mirror of
https://git.datalinker.icu/kijai/ComfyUI-CogVideoXWrapper.git
synced 2025-12-08 20:34:23 +08:00
Merge branch 'kijai:main' into main
This commit is contained in:
commit
e71ae285ef
@ -52,7 +52,7 @@ class CogVideoXAttnProcessor2_0:
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
@torch.compiler.disable()
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
@ -126,7 +126,7 @@ class FusedCogVideoXAttnProcessor2_0:
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
@torch.compiler.disable()
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
|
||||
@ -79,11 +79,17 @@ def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
|
||||
i: i + self.tile_sample_min_height,
|
||||
j: j + self.tile_sample_min_width,
|
||||
]
|
||||
|
||||
tile = self.encoder(tile)
|
||||
if not isinstance(tile, tuple):
|
||||
tile = (tile,)
|
||||
if self.quant_conv is not None:
|
||||
tile = self.quant_conv(tile)
|
||||
time.append(tile)
|
||||
self._clear_fake_context_parallel_cache()
|
||||
time.append(tile[0])
|
||||
try:
|
||||
self._clear_fake_context_parallel_cache()
|
||||
except:
|
||||
pass
|
||||
row.append(torch.cat(time, dim=2))
|
||||
rows.append(row)
|
||||
result_rows = []
|
||||
@ -130,7 +136,10 @@ def _encode(
|
||||
if self.quant_conv is not None:
|
||||
z_intermediate = self.quant_conv(z_intermediate)
|
||||
h.append(z_intermediate)
|
||||
self._clear_fake_context_parallel_cache()
|
||||
try:
|
||||
self._clear_fake_context_parallel_cache()
|
||||
except:
|
||||
pass
|
||||
h = torch.cat(h, dim=2)
|
||||
return h
|
||||
|
||||
|
||||
16
nodes.py
16
nodes.py
@ -416,7 +416,10 @@ class DownloadAndLoadCogVideoModel:
|
||||
if compile == "torch":
|
||||
torch._dynamo.config.suppress_errors = True
|
||||
pipe.transformer.to(memory_format=torch.channels_last)
|
||||
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
||||
#pipe.transformer = torch.compile(pipe.transformer, mode="default", fullgraph=False, backend="inductor")
|
||||
for i, block in enumerate(pipe.transformer.transformer_blocks):
|
||||
if "CogVideoXBlock" in str(block):
|
||||
pipe.transformer.transformer_blocks[i] = torch.compile(block, fullgraph=False, dynamic=False, backend="inductor")
|
||||
elif compile == "onediff":
|
||||
from onediffx import compile_pipe
|
||||
os.environ['NEXFORT_FX_FORCE_TRITON_SDPA'] = '1'
|
||||
@ -466,6 +469,8 @@ class DownloadAndLoadCogVideoGGUFModel:
|
||||
"optional": {
|
||||
"pab_config": ("PAB_CONFIG", {"default": None}),
|
||||
"block_edit": ("TRANSFORMERBLOCKS", {"default": None}),
|
||||
"compile": (["disabled","onediff","torch"], {"tooltip": "compile the model for faster inference, these are advanced options only available on Linux, see readme for more info"}),
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
@ -474,7 +479,7 @@ class DownloadAndLoadCogVideoGGUFModel:
|
||||
FUNCTION = "loadmodel"
|
||||
CATEGORY = "CogVideoWrapper"
|
||||
|
||||
def loadmodel(self, model, vae_precision, fp8_fastmode, load_device, enable_sequential_cpu_offload, pab_config=None, block_edit=None):
|
||||
def loadmodel(self, model, vae_precision, fp8_fastmode, load_device, enable_sequential_cpu_offload, pab_config=None, block_edit=None, compile="disabled"):
|
||||
|
||||
check_diffusers_version()
|
||||
|
||||
@ -564,7 +569,9 @@ class DownloadAndLoadCogVideoGGUFModel:
|
||||
from .fp8_optimization import convert_fp8_linear
|
||||
convert_fp8_linear(transformer, vae_dtype)
|
||||
|
||||
|
||||
# compilation
|
||||
for i, block in enumerate(transformer.transformer_blocks):
|
||||
transformer.transformer_blocks[i] = torch.compile(block, fullgraph=False, dynamic=False, backend="inductor")
|
||||
with open(scheduler_path) as f:
|
||||
scheduler_config = json.load(f)
|
||||
|
||||
@ -731,7 +738,8 @@ class DownloadAndLoadCogVideoControlNet:
|
||||
[
|
||||
"TheDenk/cogvideox-2b-controlnet-hed-v1",
|
||||
"TheDenk/cogvideox-2b-controlnet-canny-v1",
|
