mirror of
https://git.datalinker.icu/kijai/ComfyUI-CogVideoXWrapper.git
synced 2026-01-13 07:34:26 +08:00
1448 lines
51 KiB
Python
1448 lines
51 KiB
Python
import torch
|
|
import numpy as np
|
|
import models.spatracker.utils.basic
|
|
from sklearn.decomposition import PCA
|
|
from matplotlib import cm
|
|
import matplotlib.pyplot as plt
|
|
import cv2
|
|
import torch.nn.functional as F
|
|
import torchvision
|
|
EPS = 1e-6
|
|
|
|
from skimage.color import (
|
|
rgb2lab, rgb2yuv, rgb2ycbcr, lab2rgb, yuv2rgb, ycbcr2rgb,
|
|
rgb2hsv, hsv2rgb, rgb2xyz, xyz2rgb, rgb2hed, hed2rgb)
|
|
|
|
def _convert(input_, type_):
|
|
return {
|
|
'float': input_.float(),
|
|
'double': input_.double(),
|
|
}.get(type_, input_)
|
|
|
|
def _generic_transform_sk_3d(transform, in_type='', out_type=''):
|
|
def apply_transform_individual(input_):
|
|
device = input_.device
|
|
input_ = input_.cpu()
|
|
input_ = _convert(input_, in_type)
|
|
|
|
input_ = input_.permute(1, 2, 0).detach().numpy()
|
|
transformed = transform(input_)
|
|
output = torch.from_numpy(transformed).float().permute(2, 0, 1)
|
|
output = _convert(output, out_type)
|
|
return output.to(device)
|
|
|
|
def apply_transform(input_):
|
|
to_stack = []
|
|
for image in input_:
|
|
to_stack.append(apply_transform_individual(image))
|
|
return torch.stack(to_stack)
|
|
return apply_transform
|
|
|
|
hsv_to_rgb = _generic_transform_sk_3d(hsv2rgb)
|
|
|
|
def preprocess_color_tf(x):
|
|
import tensorflow as tf
|
|
return tf.cast(x,tf.float32) * 1./255 - 0.5
|
|
|
|
def preprocess_color(x):
|
|
if isinstance(x, np.ndarray):
|
|
return x.astype(np.float32) * 1./255 - 0.5
|
|
else:
|
|
return x.float() * 1./255 - 0.5
|
|
|
|
def pca_embed(emb, keep, valid=None):
|
|
## emb -- [S,H/2,W/2,C]
|
|
## keep is the number of principal components to keep
|
|
## Helper function for reduce_emb.
|
|
emb = emb + EPS
|
|
#emb is B x C x H x W
|
|
emb = emb.permute(0, 2, 3, 1).cpu().detach().numpy() #this is B x H x W x C
|
|
|
|
if valid:
|
|
valid = valid.cpu().detach().numpy().reshape((H*W))
|
|
|
|
emb_reduced = list()
|
|
|
|
B, H, W, C = np.shape(emb)
|
|
for img in emb:
|
|
if np.isnan(img).any():
|
|
emb_reduced.append(np.zeros([H, W, keep]))
|
|
continue
|
|
|
|
pixels_kd = np.reshape(img, (H*W, C))
|
|
|
|
if valid:
|
|
pixels_kd_pca = pixels_kd[valid]
|
|
else:
|
|
pixels_kd_pca = pixels_kd
|
|
|
|
P = PCA(keep)
|
|
P.fit(pixels_kd_pca)
|
|
|
|
if valid:
|
|
pixels3d = P.transform(pixels_kd)*valid
|
|
else:
|
|
pixels3d = P.transform(pixels_kd)
|
|
|
|
out_img = np.reshape(pixels3d, [H,W,keep]).astype(np.float32)
|
|
if np.isnan(out_img).any():
|
|
emb_reduced.append(np.zeros([H, W, keep]))
|
|
continue
|
|
|
|
emb_reduced.append(out_img)
|
|
|
|
emb_reduced = np.stack(emb_reduced, axis=0).astype(np.float32)
|
|
|
|
return torch.from_numpy(emb_reduced).permute(0, 3, 1, 2)
|
|
|
|
def pca_embed_together(emb, keep):
|
|
## emb -- [S,H/2,W/2,C]
|
|
## keep is the number of principal components to keep
|
|
## Helper function for reduce_emb.
|
|
emb = emb + EPS
|
|
#emb is B x C x H x W
|
|
emb = emb.permute(0, 2, 3, 1).cpu().detach().numpy() #this is B x H x W x C
|
|
|
|
B, H, W, C = np.shape(emb)
|
|
if np.isnan(emb).any():
|
|
return torch.zeros(B, keep, H, W)
|
|
|
|
pixelskd = np.reshape(emb, (B*H*W, C))
|
|
P = PCA(keep)
|
|
P.fit(pixelskd)
|
|
pixels3d = P.transform(pixelskd)
|
|
out_img = np.reshape(pixels3d, [B,H,W,keep]).astype(np.float32)
|
|
|
|
if np.isnan(out_img).any():
|
|
return torch.zeros(B, keep, H, W)
|
|
|
|
return torch.from_numpy(out_img).permute(0, 3, 1, 2)
|
|
|
|
def reduce_emb(emb, valid=None, inbound=None, together=False):
