Initial Tora implementation

https://github.com/alibaba/Tora
This commit is contained in:
kijai 2024-10-21 00:11:39 +03:00
parent 8f9fa07455
commit e8bc2fd052
5 changed files with 1153 additions and 29 deletions

View File

@ -20,6 +20,7 @@ from torch import nn
import torch.nn.functional as F
import numpy as np
from einops import rearrange
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import is_torch_version, logging
@ -276,6 +277,8 @@ class CogVideoXBlock(nn.Module):
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
video_flow_feature: Optional[torch.Tensor] = None,
fuser=None,
) -> torch.Tensor:
text_seq_length = encoder_hidden_states.size(1)
@ -284,6 +287,28 @@ class CogVideoXBlock(nn.Module):
hidden_states, encoder_hidden_states, temb
)
# Motion-guidance Fuser
if video_flow_feature is not None:
#print(video_flow_feature)
#print("hidden_states.shape", hidden_states.shape)
#print("tora_trajectory.shape", video_flow_feature.shape)
H, W = video_flow_feature.shape[-2:]
T = norm_hidden_states.shape[1] // H // W
h = rearrange(norm_hidden_states, "B (T H W) C -> (B T) C H W", H=H, W=W).to(torch.float16)
#print("h.dtype", h.dtype)
#video_flow_feature = video_flow_feature.to(h)
#print("video_flow_feature.dtype", video_flow_feature.dtype)
h = fuser(h, video_flow_feature.to(h), T=T)
# if torch.any(torch.isnan(h)):
# #print("hidden_states", h)
# raise ValueError("hidden_states has NaN values")
norm_hidden_states = rearrange(h, "(B T) C H W -> B (T H W) C", T=T)
del h, fuser
# attention
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
hidden_states=norm_hidden_states,
@ -458,6 +483,8 @@ class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin):
self.gradient_checkpointing = False
self.fuser_list = None
def _set_gradient_checkpointing(self, module, value=False):
self.gradient_checkpointing = value
@ -570,6 +597,7 @@ class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin):
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
controlnet_states: torch.Tensor = None,
controlnet_weights: Optional[Union[float, int, list, np.ndarray, torch.FloatTensor]] = 1.0,
video_flow_features: Optional[torch.Tensor] = None,
return_dict: bool = True,
):
batch_size, num_frames, channels, height, width = hidden_states.shape
@ -594,29 +622,14 @@ class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin):
# 3. Transformer blocks
for i, block in enumerate(self.transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
emb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
hidden_states, encoder_hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=emb,
image_rotary_emb=image_rotary_emb,
video_flow_feature=video_flow_features[i] if video_flow_features is not None else None,
fuser = self.fuser_list[i] if self.fuser_list is not None else None,
)
if (controlnet_states is not None) and (i < len(controlnet_states)):

147
nodes.py
View File

@ -254,6 +254,7 @@ class DownloadAndLoadCogVideoModel:
"bertjiazheng/KoolCogVideoX-5b",
"kijai/CogVideoX-Fun-2b",
"kijai/CogVideoX-Fun-5b",
"kijai/CogVideoX-5b-Tora",
"alibaba-pai/CogVideoX-Fun-V1.1-2b-InP",
"alibaba-pai/CogVideoX-Fun-V1.1-5b-InP",
"alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose",
@ -409,6 +410,38 @@ class DownloadAndLoadCogVideoModel:
fuse_qkv_projections=True if pab_config is None else False,
)
if "Tora" in model:
import torch.nn as nn
from .tora.traj_module import MGF
hidden_size = 3072
num_layers = transformer.num_layers
pipe.transformer.fuser_list = nn.ModuleList([MGF(128, hidden_size) for _ in range(num_layers)])
