latent(input_video_path, video_length, sample_size): + if type(input_video_path) is str: + cap = cv2.VideoCapture(input_video_path) + input_video = [] + while True: + ret, frame = cap.read() + if not ret: + break + frame = cv2.resize(frame, (sample_size[1], sample_size[0])) + input_video.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) + cap.release() + else: + input_video = input_video_path + + input_video = torch.from_numpy(np.array(input_video))[:video_length] + input_video = input_video.permute([3, 0, 1, 2]).unsqueeze(0) / 255 + + input_video_mask = torch.zeros_like(input_video[:, :1]) + input_video_mask[:, :, :] = 255 + + return input_video, input_video_mask, None \ No newline at end of file diff --git a/nodes.py b/nodes.py index 0c6ff19..849eb8b 100644 --- a/nodes.py +++ b/nodes.py @@ -3,11 +3,17 @@ import torch import folder_paths import comfy.model_management as mm from comfy.utils import ProgressBar -from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler +from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler, DDIMScheduler, PNDMScheduler, DPMSolverMultistepScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler + from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel from .pipeline_cogvideox import CogVideoXPipeline from contextlib import nullcontext +from .cogvideox_fun.transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelFun +from .cogvideox_fun.autoencoder_magvit import AutoencoderKLCogVideoX as AutoencoderKLCogVideoXFun +from .cogvideox_fun.utils import get_image_to_video_latent, ASPECT_RATIO_512, get_closest_ratio, to_pil +from .cogvideox_fun.pipeline_cogvideox_inpaint import CogVideoX_Fun_Pipeline_Inpaint +from PIL import Image import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') @@ -24,6 +30,7 @@ class DownloadAndLoadCogVideoModel: "THUDM/CogVideoX-2b", "THUDM/CogVideoX-5b", "bertjiazheng/KoolCogVideoX-5b", + "kijai/CogVideoX-Fun-pruned" ], ), @@ -50,10 +57,16 @@ class DownloadAndLoadCogVideoModel: dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision] - if "2b" in model: + if "Fun" in model: + base_path = os.path.join(folder_paths.models_dir, "CogVideoX_Fun", "CogVideoX-Fun-5b-InP") + if not os.path.exists(base_path): + base_path = os.path.join(folder_paths.models_dir, "CogVideo", "CogVideoX-Fun-5b-InP") + + elif "2b" in model: base_path = os.path.join(folder_paths.models_dir, "CogVideo", "CogVideo2B") elif "5b" in model: base_path = os.path.join(folder_paths.models_dir, "CogVideo", (model.split("/")[-1])) + if not os.path.exists(base_path): log.info(f"Downloading model to: {base_path}") @@ -65,25 +78,36 @@ class DownloadAndLoadCogVideoModel: local_dir=base_path, local_dir_use_symlinks=False, ) + + if "Fun" in model: + transformer = CogVideoXTransformer3DModelFun.from_pretrained(base_path, subfolder="transformer") + else: + transformer = CogVideoXTransformer3DModel.from_pretrained(base_path, subfolder="transformer") + + transformer = transformer.to(dtype).to(offload_device) + if fp8_transformer == "enabled" or fp8_transformer == "fastmode": - transformer = CogVideoXTransformer3DModel.from_pretrained(base_path, subfolder="transformer").to(offload_device) if "2b" in model: for name, param in transformer.named_parameters(): if name != "pos_embedding": param.data = param.data.to(torch.float8_e4m3fn) else: transformer.to(torch.float8_e4m3fn) - + if fp8_transformer == "fastmode": from .fp8_optimization import convert_fp8_linear convert_fp8_linear(transformer, dtype) - else: - transformer = CogVideoXTransformer3DModel.from_pretrained(base_path, subfolder="transformer").to(dtype).to(offload_device) - vae = AutoencoderKLCogVideoX.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device) + if "Fun" in model: + vae = AutoencoderKLCogVideoXFun.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device) + else: + vae = AutoencoderKLCogVideoX.