|
|
## emb -- [S,C,H/2,W/2], inbound -- [S,1,H/2,W/2]
|
|
## Reduce number of chans to 3 with PCA. For vis.
|
|
# S,H,W,C = emb.shape.as_list()
|
|
S, C, H, W = list(emb.size())
|
|
keep = 3
|
|
|
|
if together:
|
|
reduced_emb = pca_embed_together(emb, keep)
|
|
else:
|
|
reduced_emb = pca_embed(emb, keep, valid) #not im
|
|
|
|
reduced_emb = utils.basic.normalize(reduced_emb) - 0.5
|
|
if inbound is not None:
|
|
emb_inbound = emb*inbound
|
|
else:
|
|
emb_inbound = None
|
|
|
|
return reduced_emb, emb_inbound
|
|
|
|
def get_feat_pca(feat, valid=None):
|
|
B, C, D, W = list(feat.size())
|
|
# feat is B x C x D x W. If 3D input, average it through Height dimension before passing into this function.
|
|
|
|
pca, _ = reduce_emb(feat, valid=valid,inbound=None, together=True)
|
|
# pca is B x 3 x W x D
|
|
return pca
|
|
|
|
def gif_and_tile(ims, just_gif=False):
|
|
S = len(ims)
|
|
# each im is B x H x W x C
|
|
# i want a gif in the left, and the tiled frames on the right
|
|
# for the gif tool, this means making a B x S x H x W tensor
|
|
# where the leftmost part is sequential and the rest is tiled
|
|
gif = torch.stack(ims, dim=1)
|
|
if just_gif:
|
|
return gif
|
|
til = torch.cat(ims, dim=2)
|
|
til = til.unsqueeze(dim=1).repeat(1, S, 1, 1, 1)
|
|
im = torch.cat([gif, til], dim=3)
|
|
return im
|
|
|
|
def back2color(i, blacken_zeros=False):
|
|
if blacken_zeros:
|
|
const = torch.tensor([-0.5])
|
|
i = torch.where(i==0.0, const.cuda() if i.is_cuda else const, i)
|
|
return back2color(i)
|
|
else:
|
|
return ((i+0.5)*255).type(torch.ByteTensor)
|
|
|
|
def convert_occ_to_height(occ, reduce_axis=3):
|
|
B, C, D, H, W = list(occ.shape)
|
|
assert(C==1)
|
|
# note that height increases DOWNWARD in the tensor
|
|
# (like pixel/camera coordinates)
|
|
|
|
G = list(occ.shape)[reduce_axis]
|
|
values = torch.linspace(float(G), 1.0, steps=G, dtype=torch.float32, device=occ.device)
|
|
if reduce_axis==2:
|
|
# fro view
|
|
values = values.view(1, 1, G, 1, 1)
|
|
elif reduce_axis==3:
|
|
# top view
|
|
values = values.view(1, 1, 1, G, 1)
|
|
elif reduce_axis==4:
|
|
# lateral view
|
|
values = values.view(1, 1, 1, 1, G)
|
|
else:
|
|
assert(False) # you have to reduce one of the spatial dims (2-4)
|
|
values = torch.max(occ*values, dim=reduce_axis)[0]/float(G)
|
|
# values = values.view([B, C, D, W])
|
|
return values
|
|
|
|
def xy2heatmap(xy, sigma, grid_xs, grid_ys, norm=False):
|
|
# xy is B x N x 2, containing float x and y coordinates of N things
|
|
# grid_xs and grid_ys are B x N x Y x X
|
|
|
|
B, N, Y, X = list(grid_xs.shape)
|
|
|
|
mu_x = xy[:,:,0].clone()
|
|
mu_y = xy[:,:,1].clone()
|
|
|
|
x_valid = (mu_x>-0.5) & (mu_x<float(X+0.5))
|
|
y_valid = (mu_y>-0.5) & (mu_y<float(Y+0.5))
|
|
not_valid = ~(x_valid & y_valid)
|
|
|
|
mu_x[not_valid] = -10000
|
|
mu_y[not_valid] = -10000
|
|
|
|
mu_x = mu_x.reshape(B, N, 1, 1).repeat(1, 1, Y, X)
|
|
mu_y = mu_y.reshape(B, N, 1, 1).repeat(1, 1, Y, X)
|
|
|
|
sigma_sq = sigma*sigma
|
|
# sigma_sq = (sigma*sigma).reshape(B, N, 1, 1)
|
|
sq_diff_x = (grid_xs - mu_x)**2
|
|
sq_diff_y = (grid_ys - mu_y)**2
|
|
|
|
term1 = 1./2.*np.pi*sigma_sq
|
|
term2 = torch.exp(-(sq_diff_x+sq_diff_y)/(2.*sigma_sq))
|
|
gauss = term1*term2
|
|
|
|
if norm:
|
|
# normalize so each gaussian peaks at 1
|
|
gauss_ = gauss.reshape(B*N, Y, X)
|
|
gauss_ = utils.basic.normalize(gauss_)
|
|
gauss = gauss_.reshape(B, N, Y, X)
|
|
|
|
return gauss
|
|
|
|
def xy2heatmaps(xy, Y, X, sigma=30.0, norm=True):
|
|
# xy is B x N x 2
|
|
|
|
B, N, D = list(xy.shape)
|
|
assert(D==2)
|
|
|
|
device = xy.device
|
|
|
|
grid_y, grid_x = utils.basic.meshgrid2d(B, Y, X, device=device)
|
|
# grid_x and grid_y are B x Y x X
|
|
grid_xs = grid_x.unsqueeze(1).repeat(1, N, 1, 1)
|
|
grid_ys = grid_y.unsqueeze(1).repeat(1, N, 1, 1)
|
|
heat = xy2heatmap(xy, sigma, grid_xs, grid_ys, norm=norm)
|
|
return heat
|
|
|
|
def draw_circles_at_xy(xy, Y, X, sigma=12.5, round=False):
|
|
B, N, D = list(xy.shape)
|
|
assert(D==2)
|
|
prior = xy2heatmaps(xy, Y, X, sigma=sigma)