fuser_sd = load_torch_file(os.path.join(base_path, "fuser", "fuser.safetensors"))
pipe.transformer.fuser_list.load_state_dict(fuser_sd)
for module in transformer.fuser_list:
for param in module.parameters():
param.data = param.data.to(torch.float16).to(device)
del fuser_sd
from .tora.traj_module import TrajExtractor
traj_extractor = TrajExtractor(
vae_downsize=(4, 8, 8),
patch_size=2,
nums_rb=2,
cin=vae.config.latent_channels,
channels=[128] * transformer.num_layers,
sk=True,
use_conv=False,
)
traj_sd = load_torch_file(os.path.join(base_path, "traj_extractor", "traj_extractor.safetensors"))
traj_extractor.load_state_dict(traj_sd)
traj_extractor.to(torch.float32).to(device)
pipe.traj_extractor = traj_extractor
pipeline = {
"pipe": pipe,
"dtype": dtype,
@ -950,6 +983,108 @@ class CogVideoImageInterpolationEncode:
return ({"samples": final_latents}, )
class ToraEncodeTrajectory:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"pipeline": ("COGVIDEOPIPE",),
"width": ("INT", {"default": 720, "min": 128, "max": 2048, "step": 8}),
"height": ("INT", {"default": 480, "min": 128, "max": 2048, "step": 8}),
"num_frames": ("INT", {"default": 49, "min": 16, "max": 1024, "step": 1}),
},
}
RETURN_TYPES = ("TORATRAJLIST",)
RETURN_NAMES = ("tora_traj_list",)
FUNCTION = "encode"
CATEGORY = "CogVideoWrapper"
def encode(self, pipeline, width, height, num_frames):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
generator = torch.Generator(device=device).manual_seed(0)
transformer = pipeline["pipe"].transformer
vae = pipeline["pipe"].vae
vae.enable_slicing()
canvas_width, canvas_height = 256, 256
traj_list = PROVIDED_TRAJS["infinity"]
traj_list_range_256 = scale_traj_list_to_256(traj_list, canvas_width, canvas_height)
return (traj_list_range_256, )
from .tora.traj_utils import process_traj, scale_traj_list_to_256, PROVIDED_TRAJS
from torchvision.utils import flow_to_image
class ToraEncodeTrajectory:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"pipeline": ("COGVIDEOPIPE",),
"coordinates": ("STRING", {"forceInput": True}),
"width": ("INT", {"default": 720, "min": 128, "max": 2048, "step": 8}),
"height": ("INT", {"default": 480, "min": 128, "max": 2048, "step": 8}),
"num_frames": ("INT", {"default": 49, "min": 16, "max": 1024, "step": 1}),
},
}
RETURN_TYPES = ("TORAFEATURES",)
RETURN_NAMES = ("tora_trajectory",)
FUNCTION = "encode"
CATEGORY = "CogVideoWrapper"
def encode(self, pipeline, width, height, num_frames, coordinates):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
generator = torch.Generator(device=device).manual_seed(0)
traj_extractor = pipeline["pipe"].traj_extractor
vae = pipeline["pipe"].vae
vae.enable_slicing()
canvas_width, canvas_height = 256, 256
coordinates = json.loads(coordinates.replace("'", '"'))
coordinates = [(coord['x'], coord['y']) for coord in coordinates]
traj_list_range_256 = scale_traj_list_to_256(coordinates, canvas_width, canvas_height)
check_diffusers_version()
vae._clear_fake_context_parallel_cache()
total_num_frames = num_frames
video_flow, points = process_traj(traj_list_range_256, total_num_frames, (height,width), device=device)
video_flow = video_flow.unsqueeze_(0)
tmp = rearrange(video_flow[0], "T H W C -> T C H W")
video_flow = flow_to_image(tmp).unsqueeze_(0).to("cuda") # [1 T C H W]
del tmp
video_flow = (
rearrange(video_flow / 255.0 * 2 - 1, "B T C H W -> B C T H W").contiguous().to(torch.bfloat16)
)
torch.cuda.empty_cache()
video_flow = video_flow.repeat(2, 1, 1, 1, 1).contiguous() # for uncondition
if not pipeline["cpu_offloading"]:
vae.to(device)