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device) scheduler = CogVideoXDDIMScheduler.from_pretrained(base_path, subfolder="scheduler") - pipe = CogVideoXPipeline(vae, transformer, scheduler) + if "Fun" in model: + pipe = CogVideoX_Fun_Pipeline_Inpaint(vae, transformer, scheduler) + else: + pipe = CogVideoXPipeline(vae, transformer, scheduler) if enable_sequential_cpu_offload: pipe.enable_sequential_cpu_offload() @@ -92,7 +116,7 @@ class DownloadAndLoadCogVideoModel: pipe.transformer.to(memory_format=torch.channels_last) pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) elif compile == "onediff": - from onediffx import compile_pipe, quantize_pipe + from onediffx import compile_pipe os.environ['NEXFORT_FX_FORCE_TRITON_SDPA'] = '1' pipe = compile_pipe( @@ -280,6 +304,7 @@ class CogVideoSampler: "optional": { "samples": ("LATENT", ), "denoise_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), + "image_cond_latents": ("LATENT", ), } } @@ -288,7 +313,8 @@ class CogVideoSampler: FUNCTION = "process" CATEGORY = "CogVideoWrapper" - def process(self, pipeline, positive, negative, steps, cfg, seed, height, width, num_frames, scheduler, t_tile_length, t_tile_overlap, samples=None, denoise_strength=1.0): + def process(self, pipeline, positive, negative, steps, cfg, seed, height, width, num_frames, scheduler, t_tile_length, t_tile_overlap, samples=None, + denoise_strength=1.0, image_cond_latents=None): mm.soft_empty_cache() assert t_tile_length > t_tile_overlap, "t_tile_length must be greater than t_tile_overlap" @@ -328,6 +354,7 @@ class CogVideoSampler: t_tile_overlap = t_tile_overlap, guidance_scale=cfg, latents=samples["samples"] if samples is not None else None, + image_cond_latents=image_cond_latents["samples"] if image_cond_latents is not None else None, denoise_strength=denoise_strength, prompt_embeds=positive.to(dtype).to(device), negative_prompt_embeds=negative.to(dtype).to(device), @@ -387,7 +414,7 @@ class CogVideoDecode: latents = latents.to(vae.dtype) latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width] latents = 1 / vae.config.scaling_factor * latents - + frames = vae.decode(latents).sample if not pipeline["cpu_offloading"]: vae.to(offload_device) @@ -399,18 +426,127 @@ class CogVideoDecode: return (video,) +class CogVideoXFunSampler: + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "pipeline": ("COGVIDEOPIPE",), + "positive": ("CONDITIONING", ), + "negative": ("CONDITIONING", ), + "video_length": ("INT", {"default": 49, "min": 5, "max": 49, "step": 4}), + "base_resolution": ( + [ + 512, + 768, + 960, + 1024, + ], {"default": 768} + ), + "seed": ("INT", {"default": 43, "min": 0, "max": 0xffffffffffffffff}), + "steps": ("INT", {"default": 50, "min": 1, "max": 200, "step": 1}), + "cfg": ("FLOAT", {"default": 6.0, "min": 1.0, "max": 20.0, "step": 0.01}), + "scheduler": ( + [ + "Euler", + "Euler A", + "DPM++", + "PNDM", + "DDIM", + ], + { + "default": 'DDIM' + } + ) + }, + "optional":{ + "start_img": ("IMAGE",), + "end_img": ("IMAGE",), + }, + } + + RETURN_TYPES = ("COGVIDEOPIPE", "LATENT",) + RETURN_NAMES = ("cogvideo_pipe", "samples",) + FUNCTION = "process" + CATEGORY = "CogVideoWrapper" + + def process(self, pipeline, positive, negative, video_length, base_resolution, seed, steps, cfg, scheduler, start_img=None, end_img=None): + device = mm.get_torch_device() + offload_device = mm.unet_offload_device() + pipe = pipeline["pipe"] + dtype = pipeline["dtype"] + + pipe.enable_model_cpu_offload() + + mm.soft_empty_cache() + + start_img = [to_pil(_start_img) for _start_img in start_img] if start_img is not None else None + end_img = [to_pil(_end_img) for _end_img in end_img] if end_img is not None else None + # Count most suitable height and width + aspect_ratio_sample_size = {key : [x / 512 * base_resolution for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()} + original_width, original_height = start_img[0].size if type(start_img) is list else Image.open(start_img).size + closest_size, closest_ratio = get_closest_ratio(original_height, original_width, ratios=aspect_ratio_sample_size) + height, width = [int(x / 16) * 16 for x in closest_size] + + base_path = pipeline["base_path"] + + # Load Sampler + if scheduler == "DPM++": + noise_scheduler = DPMSolverMultistepScheduler.from_pretrained(base_path, subfolder= 'scheduler') + elif scheduler == "Euler": + noise_scheduler = EulerDiscreteScheduler.from_pretrained(base_path, subfolder= 'scheduler') + elif scheduler == "Euler A": + noise_scheduler = EulerAncestralDiscreteScheduler.from_pretrained(base_path, subfolder= 'scheduler') + elif scheduler == "PNDM": + noise_scheduler = PNDMScheduler.from_pretrained(base_path, subfolder= 'scheduler') + elif scheduler == "DDIM": + noise_scheduler = DDIMScheduler.from_pretrained(base_path, subfolder= 'scheduler') + pipe.scheduler = noise_scheduler + + #if not pipeline["cpu_offloading"]: + # pipe.transformer.to(device) + generator= torch.Generator(device=device).manual_seed(seed) + + autocastcondition = not pipeline["onediff"] + autocast_context = torch.autocast(mm.get_autocast_device(device)) if autocastcondition else nullcontext() + with autocast_context: + video_length = int((video_length - 1) // pipe.vae.config.temporal_compression_ratio * pipe.vae.config.temporal_compression_ratio) + 1 if video_length != 1 else 1 + input_video, input_video_mask, clip_image = get_image_to_video_latent(start_img, end_img, video_length=video_length, sample_size=(height, width)) + + latents = pipe( + prompt_embeds=positive.to(dtype).to(device), + negative_prompt_embeds=negative.to(dtype).to(device), + num_frames = video_length, + height = height, + width = width, + generator = generator, + guidance_scale = cfg, + num_inference_steps = steps, + + video = input_video, + mask_video = input_video_mask, + comfyui_progressbar = True, + ) + #if not pipeline["cpu_offloading"]: + # pipe.transformer.to(offload_device) + mm.soft_empty_cache() + print(latents.shape) + + return (pipeline, {"samples": latents}) NODE_CLASS_MAPPINGS = { "DownloadAndLoadCogVideoModel": DownloadAndLoadCogVideoModel, "CogVideoSampler": CogVideoSampler, "CogVideoDecode": CogVideoDecode, "CogVideoTextEncode": CogVideoTextEncode, - "CogVideoImageEncode": CogVideoImageEncode + "CogVideoImageEncode": CogVideoImageEncode, + "CogVideoXFunSampler": CogVideoXFunSampler } NODE_DISPLAY_NAME_MAPPINGS = { "DownloadAndLoadCogVideoModel": "(Down)load CogVideo Model", "CogVideoSampler": "CogVideo Sampler", "CogVideoDecode": "CogVideo Decode", "CogVideoTextEncode": "CogVideo TextEncode", - "CogVideoImageEncode": "CogVideo ImageEncode" + "CogVideoImageEncode": "CogVideo ImageEncode", + "CogVideoXFunSampler": "CogVideoXFun Sampler" } \ No newline at end of file diff --git a/pipeline_cogvideox.py b/pipeline_cogvideox.py index 09eeeec..2bae2f8 100644 --- a/pipeline_cogvideox.py +++ b/pipeline_cogvideox.py @@ -333,6 +333,7 @@ class CogVideoXPipeline(DiffusionPipeline): eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, + image_cond_latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, device = torch.device("cuda"), @@ -442,6 +443,20 @@ class CogVideoXPipeline(DiffusionPipeline): latents ) latents = latents.to(self.transformer.dtype) + + # 5.5. + if image_cond_latents is not None: + image_cond_latents = torch.cat(image_cond_latents, dim=0).to(self.transformer.dtype)#.permute(0, 2, 1, 3, 4) # [B, F, C, H, W] + + padding_shape = ( + batch_size, + num_frames - 1, + latent_channels, + height // self.vae_scale_factor_spatial, + width // self.vae_scale_factor_spatial, + ) + latent_padding = torch.zeros(padding_shape, device=device, dtype=self.transformer.dtype) + image_latents = torch.cat([image_latents, latent_padding], dim=1) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) @@ -582,6 +597,10 @@ class CogVideoXPipeline(DiffusionPipeline): latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + if image_cond_latents is not None: + latent_image_input = torch.cat([image_cond_latents] * 2) if do_classifier_free_guidance else image_cond_latents + latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2) + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latent_model_input.shape[0])