|
|
# prior is B x N x Y x X
|
|
if round:
|
|
prior = (prior > 0.5).float()
|
|
return prior
|
|
|
|
def seq2color(im, norm=True, colormap='coolwarm'):
|
|
B, S, H, W = list(im.shape)
|
|
# S is sequential
|
|
|
|
# prep a mask of the valid pixels, so we can blacken the invalids later
|
|
mask = torch.max(im, dim=1, keepdim=True)[0]
|
|
|
|
# turn the S dim into an explicit sequence
|
|
coeffs = np.linspace(1.0, float(S), S).astype(np.float32)/float(S)
|
|
|
|
# # increase the spacing from the center
|
|
# coeffs[:int(S/2)] -= 2.0
|
|
# coeffs[int(S/2)+1:] += 2.0
|
|
|
|
coeffs = torch.from_numpy(coeffs).float().cuda()
|
|
coeffs = coeffs.reshape(1, S, 1, 1).repeat(B, 1, H, W)
|
|
# scale each channel by the right coeff
|
|
im = im * coeffs
|
|
# now im is in [1/S, 1], except for the invalid parts which are 0
|
|
# keep the highest valid coeff at each pixel
|
|
im = torch.max(im, dim=1, keepdim=True)[0]
|
|
|
|
out = []
|
|
for b in range(B):
|
|
im_ = im[b]
|
|
# move channels out to last dim_
|
|
im_ = im_.detach().cpu().numpy()
|
|
im_ = np.squeeze(im_)
|
|
# im_ is H x W
|
|
if colormap=='coolwarm':
|
|
im_ = cm.coolwarm(im_)[:, :, :3]
|
|
elif colormap=='PiYG':
|
|
im_ = cm.PiYG(im_)[:, :, :3]
|
|
elif colormap=='winter':
|
|
im_ = cm.winter(im_)[:, :, :3]
|
|
elif colormap=='spring':
|
|
im_ = cm.spring(im_)[:, :, :3]
|
|
elif colormap=='onediff':
|
|
im_ = np.reshape(im_, (-1))
|
|
im0_ = cm.spring(im_)[:, :3]
|
|
im1_ = cm.winter(im_)[:, :3]
|
|
im1_[im_==1/float(S)] = im0_[im_==1/float(S)]
|
|
im_ = np.reshape(im1_, (H, W, 3))
|
|
else:
|
|
assert(False) # invalid colormap
|
|
# move channels into dim 0
|
|
im_ = np.transpose(im_, [2, 0, 1])
|
|
im_ = torch.from_numpy(im_).float().cuda()
|
|
out.append(im_)
|
|
out = torch.stack(out, dim=0)
|
|
|
|
# blacken the invalid pixels, instead of using the 0-color
|
|
out = out*mask
|
|
# out = out*255.0
|
|
|
|
# put it in [-0.5, 0.5]
|
|
out = out - 0.5
|
|
|
|
return out
|
|
|
|
def colorize(d):
|
|
# this is actually just grayscale right now
|
|
|
|
if d.ndim==2:
|
|
d = d.unsqueeze(dim=0)
|
|
else:
|
|
assert(d.ndim==3)
|
|
|
|
# color_map = cm.get_cmap('plasma')
|
|
color_map = cm.get_cmap('inferno')
|
|
# S1, D = traj.shape
|
|
|
|
# print('d1', d.shape)
|
|
C,H,W = d.shape
|
|
assert(C==1)
|
|
d = d.reshape(-1)
|
|
d = d.detach().cpu().numpy()
|
|
# print('d2', d.shape)
|
|
color = np.array(color_map(d)) * 255 # rgba
|
|
# print('color1', color.shape)
|
|
color = np.reshape(color[:,:3], [H*W, 3])
|
|
# print('color2', color.shape)
|
|
color = torch.from_numpy(color).permute(1,0).reshape(3,H,W)
|
|
# # gather
|
|
# cm = matplotlib.cm.get_cmap(cmap if cmap is not None else 'gray')
|
|
# if cmap=='RdBu' or cmap=='RdYlGn':
|
|
# colors = cm(np.arange(256))[:, :3]
|
|
# else:
|
|
# colors = cm.colors
|
|
# colors = np.array(colors).astype(np.float32)
|
|
# colors = np.reshape(colors, [-1, 3])
|
|
# colors = tf.constant(colors, dtype=tf.float32)
|
|
|
|
# value = tf.gather(colors, indices)
|
|
# colorize(value, normalize=True, vmin=None, vmax=None, cmap=None, vals=255)
|
|
|
|
# copy to the three chans
|
|
# d = d.repeat(3, 1, 1)
|
|
return color
|
|
|
|
|
|
def oned2inferno(d, norm=True, do_colorize=False):
|
|
# convert a 1chan input to a 3chan image output
|
|
|
|
# if it's just B x H x W, add a C dim
|
|
if d.ndim==3:
|
|
d = d.unsqueeze(dim=1)
|
|
# d should be B x C x H x W, where C=1
|
|
B, C, H, W = list(d.shape)
|
|
assert(C==1)
|
|
|
|
if norm:
|
|
d = utils.basic.normalize(d)
|
|
|
|
if do_colorize:
|
|
rgb = torch.zeros(B, 3, H, W)
|
|
for b in list(range(B)):
|
|
rgb[b] = colorize(d[b])
|
|
else:
|
|
rgb = d.repeat(1, 3, 1, 1)*255.0
|
|
# rgb = (255.0*rgb).type(torch.ByteTensor)
|
|
rgb = rgb.type(torch.ByteTensor)
|
|
|
|
# rgb = tf.cast(255.0*rgb, tf.uint8)
|
|
# rgb = tf.reshape(rgb, [-1, hyp.H, hyp.W, 3])
|
|
# rgb = tf.expand_dims(rgb, axis=0)
|
|
return rgb
|
|
|
|
def oned2gray(d, norm=True):
|
|
# convert a 1chan input to a 3chan image output
|
|
|
|
# if it's just B x H x W, add a C dim
|