video_flow = vae.encode(video_flow).latent_dist.sample(generator) * vae.config.scaling_factor
video_flow = video_flow.permute(0, 2, 1, 3, 4).contiguous()
print("video_flow shape", video_flow.shape)
vae.to(offload_device)
video_flow = rearrange(video_flow, "b t d h w -> b d t h w")
video_flow_features = traj_extractor(video_flow.to(torch.float32))
video_flow_features = torch.stack(video_flow_features)
return (video_flow_features, )
class CogVideoSampler:
@classmethod
def INPUT_TYPES(s):
@ -975,6 +1110,7 @@ class CogVideoSampler:
"image_cond_latents": ("LATENT", ),
"context_options": ("COGCONTEXT", ),
"controlnet": ("COGVIDECONTROLNET",),
"tora_trajectory": ("TORAFEATURES", ),
}
}
@ -984,7 +1120,7 @@ class CogVideoSampler:
CATEGORY = "CogVideoWrapper"
def process(self, pipeline, positive, negative, steps, cfg, seed, height, width, num_frames, scheduler, samples=None,
denoise_strength=1.0, image_cond_latents=None, context_options=None, controlnet=None):
denoise_strength=1.0, image_cond_latents=None, context_options=None, controlnet=None, tora_trajectory=None):
mm.soft_empty_cache()
base_path = pipeline["base_path"]
@ -1042,7 +1178,8 @@ class CogVideoSampler:
context_stride= context_stride,
context_overlap= context_overlap,
freenoise=context_options["freenoise"] if context_options is not None else None,
controlnet=controlnet
controlnet=controlnet,
video_flow_features=tora_trajectory if tora_trajectory is not None else None,
)
if not pipeline["cpu_offloading"]:
pipe.transformer.to(offload_device)
@ -1586,7 +1723,8 @@ NODE_CLASS_MAPPINGS = {
"CogVideoLoraSelect": CogVideoLoraSelect,
"CogVideoContextOptions": CogVideoContextOptions,
"CogVideoControlNet": CogVideoControlNet,
"DownloadAndLoadCogVideoControlNet": DownloadAndLoadCogVideoControlNet
"DownloadAndLoadCogVideoControlNet": DownloadAndLoadCogVideoControlNet,
"ToraEncodeTrajectory": ToraEncodeTrajectory,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"DownloadAndLoadCogVideoModel": "(Down)load CogVideo Model",
@ -1606,5 +1744,6 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"CogVideoControlImageEncode": "CogVideo Control ImageEncode",
"CogVideoLoraSelect": "CogVideo LoraSelect",
"CogVideoContextOptions": "CogVideo Context Options",
"DownloadAndLoadCogVideoControlNet": "(Down)load CogVideo ControlNet"
"DownloadAndLoadCogVideoControlNet": "(Down)load CogVideo ControlNet",
"ToraEncodeTrajectory": "Tora Encode Trajectory",
}

View File

@ -161,6 +161,8 @@ class CogVideoXPipeline(VideoSysPipeline):
self.original_mask = original_mask
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
self.traj_extractor = None
if pab_config is not None:
set_pab_manager(pab_config)
@ -388,6 +390,7 @@ class CogVideoXPipeline(VideoSysPipeline):
context_overlap: Optional[int] = None,
freenoise: Optional[bool] = True,
controlnet: Optional[dict] = None,
video_flow_features: Optional[torch.Tensor] = None,
):
"""
@ -850,6 +853,7 @@ class CogVideoXPipeline(VideoSysPipeline):
else:
controlnet_states = controlnet_states.to(dtype=self.vae.dtype)
# predict noise model_output
noise_pred = self.transformer(
hidden_states=latent_model_input,
@ -859,6 +863,7 @@ class CogVideoXPipeline(VideoSysPipeline):
return_dict=False,
controlnet_states=controlnet_states,
controlnet_weights=control_weights,
video_flow_features=video_flow_features,
)[0]
noise_pred = noise_pred.float()

297
tora/traj_module.py Normal file
View File

@ -0,0 +1,297 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, reduce
def avg_pool_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D average pooling module.