||||
"TheDenk/cogvideox-5b-controlnet-hed-v1"
|
||||
"TheDenk/cogvideox-5b-controlnet-hed-v1",
|
||||
"TheDenk/cogvideox-5b-controlnet-canny-v1"
|
||||
],
|
||||
),
|
||||
|
||||
|
||||
@ -9,7 +9,7 @@
|
||||
# --------------------------------------------------------
|
||||
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
from einops import rearrange
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
@ -42,7 +42,7 @@ class CogVideoXAttnProcessor2_0:
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
@torch.compiler.disable()
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
@ -134,7 +134,7 @@ class FusedCogVideoXAttnProcessor2_0:
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
@torch.compiler.disable()
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
@ -286,7 +286,7 @@ class CogVideoXBlock(nn.Module):
|
||||
self.attn_count = 0
|
||||
self.last_attn = None
|
||||
self.block_idx = block_idx
|
||||
|
||||
#@torch.compiler.disable()
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
@ -294,6 +294,8 @@ class CogVideoXBlock(nn.Module):
|
||||
temb: torch.Tensor,
|
||||
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
timestep=None,
|
||||
video_flow_feature: Optional[torch.Tensor] = None,
|
||||
fuser=None,
|
||||
) -> torch.Tensor:
|
||||
text_seq_length = encoder_hidden_states.size(1)
|
||||
|
||||
@ -301,7 +303,14 @@ class CogVideoXBlock(nn.Module):
|
||||
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
|
||||
hidden_states, encoder_hidden_states, temb
|
||||
)
|
||||
|
||||
# Tora Motion-guidance Fuser
|
||||
if video_flow_feature is not None:
|
||||
H, W = video_flow_feature.shape[-2:]
|
||||
T = norm_hidden_states.shape[1] // H // W
|
||||
h = rearrange(norm_hidden_states, "B (T H W) C -> (B T) C H W", H=H, W=W)
|
||||
h = fuser(h, video_flow_feature.to(h), T=T)
|
||||
norm_hidden_states = rearrange(h, "(B T) C H W -> B (T H W) C", T=T)
|
||||
del h, fuser
|
||||
# attention
|
||||
if enable_pab():
|
||||
broadcast_attn, self.attn_count = if_broadcast_spatial(int(timestep[0]), self.attn_count, self.block_idx)
|
||||
@ -494,6 +503,8 @@ class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin):
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
self.fuser_list = None
|
||||
|
||||
# parallel
|
||||
#self.parallel_manager = None
|
||||
|
||||
@ -524,6 +535,7 @@ class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin):
|
||||
return_dict: bool = True,
|
||||
controlnet_states: torch.Tensor = None,
|
||||
controlnet_weights: Optional[Union[float, int, list, torch.FloatTensor]] = 1.0,
|
||||
video_flow_features: Optional[torch.Tensor] = None,
|
||||
):
|
||||
# if self.parallel_manager.cp_size > 1:
|
||||
# (
|
||||
@ -574,31 +586,15 @@ class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin):
|
||||
|
||||
# 4. Transformer blocks
|
||||
for i, block in enumerate(self.transformer_blocks):
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
||||
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
encoder_hidden_states,
|
||||
emb,
|
||||
image_rotary_emb,
|
||||
**ckpt_kwargs,
|
||||
)
|
||||
else:
|
||||
hidden_states, encoder_hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
temb=emb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
timestep=timesteps if enable_pab() else None,
|
||||
)
|
||||
hidden_states, encoder_hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
temb=emb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
timestep=timesteps if enable_pab() else None,
|
||||
video_flow_feature=video_flow_features[i] if video_flow_features is not None else None,
|
||||
fuser = self.fuser_list[i] if self.fuser_list is not None else None,
|
||||
)
|
||||
if (controlnet_states is not None) and (i < len(controlnet_states)):
|
||||
controlnet_states_block = controlnet_states[i]
|
||||
controlnet_block_weight = 1.0
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user