|
if d.ndim==3:
|
|
d = d.unsqueeze(dim=1)
|
|
# d should be B x C x H x W, where C=1
|
|
B, C, H, W = list(d.shape)
|
|
assert(C==1)
|
|
|
|
if norm:
|
|
d = utils.basic.normalize(d)
|
|
|
|
rgb = d.repeat(1,3,1,1)
|
|
rgb = (255.0*rgb).type(torch.ByteTensor)
|
|
return rgb
|
|
|
|
|
|
def draw_frame_id_on_vis(vis, frame_id, scale=0.5, left=5, top=20):
|
|
|
|
rgb = vis.detach().cpu().numpy()[0]
|
|
rgb = np.transpose(rgb, [1, 2, 0]) # put channels last
|
|
rgb = cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR)
|
|
color = (255, 255, 255)
|
|
# print('putting frame id', frame_id)
|
|
|
|
frame_str = utils.basic.strnum(frame_id)
|
|
|
|
text_color_bg = (0,0,0)
|
|
font = cv2.FONT_HERSHEY_SIMPLEX
|
|
text_size, _ = cv2.getTextSize(frame_str, font, scale, 1)
|
|
text_w, text_h = text_size
|
|
cv2.rectangle(rgb, (left, top-text_h), (left + text_w, top+1), text_color_bg, -1)
|
|
|
|
cv2.putText(
|
|
rgb,
|
|
frame_str,
|
|
(left, top), # from left, from top
|
|
font,
|
|
scale, # font scale (float)
|
|
color,
|
|
1) # font thickness (int)
|
|
rgb = cv2.cvtColor(rgb.astype(np.uint8), cv2.COLOR_BGR2RGB)
|
|
vis = torch.from_numpy(rgb).permute(2, 0, 1).unsqueeze(0)
|
|
return vis
|
|
|
|
COLORMAP_FILE = "./utils/bremm.png"
|
|
class ColorMap2d:
|
|
def __init__(self, filename=None):
|
|
self._colormap_file = filename or COLORMAP_FILE
|
|
self._img = plt.imread(self._colormap_file)
|
|
|
|
self._height = self._img.shape[0]
|
|
self._width = self._img.shape[1]
|
|
|
|
def __call__(self, X):
|
|
assert len(X.shape) == 2
|
|
output = np.zeros((X.shape[0], 3))
|
|
for i in range(X.shape[0]):
|
|
x, y = X[i, :]
|
|
xp = int((self._width-1) * x)
|
|
yp = int((self._height-1) * y)
|
|
xp = np.clip(xp, 0, self._width-1)
|
|
yp = np.clip(yp, 0, self._height-1)
|
|
output[i, :] = self._img[yp, xp]
|
|
return output
|
|
|
|
def get_n_colors(N, sequential=False):
|
|
label_colors = []
|
|
for ii in range(N):
|
|
if sequential:
|
|
rgb = cm.winter(ii/(N-1))
|
|
rgb = (np.array(rgb) * 255).astype(np.uint8)[:3]
|
|
else:
|
|
rgb = np.zeros(3)
|
|
while np.sum(rgb) < 128: # ensure min brightness
|
|
rgb = np.random.randint(0,256,3)
|
|
label_colors.append(rgb)
|
|
return label_colors
|
|
|
|
class Summ_writer(object):
|
|
def __init__(self, writer, global_step, log_freq=10, fps=8, scalar_freq=100, just_gif=False):
|
|
self.writer = writer
|
|
self.global_step = global_step
|
|
self.log_freq = log_freq
|
|
self.fps = fps
|
|
self.just_gif = just_gif
|
|
self.maxwidth = 10000
|
|
self.save_this = (self.global_step % self.log_freq == 0)
|
|
self.scalar_freq = max(scalar_freq,1)
|
|
|
|
|
|
def summ_gif(self, name, tensor, blacken_zeros=False):
|
|
# tensor should be in B x S x C x H x W
|
|
|
|
assert tensor.dtype in {torch.uint8,torch.float32}
|
|
shape = list(tensor.shape)
|
|
|
|
if tensor.dtype == torch.float32:
|
|
tensor = back2color(tensor, blacken_zeros=blacken_zeros)
|
|
|
|
video_to_write = tensor[0:1]
|
|
|
|
S = video_to_write.shape[1]
|
|
if S==1:
|
|
# video_to_write is 1 x 1 x C x H x W
|
|
self.writer.add_image(name, video_to_write[0,0], global_step=self.global_step)
|
|
else:
|
|
self.writer.add_video(name, video_to_write, fps=self.fps, global_step=self.global_step)
|
|
|
|
return video_to_write
|
|
|
|
def draw_boxlist2d_on_image(self, rgb, boxlist, scores=None, tids=None, linewidth=1):
|
|
B, C, H, W = list(rgb.shape)
|
|
assert(C==3)
|
|
B2, N, D = list(boxlist.shape)
|
|
assert(B2==B)
|
|
assert(D==4) # ymin, xmin, ymax, xmax
|
|
|
|
rgb = back2color(rgb)
|
|
if scores is None:
|
|
scores = torch.ones(B2, N).float()
|
|
if tids is None:
|
|
tids = torch.arange(N).reshape(1,N).repeat(B2,N).long()
|
|
# tids = torch.zeros(B2, N).long()
|
|
out = self.draw_boxlist2d_on_image_py(
|
|
rgb[0].cpu().detach().numpy(),
|
|
boxlist[0].cpu().detach().numpy(),
|
|
scores[0].cpu().detach().numpy(),
|
|
tids[0].cpu().detach().numpy(),
|
|
linewidth=linewidth)
|
|
out = torch.from_numpy(out).type(torch.ByteTensor).permute(2, 0, 1)
|
|
out = torch.unsqueeze(out, dim=0)