"""
if dims == 1:
return nn.AvgPool1d(*args, **kwargs)
elif dims == 2:
return nn.AvgPool2d(*args, **kwargs)
elif dims == 3:
return nn.AvgPool3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
if use_conv:
self.op = conv_nd(
dims,
self.channels,
self.out_channels,
3,
stride=stride,
padding=padding,
)
else:
assert self.channels == self.out_channels
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
class ResnetBlock(nn.Module):
def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
super().__init__()
ps = ksize // 2
if in_c != out_c or sk == False:
self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
else:
# print('n_in')
self.in_conv = None
self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
self.act = nn.ReLU()
self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
self.bn1 = nn.BatchNorm2d(out_c)
self.bn2 = nn.BatchNorm2d(out_c)
if sk == False:
# self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps) # edit by zhouxiawang
self.skep = nn.Conv2d(out_c, out_c, ksize, 1, ps)
else:
self.skep = None
self.down = down
if self.down == True:
self.down_opt = Downsample(in_c, use_conv=use_conv)
def forward(self, x):
if self.down == True:
x = self.down_opt(x)
if self.in_conv is not None: # edit
x = self.in_conv(x)
h = self.bn1(x)
h = self.act(h)
h = self.block1(h)
h = self.bn2(h)
h = self.act(h)
h = self.block2(h)
if self.skep is not None:
return h + self.skep(x)
else:
return h + x
class VAESpatialEmulator(nn.Module):
def __init__(self, kernel_size=(8, 8)):
super().__init__()
self.kernel_size = kernel_size
def forward(self, x):
"""
x: torch.Tensor: shape [B C T H W]
"""
Hp, Wp = self.kernel_size
H, W = x.shape[-2], x.shape[-1]
valid_h = H - H % Hp
valid_w = W - W % Wp
x = x[..., :valid_h, :valid_w]
x = rearrange(
x,
"B C T (Nh Hp) (Nw Wp) -> B (Hp Wp C) T Nh Nw",
Hp=Hp,
Wp=Wp,
)
return x
class VAETemporalEmulator(nn.Module):
def __init__(self, micro_frame_size, kernel_size=4):
super().__init__()
self.micro_frame_size = micro_frame_size
self.kernel_size = kernel_size
def forward(self, x_z):
"""
x_z: torch.Tensor: shape [B C T H W]
"""
z_list = []
for i in range(0, x_z.shape[2], self.micro_frame_size):
x_z_bs = x_z[:, :, i : i + self.micro_frame_size]
z_list.append(x_z_bs[:, :, 0:1])
x_z_bs = x_z_bs[:, :, 1:]
t_valid = x_z_bs.shape[2] - x_z_bs.shape[2] % self.kernel_size
x_z_bs = x_z_bs[:, :, :t_valid]
x_z_bs = reduce(x_z_bs, "B C (T n) H W -> B C T H W", n=self.kernel_size, reduction="mean")
z_list.append(x_z_bs)
z = torch.cat(z_list, dim=2)
return z
class TrajExtractor(nn.Module):
def __init__(
self,
vae_downsize=(4, 8, 8),
patch_size=2,
channels=[320, 640, 1280, 1280],
nums_rb=3,
cin=2,
ksize=3,
sk=False,
use_conv=True,
):
super(TrajExtractor, self).__init__()
self.vae_downsize = vae_downsize
# self.vae_spatial_emulator = VAESpatialEmulator(kernel_size=vae_downsize[-2:])
self.downsize_patchify = nn.PixelUnshuffle(patch_size)
self.patch_size = (1, patch_size, patch_size)
self.channels = channels
self.nums_rb = nums_rb
self.body = []
for i in range(len(channels)):
for j in range(nums_rb):
if (i != 0) and (j == 0):
self.body.append(
ResnetBlock(
channels[i - 1],
channels[i],
down=False,
ksize=ksize,
sk=sk,
use_conv=use_conv,
)
)
else:
self.body.append(
ResnetBlock(
channels[i],
channels[i],
down=False,
ksize=ksize,
sk=sk,
use_conv=use_conv,
)
)
self.body = nn.ModuleList(self.body)
cin_ = cin * patch_size**2
self.conv_in = nn.Conv2d(cin_, channels[0], 3, 1, 1)
# Initialize weights
def conv_init(module):
if isinstance(module, (nn.Conv2d, nn.Conv1d)):
nn.init.kaiming_normal_(module.weight, nonlinearity="relu")
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(conv_init)
def forward(self, x):
"""
x: torch.Tensor: shape [B C T H W]
"""
# downsize
T, H, W = x.shape[-3:]
if W % self.patch_size[2] != 0:
x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2]))
if H % self.patch_size[1] != 0:
x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1]))
if T % self.patch_size[0] != 0:
x = F.pad(
x,
(0, 0, 0, 0, 0, self.patch_size[0] - T % self.patch_size[0]),
)
x = rearrange(x, "B C T H W -> (B T) C H W")
x = self.downsize_patchify(x)
# extract features
features = []
x = self.conv_in(x)
for i in range(len(self.channels)):
for j in range(self.nums_rb):
idx = i * self.nums_rb + j
x = self.body[idx](x)
features.append(x)
return features
class FloatGroupNorm(nn.GroupNorm):
def forward(self, x):
return super().forward(x.to(self.bias.dtype)).type(x.dtype)
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
class MGF(nn.Module):
def __init__(self, flow_in_channel=128, out_channels=1152):
super().__init__()
self.out_channels = out_channels
self.flow_gamma_spatial = nn.Conv2d(flow_in_channel, self.out_channels // 4, 3, padding=1)
self.flow_gamma_temporal = zero_module(
nn.Conv1d(
self.out_channels // 4,
self.out_channels,
kernel_size=3,
stride=1,
padding=1,
padding_mode="replicate",
)
)
self.flow_beta_spatial = nn.Conv2d(flow_in_channel, self.out_channels // 4, 3, padding=1)
self.flow_beta_temporal = zero_module(
nn.Conv1d(
self.out_channels // 4,
self.out_channels,
kernel_size=3,
stride=1,
padding=1,
padding_mode="replicate",
)
)
self.flow_cond_norm = FloatGroupNorm(32, self.out_channels)
def forward(self, h, flow, T):
if flow is not None:
gamma_flow = self.flow_gamma_spatial(flow)
beta_flow = self.flow_beta_spatial(flow)
_, _, hh, wh = beta_flow.shape
gamma_flow = rearrange(gamma_flow, "(b f) c h w -> (b h w) c f", f=T)
beta_flow = rearrange(beta_flow, "(b f) c h w -> (b h w) c f", f=T)
gamma_flow = self.flow_gamma_temporal(gamma_flow)
beta_flow = self.flow_beta_temporal(beta_flow)
gamma_flow = rearrange(gamma_flow, "(b h w) c f -> (b f) c h w", h=hh, w=wh)
beta_flow = rearrange(beta_flow, "(b h w) c f -> (b f) c h w", h=hh, w=wh)
h = h + self.flow_cond_norm(h) * gamma_flow + beta_flow
return h

670
tora/traj_utils.py Normal file
View File

@ -0,0 +1,670 @@
import numpy as np
import cv2
import torch
# Note that the coordinates passed to the model must not exceed 256.
# xy range 256
PROVIDED_TRAJS = {
"circle1": [
[120, 194],
[144, 193],
[155, 189],
[158, 170],
[160, 153],
[159, 123],
[152, 113],
[136, 100],
[124, 100],
[108, 100],
[101, 106],
[90, 110],
[84, 129],
[79, 146],
[78, 165],
[83, 182],
[87, 189],
[94, 192],
[100, 194],
[106, 194],
[112, 194],
[118, 195],
],
"circle2": [
[100, 127],
[105, 117],
[122, 117],
[132, 129],
[133, 158],
[125, 181],
[108, 189],
[92, 185],
[84, 179],
[79, 163],
[75, 142],
[73, 118],
[75, 82],
[91, 63],
[115, 52],
[139, 46],