|
|
out = preprocess_color(out)
|
|
out = torch.reshape(out, [1, C, H, W])
|
|
return out
|
|
|
|
def draw_boxlist2d_on_image_py(self, rgb, boxlist, scores, tids, linewidth=1):
|
|
# all inputs are numpy tensors
|
|
# rgb is H x W x 3
|
|
# boxlist is N x 4
|
|
# scores is N
|
|
# tids is N
|
|
|
|
rgb = np.transpose(rgb, [1, 2, 0]) # put channels last
|
|
# rgb = cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR)
|
|
|
|
rgb = rgb.astype(np.uint8).copy()
|
|
|
|
|
|
H, W, C = rgb.shape
|
|
assert(C==3)
|
|
N, D = boxlist.shape
|
|
assert(D==4)
|
|
|
|
# color_map = cm.get_cmap('tab20')
|
|
# color_map = cm.get_cmap('set1')
|
|
color_map = cm.get_cmap('Accent')
|
|
color_map = color_map.colors
|
|
# print('color_map', color_map)
|
|
|
|
# draw
|
|
for ind, box in enumerate(boxlist):
|
|
# box is 4
|
|
if not np.isclose(scores[ind], 0.0):
|
|
# box = utils.geom.scale_box2d(box, H, W)
|
|
ymin, xmin, ymax, xmax = box
|
|
|
|
# ymin, ymax = ymin*H, ymax*H
|
|
# xmin, xmax = xmin*W, xmax*W
|
|
|
|
# print 'score = %.2f' % scores[ind]
|
|
# color_id = tids[ind] % 20
|
|
color_id = tids[ind]
|
|
color = color_map[color_id]
|
|
color = np.array(color)*255.0
|
|
color = color.round()
|
|
# color = color.astype(np.uint8)
|
|
# color = color[::-1]
|
|
# print('color', color)
|
|
|
|
# print 'tid = %d; score = %.3f' % (tids[ind], scores[ind])
|
|
|
|
# if False:
|
|
if scores[ind] < 1.0: # not gt
|
|
cv2.putText(rgb,
|
|
# '%d (%.2f)' % (tids[ind], scores[ind]),
|
|
'%.2f' % (scores[ind]),
|
|
(int(xmin), int(ymin)),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.5, # font size
|
|
color),
|
|
#1) # font weight
|
|
|
|
xmin = np.clip(int(xmin), 0, W-1)
|
|
xmax = np.clip(int(xmax), 0, W-1)
|
|
ymin = np.clip(int(ymin), 0, H-1)
|
|
ymax = np.clip(int(ymax), 0, H-1)
|
|
|
|
cv2.line(rgb, (xmin, ymin), (xmin, ymax), color, linewidth, cv2.LINE_AA)
|
|
cv2.line(rgb, (xmin, ymin), (xmax, ymin), color, linewidth, cv2.LINE_AA)
|
|
cv2.line(rgb, (xmax, ymin), (xmax, ymax), color, linewidth, cv2.LINE_AA)
|
|
cv2.line(rgb, (xmax, ymax), (xmin, ymax), color, linewidth, cv2.LINE_AA)
|
|
|
|
# rgb = cv2.cvtColor(rgb.astype(np.uint8), cv2.COLOR_BGR2RGB)
|
|
return rgb
|
|
|
|
def summ_boxlist2d(self, name, rgb, boxlist, scores=None, tids=None, frame_id=None, only_return=False, linewidth=2):
|
|
B, C, H, W = list(rgb.shape)
|
|
boxlist_vis = self.draw_boxlist2d_on_image(rgb, boxlist, scores=scores, tids=tids, linewidth=linewidth)
|
|
return self.summ_rgb(name, boxlist_vis, frame_id=frame_id, only_return=only_return)
|
|
|
|
def summ_rgbs(self, name, ims, frame_ids=None, blacken_zeros=False, only_return=False):
|
|
if self.save_this:
|
|
|
|
ims = gif_and_tile(ims, just_gif=self.just_gif)
|
|
vis = ims
|
|
|
|
assert vis.dtype in {torch.uint8,torch.float32}
|
|
|
|
if vis.dtype == torch.float32:
|
|
vis = back2color(vis, blacken_zeros)
|
|
|
|
B, S, C, H, W = list(vis.shape)
|
|
|
|
if frame_ids is not None:
|
|
assert(len(frame_ids)==S)
|
|
for s in range(S):
|
|
vis[:,s] = draw_frame_id_on_vis(vis[:,s], frame_ids[s])
|
|
|
|
if int(W) > self.maxwidth:
|
|
vis = vis[:,:,:,:self.maxwidth]
|
|
|
|
if only_return:
|
|
return vis
|
|
else:
|
|
return self.summ_gif(name, vis, blacken_zeros)
|
|
|
|
def summ_rgb(self, name, ims, blacken_zeros=False, frame_id=None, only_return=False, halfres=False):
|
|
if self.save_this:
|
|
assert ims.dtype in {torch.uint8,torch.float32}
|
|
|
|
if ims.dtype == torch.float32:
|
|
ims = back2color(ims, blacken_zeros)
|
|
|
|
#ims is B x C x H x W
|
|
vis = ims[0:1] # just the first one
|
|
B, C, H, W = list(vis.shape)
|
|
|
|
if halfres:
|
|
vis = F.interpolate(vis, scale_factor=0.5)
|
|
|
|
if frame_id is not None:
|
|
vis = draw_frame_id_on_vis(vis, frame_id)
|
|
|
|
if int(W) > self.maxwidth:
|
|
vis = vis[:,:,:,:self.maxwidth]
|
|
|
|
if only_return:
|
|
return vis
|
|
else:
|
|
return self.summ_gif(name, vis.unsqueeze(1), blacken_zeros)
|
|
|
|
def flow2color(self, flow, clip=50.0):
|
|
"""
|
|
:param flow: Optical flow tensor.