[154, 55],
[167, 93],
[175, 112],
[177, 137],
[177, 158],
[177, 171],
[175, 188],
[173, 204],
],
"coaster": [
[40, 208],
[40, 148],
[40, 100],
[52, 58],
[60, 57],
[74, 68],
[78, 90],
[84, 123],
[88, 148],
[96, 168],
[100, 181],
[102, 188],
[105, 192],
[113, 118],
[119, 80],
[128, 68],
[145, 109],
[149, 155],
[157, 175],
[161, 184],
[164, 184],
[172, 166],
[183, 107],
[189, 84],
[198, 76],
],
"dance": [
[81, 112],
[86, 112],
[92, 112],
[100, 113],
[102, 114],
[97, 115],
[92, 114],
[86, 112],
[81, 112],
[80, 112],
[84, 113],
[89, 114],
[95, 114],
[101, 114],
[102, 114],
[103, 124],
[105, 137],
[109, 156],
[114, 172],
[119, 180],
[124, 184],
[131, 181],
[140, 168],
[146, 152],
[150, 128],
[151, 117],
[152, 116],
[156, 116],
[163, 115],
[169, 116],
[175, 116],
[173, 116],
[167, 116],
[162, 114],
[157, 114],
[152, 115],
[156, 115],
[163, 115],
[168, 115],
[174, 116],
[175, 116],
[168, 116],
[162, 116],
[152, 114],
[149, 134],
[145, 156],
[139, 168],
[130, 183],
[118, 180],
[112, 170],
[107, 151],
[102, 128],
[103, 117],
[96, 113],
[88, 113],
[83, 112],
[80, 112],
],
"infinity": [
[60, 141],
[71, 127],
[92, 120],
[112, 123],
[130, 145],
[145, 163],
[167, 178],
[189, 187],
[206, 176],
[213, 147],
[208, 124],
[190, 112],
[176, 111],
[158, 124],
[145, 147],
[125, 172],
[104, 189],
[72, 189],
[59, 184],
[55, 153],
[57, 140],
[75, 119],
[112, 118],
[129, 142],
[149, 163],
[168, 180],
[194, 186],
[206, 175],
[211, 159],
[212, 149],
[212, 134],
[206, 122],
[180, 112],
[163, 116],
[149, 138],
[128, 170],
[108, 184],
[86, 190],
[63, 181],
[57, 152],
[57, 139],
],
"pause": [
[98, 186],
[100, 188],
[98, 186],
[100, 188],
[101, 187],
[104, 187],
[111, 184],
[116, 176],
[125, 162],
[132, 140],
[136, 119],
[137, 104],
[138, 96],
[139, 94],
[140, 94],
[140, 96],
[138, 98],
[138, 96],
[136, 94],
[137, 92],
[140, 92],
[144, 92],
[149, 92],
[152, 92],
[151, 92],
[147, 92],
[142, 92],
[140, 92],
[139, 95],
[139, 105],
[141, 122],
[142, 143],
[140, 167],
[136, 184],
[135, 188],
[132, 195],
[132, 192],
[131, 192],
[131, 192],
[130, 192],
[130, 195],
],
"shake": [
[103, 89],
[104, 89],
[106, 89],
[107, 89],
[108, 89],
[109, 89],
[110, 89],
[111, 89],
[112, 89],
[113, 89],
[114, 89],
[115, 89],
[116, 89],
[117, 89],
[118, 89],
[119, 89],
[120, 89],
[122, 89],
[123, 89],
[124, 89],
[125, 89],
[126, 89],
[127, 88],
[128, 88],
[129, 88],
[130, 88],
[131, 88],
[133, 87],
[136, 86],
[137, 86],
[138, 86],
[139, 86],
[140, 86],
[141, 86],
[142, 86],
[143, 86],
[144, 86],
[145, 86],
[146, 87],
[147, 87],
[148, 87],
[149, 87],
[148, 87],
[146, 87],
[145, 88],
[144, 88],
[142, 89],
[141, 89],
[140, 90],
[140, 91],
[138, 91],
[137, 92],
[136, 92],
[136, 93],
[135, 93],
[134, 93],
[133, 93],
[132, 93],
[131, 93],
[130, 93],
[129, 93],
[128, 93],
[127, 92],
[125, 92],
[124, 92],
[123, 92],
[122, 92],
[121, 92],
[120, 92],
[119, 92],
[118, 92],
[117, 92],
[116, 92],
[115, 92],
[113, 92],
[112, 92],
[111, 92],
[110, 92],
[109, 92],
[108, 92],
[108, 91],
[108, 90],
[109, 90],
[110, 90],
[111, 89],
[112, 89],
[113, 89],
[114, 89],
[115, 89],
[115, 88],
[116, 88],
[117, 88],
[118, 88],
[118, 87],
[119, 87],
[120, 87],
[121, 87],
[122, 86],
[123, 86],
[124, 86],
[125, 86],
[126, 85],
[127, 85],
[128, 85],
[129, 85],
[130, 85],
[131, 85],
[132, 85],
[133, 85],
[134, 85],
[135, 85],
[136, 85],
[137, 85],
[138, 85],
[139, 85],
[140, 85],
[141, 85],
[142, 85],
[143, 85],
[143, 84],
[144, 84],
[145, 84],
[146, 84],
[147, 84],
[148, 84],
[149, 84],
[148, 84],
[147, 84],
[145, 84],
[144, 84],
[143, 84],
[142, 84],
[141, 84],
[140, 85],
[139, 85],
[138, 85],
[137, 86],
[136, 86],
[136, 87],
[135, 87],
[134, 87],
[133, 87],
[132, 88],
[131, 88],
[130, 88],
[129, 88],
[129, 89],
[128, 89],
[127, 89],
[126, 89],
[125, 89],
[124, 90],
[123, 90],
[122, 90],
[121, 90],
[120, 91],
[119, 91],
[118, 91],
[117, 91],
[116, 91],
[115, 91],
[114, 91],
[113, 91],
[112, 91],
[111, 91],
[110, 91],
[109, 91],
[109, 90],
[108, 90],
[110, 90],
[111, 90],
[113, 90],
[114, 90],
[115, 90],
[116, 90],
[118, 90],
[120, 90],
[121, 90],
[122, 90],
[123, 90],
[124, 90],
[126, 90],
[127, 90],
[128, 90],
[129, 90],
[130, 90],
[131, 90],
[132, 90],
[133, 90],
[134, 90],
[135, 90],
[136, 90],
[137, 90],
[138, 90],
[139, 90],
[140, 90],
[141, 89],
[142, 89],
[143, 89],
[144, 89],
[145, 89],
[146, 89],
[147, 89],
[147, 89],
[147, 89],
],
"spiral": [
[16, 152],
[23, 138],
[39, 122],
[54, 115],
[75, 118],
[88, 130],
[93, 150],
[89, 176],
[75, 184],
[63, 177],
[65, 152],
[77, 135],
[98, 121],
[116, 120],
[135, 127],
[148, 136],
[156, 145],
[160, 165],
[158, 176],
[138, 187],
[133, 185],
[129, 148],
[140, 133],
[156, 120],
[177, 118],
[197, 118],
[214, 119],
[225, 118],
],
}
def pdf2(sigma_matrix, grid):
"""Calculate PDF of the bivariate Gaussian distribution.
Args:
sigma_matrix (ndarray): with the shape (2, 2)
grid (ndarray): generated by :func:`mesh_grid`,
with the shape (K, K, 2), K is the kernel size.
Returns:
kernel (ndarrray): un-normalized kernel.
"""
inverse_sigma = np.linalg.inv(sigma_matrix)
kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2))
return kernel
def mesh_grid(kernel_size):
"""Generate the mesh grid, centering at zero.
Args:
kernel_size (int):
Returns:
xy (ndarray): with the shape (kernel_size, kernel_size, 2)
xx (ndarray): with the shape (kernel_size, kernel_size)
yy (ndarray): with the shape (kernel_size, kernel_size)
"""
ax = np.arange(-kernel_size // 2 + 1.0, kernel_size // 2 + 1.0)
xx, yy = np.meshgrid(ax, ax)
xy = np.hstack(
(
xx.reshape((kernel_size * kernel_size, 1)),
yy.reshape(kernel_size * kernel_size, 1),
)
).reshape(kernel_size, kernel_size, 2)
return xy, xx, yy
def sigma_matrix2(sig_x, sig_y, theta):
"""Calculate the rotated sigma matrix (two dimensional matrix).
Args:
sig_x (float):
sig_y (float):
theta (float): Radian measurement.
Returns:
ndarray: Rotated sigma matrix.
"""
d_matrix = np.array([[sig_x**2, 0], [0, sig_y**2]])
u_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])
return np.dot(u_matrix, np.dot(d_matrix, u_matrix.T))
def bivariate_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None, isotropic=True):
"""Generate a bivariate isotropic or anisotropic Gaussian kernel.
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.
Args:
kernel_size (int):
sig_x (float):
sig_y (float):
theta (float): Radian measurement.
grid (ndarray, optional): generated by :func:`mesh_grid`,
with the shape (K, K, 2), K is the kernel size. Default: None
isotropic (bool):
Returns:
kernel (ndarray): normalized kernel.