|
|
:return: RGB image normalized between 0 and 1.
|
|
"""
|
|
|
|
# flow is B x C x H x W
|
|
|
|
B, C, H, W = list(flow.size())
|
|
|
|
flow = flow.clone().detach()
|
|
|
|
abs_image = torch.abs(flow)
|
|
flow_mean = abs_image.mean(dim=[1,2,3])
|
|
flow_std = abs_image.std(dim=[1,2,3])
|
|
|
|
if clip:
|
|
flow = torch.clamp(flow, -clip, clip)/clip
|
|
else:
|
|
# Apply some kind of normalization. Divide by the perceived maximum (mean + std*2)
|
|
flow_max = flow_mean + flow_std*2 + 1e-10
|
|
for b in range(B):
|
|
flow[b] = flow[b].clamp(-flow_max[b].item(), flow_max[b].item()) / flow_max[b].clamp(min=1)
|
|
|
|
radius = torch.sqrt(torch.sum(flow**2, dim=1, keepdim=True)) #B x 1 x H x W
|
|
radius_clipped = torch.clamp(radius, 0.0, 1.0)
|
|
|
|
angle = torch.atan2(flow[:, 1:], flow[:, 0:1]) / np.pi #B x 1 x H x W
|
|
|
|
hue = torch.clamp((angle + 1.0) / 2.0, 0.0, 1.0)
|
|
saturation = torch.ones_like(hue) * 0.75
|
|
value = radius_clipped
|
|
hsv = torch.cat([hue, saturation, value], dim=1) #B x 3 x H x W
|
|
|
|
#flow = tf.image.hsv_to_rgb(hsv)
|
|
flow = hsv_to_rgb(hsv)
|
|
flow = (flow*255.0).type(torch.ByteTensor)
|
|
return flow
|
|
|
|
def summ_flow(self, name, im, clip=0.0, only_return=False, frame_id=None):
|
|
# flow is B x C x D x W
|
|
if self.save_this:
|
|
return self.summ_rgb(name, self.flow2color(im, clip=clip), only_return=only_return, frame_id=frame_id)
|
|
else:
|
|
return None
|
|
|
|
def summ_oneds(self, name, ims, frame_ids=None, bev=False, fro=False, logvis=False, reduce_max=False, max_val=0.0, norm=True, only_return=False, do_colorize=False):
|
|
if self.save_this:
|
|
if bev:
|
|
B, C, H, _, W = list(ims[0].shape)
|
|
if reduce_max:
|
|
ims = [torch.max(im, dim=3)[0] for im in ims]
|
|
else:
|
|
ims = [torch.mean(im, dim=3) for im in ims]
|
|
elif fro:
|
|
B, C, _, H, W = list(ims[0].shape)
|
|
if reduce_max:
|
|
ims = [torch.max(im, dim=2)[0] for im in ims]
|
|
else:
|
|
ims = [torch.mean(im, dim=2) for im in ims]
|
|
|
|
|
|
if len(ims) != 1: # sequence
|
|
im = gif_and_tile(ims, just_gif=self.just_gif)
|
|
else:
|
|
im = torch.stack(ims, dim=1) # single frame
|
|
|
|
B, S, C, H, W = list(im.shape)
|
|
|
|
if logvis and max_val:
|
|
max_val = np.log(max_val)
|
|
im = torch.log(torch.clamp(im, 0)+1.0)
|
|
im = torch.clamp(im, 0, max_val)
|
|
im = im/max_val
|
|
norm = False
|
|
elif max_val:
|
|
im = torch.clamp(im, 0, max_val)
|
|
im = im/max_val
|
|
norm = False
|
|
|
|
if norm:
|
|
# normalize before oned2inferno,
|
|
# so that the ranges are similar within B across S
|
|
im = utils.basic.normalize(im)
|
|
|
|
im = im.view(B*S, C, H, W)
|
|
vis = oned2inferno(im, norm=norm, do_colorize=do_colorize)
|
|
vis = vis.view(B, S, 3, H, W)
|
|
|
|
if frame_ids is not None:
|
|
assert(len(frame_ids)==S)
|
|
for s in range(S):
|
|
vis[:,s] = draw_frame_id_on_vis(vis[:,s], frame_ids[s])
|
|
|
|
if W > self.maxwidth:
|
|
vis = vis[...,:self.maxwidth]
|
|
|
|
if only_return:
|
|
return vis
|
|
else:
|
|
self.summ_gif(name, vis)
|
|
|
|
def summ_oned(self, name, im, bev=False, fro=False, logvis=False, max_val=0, max_along_y=False, norm=True, frame_id=None, only_return=False):
|
|
if self.save_this:
|
|
|
|
if bev:
|
|
B, C, H, _, W = list(im.shape)
|
|
if max_along_y:
|
|
im = torch.max(im, dim=3)[0]
|
|
else:
|
|
im = torch.mean(im, dim=3)
|
|
elif fro:
|
|
B, C, _, H, W = list(im.shape)
|
|
if max_along_y:
|
|
im = torch.max(im, dim=2)[0]
|
|
else:
|
|
im = torch.mean(im, dim=2)
|
|
else:
|
|
B, C, H, W = list(im.shape)