"""
if grid is None:
grid, _, _ = mesh_grid(kernel_size)
if isotropic:
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
else:
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
kernel = pdf2(sigma_matrix, grid)
kernel = kernel / np.sum(kernel)
return kernel
size = 99
sigma = 10
blur_kernel = bivariate_Gaussian(size, sigma, sigma, 0, grid=None, isotropic=True)
blur_kernel = blur_kernel / blur_kernel[size // 2, size // 2]
canvas_width, canvas_height = 256, 256
def get_flow(points, optical_flow, video_len):
for i in range(video_len - 1):
p = points[i]
p1 = points[i + 1]
optical_flow[i + 1, p[1], p[0], 0] = p1[0] - p[0]
optical_flow[i + 1, p[1], p[0], 1] = p1[1] - p[1]
return optical_flow
def process_points(points, frames=49):
defualt_points = [[128, 128]] * frames
if len(points) < 2:
return defualt_points
elif len(points) >= frames:
skip = len(points) // frames
return points[::skip][: frames - 1] + points[-1:]
else:
insert_num = frames - len(points)
insert_num_dict = {}
interval = len(points) - 1
n = insert_num // interval
m = insert_num % interval
for i in range(interval):
insert_num_dict[i] = n
for i in range(m):
insert_num_dict[i] += 1
res = []
for i in range(interval):
insert_points = []
x0, y0 = points[i]
x1, y1 = points[i + 1]
delta_x = x1 - x0
delta_y = y1 - y0
for j in range(insert_num_dict[i]):
x = x0 + (j + 1) / (insert_num_dict[i] + 1) * delta_x
y = y0 + (j + 1) / (insert_num_dict[i] + 1) * delta_y
insert_points.append([int(x), int(y)])
res += points[i : i + 1] + insert_points
res += points[-1:]
return res
def read_points_from_list(traj_list, video_len=16, reverse=False):
points = []
for point in traj_list:
if isinstance(point, str):
x, y = point.strip().split(",")
else:
x, y = point[0], point[1]
points.append((int(x), int(y)))
if reverse:
points = points[::-1]
if len(points) > video_len:
skip = len(points) // video_len
points = points[::skip]
points = points[:video_len]
return points
def read_points_from_file(file, video_len=16, reverse=False):
with open(file, "r") as f:
lines = f.readlines()
points = []
for line in lines:
x, y = line.strip().split(",")
points.append((int(x), int(y)))
if reverse:
points = points[::-1]
if len(points) > video_len:
skip = len(points) // video_len
points = points[::skip]
points = points[:video_len]
return points
def process_traj(trajs_list, num_frames, video_size, device="cpu"):
if trajs_list and trajs_list[0] and (not isinstance(trajs_list[0][0], (list, tuple))):
tmp = trajs_list
trajs_list = [tmp]
optical_flow = np.zeros((num_frames, video_size[0], video_size[1], 2), dtype=np.float32)
processed_points = []
for traj_list in trajs_list:
points = read_points_from_list(traj_list, video_len=num_frames)
xy_range = 256
h, w = video_size
points = process_points(points, num_frames)
points = [[int(w * x / xy_range), int(h * y / xy_range)] for x, y in points]
optical_flow = get_flow(points, optical_flow, video_len=num_frames)
processed_points.append(points)
print(f"received {len(trajs_list)} trajectorie(s)")
for i in range(1, num_frames):
optical_flow[i] = cv2.filter2D(optical_flow[i], -1, blur_kernel)
optical_flow = torch.tensor(optical_flow).to(device)
return optical_flow, processed_points
def add_provided_traj(traj_name):
global traj_list
traj_list = PROVIDED_TRAJS[traj_name]
traj_str = [f"{traj}" for traj in traj_list]
return ", ".join(traj_str)
def scale_traj_list_to_256(traj_list, canvas_width, canvas_height):
scale_x = 256 / canvas_width
scale_y = 256 / canvas_height
scaled_traj_list = [[int(x * scale_x), int(y * scale_y)] for x, y in traj_list]
return scaled_traj_list