|
|
|
|
im = im[0:1] # just the first one
|
|
assert(C==1)
|
|
|
|
if logvis and max_val:
|
|
max_val = np.log(max_val)
|
|
im = torch.log(im)
|
|
im = torch.clamp(im, 0, max_val)
|
|
im = im/max_val
|
|
norm = False
|
|
elif max_val:
|
|
im = torch.clamp(im, 0, max_val)/max_val
|
|
norm = False
|
|
|
|
vis = oned2inferno(im, norm=norm)
|
|
if W > self.maxwidth:
|
|
vis = vis[...,:self.maxwidth]
|
|
return self.summ_rgb(name, vis, blacken_zeros=False, frame_id=frame_id, only_return=only_return)
|
|
|
|
def summ_feats(self, name, feats, valids=None, pca=True, fro=False, only_return=False, frame_ids=None):
|
|
if self.save_this:
|
|
if valids is not None:
|
|
valids = torch.stack(valids, dim=1)
|
|
|
|
feats = torch.stack(feats, dim=1)
|
|
# feats leads with B x S x C
|
|
|
|
if feats.ndim==6:
|
|
|
|
# feats is B x S x C x D x H x W
|
|
if fro:
|
|
reduce_dim = 3
|
|
else:
|
|
reduce_dim = 4
|
|
|
|
if valids is None:
|
|
feats = torch.mean(feats, dim=reduce_dim)
|
|
else:
|
|
valids = valids.repeat(1, 1, feats.size()[2], 1, 1, 1)
|
|
feats = utils.basic.reduce_masked_mean(feats, valids, dim=reduce_dim)
|
|
|
|
B, S, C, D, W = list(feats.size())
|
|
|
|
if not pca:
|
|
# feats leads with B x S x C
|
|
feats = torch.mean(torch.abs(feats), dim=2, keepdims=True)
|
|
# feats leads with B x S x 1
|
|
feats = torch.unbind(feats, dim=1)
|
|
return self.summ_oneds(name=name, ims=feats, norm=True, only_return=only_return, frame_ids=frame_ids)
|
|
|
|
else:
|
|
__p = lambda x: utils.basic.pack_seqdim(x, B)
|
|
__u = lambda x: utils.basic.unpack_seqdim(x, B)
|
|
|
|
feats_ = __p(feats)
|
|
|
|
if valids is None:
|
|
feats_pca_ = get_feat_pca(feats_)
|
|
else:
|
|
valids_ = __p(valids)
|
|
feats_pca_ = get_feat_pca(feats_, valids)
|
|
|
|
feats_pca = __u(feats_pca_)
|
|
|
|
return self.summ_rgbs(name=name, ims=torch.unbind(feats_pca, dim=1), only_return=only_return, frame_ids=frame_ids)
|
|
|
|
def summ_feat(self, name, feat, valid=None, pca=True, only_return=False, bev=False, fro=False, frame_id=None):
|
|
if self.save_this:
|
|
if feat.ndim==5: # B x C x D x H x W
|
|
|
|
if bev:
|
|
reduce_axis = 3
|
|
elif fro:
|
|
reduce_axis = 2
|
|
else:
|
|
# default to bev
|
|
reduce_axis = 3
|
|
|
|
if valid is None:
|
|
feat = torch.mean(feat, dim=reduce_axis)
|
|
else:
|
|
valid = valid.repeat(1, feat.size()[1], 1, 1, 1)
|
|
feat = utils.basic.reduce_masked_mean(feat, valid, dim=reduce_axis)
|
|
|
|
B, C, D, W = list(feat.shape)
|
|
|
|
if not pca:
|
|
feat = torch.mean(torch.abs(feat), dim=1, keepdims=True)
|
|
# feat is B x 1 x D x W
|
|
return self.summ_oned(name=name, im=feat, norm=True, only_return=only_return, frame_id=frame_id)
|
|
else:
|
|
feat_pca = get_feat_pca(feat, valid)
|
|
return self.summ_rgb(name, feat_pca, only_return=only_return, frame_id=frame_id)
|
|
|
|
def summ_scalar(self, name, value):
|
|
if (not (isinstance(value, int) or isinstance(value, float) or isinstance(value, np.float32))) and ('torch' in value.type()):
|
|
value = value.detach().cpu().numpy()
|
|
if not np.isnan(value):
|
|
if (self.log_freq == 1):
|
|
self.writer.add_scalar(name, value, global_step=self.global_step)
|
|
elif self.save_this or np.mod(self.global_step, self.scalar_freq)==0:
|
|
self.writer.add_scalar(name, value, global_step=self.global_step)
|
|
|
|
def summ_seg(self, name, seg, only_return=False, frame_id=None, colormap='tab20', label_colors=None):
|
|
if not self.save_this:
|
|
return
|
|
|
|
B,H,W = seg.shape
|
|
|
|
if label_colors is None:
|
|
custom_label_colors = False
|
|
# label_colors = get_n_colors(int(torch.max(seg).item()), sequential=True)
|
|
label_colors = cm.get_cmap(colormap).colors
|
|
label_colors = [[int(i*255) for i in l] for l in label_colors]
|
|
else:
|
|
custom_label_colors = True
|
|
# label_colors = matplotlib.cm.get_cmap(colormap).colors
|
|
# label_colors = [[int(i*255) for i in l] for l in label_colors]
|
|
# print('label_colors', label_colors)
|
|
|
|
# label_colors = [
|
|
# (0, 0, 0), # None
|
|
# (70, 70, 70), # Buildings
|
|
# (190, 153, 153), # Fences
|
|
# (72, 0, 90), # Other
|
|
# (220, 20, 60), # Pedestrians
|
|
# (153, 153, 153), # Poles
|
|
# (157, 234, 50), # RoadLines
|
|
# (128, 64, 128), # Roads
|
|
# (244, 35, 232), # Sidewalks
|
|
# (107, 142, 35), # Vegetation
|
|
# (0, 0, 255), # Vehicles
|
|
# (102, 102, 156), # Walls
|
|
# (220, 220, 0) # TrafficSigns
|
|
# ]
|
|
|
|
r = torch.zeros_like(seg,dtype=torch.uint8)
|
|
g = torch.zeros_like(seg,dtype=torch.uint8)
|
|
b = torch.zeros_like(seg,dtype=torch.uint8)
|
|
|
|
for label in range(0,len(label_colors)):
|
|
if (not custom_label_colors):# and (N > 20):
|
|
label_ = label % 20
|
|
else:
|
|
label_ = label
|
|
|
|
idx = (seg == label+1)
|
|
r[idx] = label_colors[label_][0]
|
|
g[idx] = label_colors[label_][1]
|
|
b[idx] = label_colors[label_][2]
|
|
|
|
rgb = torch.stack([r,g,b],axis=1)
|
|
return self.summ_rgb(name,rgb,only_return=only_return, frame_id=frame_id)
|
|
|
|
def summ_pts_on_rgb(self, name, trajs, rgb, valids=None, frame_id=None, only_return=False, show_dots=True, cmap='coolwarm', linewidth=1):
|
|
# trajs is B, S, N, 2
|
|
# rgbs is B, S, C, H, W
|
|
B, C, H, W = rgb.shape
|
|
B, S, N, D = trajs.shape
|
|
|
|
rgb = rgb[0] # C, H, W
|
|
trajs = trajs[0] # S, N, 2
|
|
if valids is None:
|
|
valids = torch.ones_like(trajs[:,:,0]) # S, N
|
|
else:
|
|
valids = valids[0]
|
|
# print('trajs', trajs.shape)
|
|
# print('valids', valids.shape)
|
|
|
|
rgb = back2color(rgb).detach().cpu().numpy()
|
|
rgb = np.transpose(rgb, [1, 2, 0]) # put channels last
|
|
|
|
trajs = trajs.long().detach().cpu().numpy() # S, N, 2
|
|
valids = valids.long().detach().cpu().numpy() # S, N
|
|
|
|
rgb = rgb.astype(np.uint8).copy()
|
|
|
|
for i in range(N):
|
|
if cmap=='onediff' and i==0:
|
|
cmap_ = 'spring'
|
|
elif cmap=='onediff':
|
|
cmap_ = 'winter'
|
|
else:
|
|
cmap_ = cmap
|
|
traj = trajs[:,i] # S,2
|
|
valid = valids[:,i] # S
|
|
|
|
color_map = cm.get_cmap(cmap)
|
|
color = np.array(color_map(i)[:3]) * 255 # rgb
|
|
for s in range(S):
|
|
if valid[s]:
|
|
cv2.circle(rgb, (int(traj[s,0]), int(traj[s,1])), linewidth, color, -1)
|
|
rgb = torch.from_numpy(rgb).permute(2,0,1).unsqueeze(0)
|
|
rgb = preprocess_color(rgb)
|
|
return self.summ_rgb(name, rgb, only_return=only_return, frame_id=frame_id)
|
|
|
|
def summ_pts_on_rgbs(self, name, trajs, rgbs, valids=None, frame_ids=None, only_return=False, show_dots=True, cmap='coolwarm', linewidth=1):
|
|
# trajs is B, S, N, 2
|
|
# rgbs is B, S, C, H, W
|
|
B, S, C, H, W = rgbs.shape
|
|
B, S2, N, D = trajs.shape
|
|
assert(S==S2)
|
|
|
|
rgbs = rgbs[0] # S, C, H, W
|
|
trajs = trajs[0] # S, N, 2
|
|
if valids is None:
|
|
valids = torch.ones_like(trajs[:,:,0]) # S, N
|
|
else:
|
|
valids = valids[0]
|
|
# print('trajs', trajs.shape)
|
|
# print('valids', valids.shape)
|
|
|
|
rgbs_color = []
|
|
for rgb in rgbs:
|
|
rgb = back2color(rgb).detach().cpu().numpy()
|
|
rgb = np.transpose(rgb, [1, 2, 0]) # put channels last
|
|
rgbs_color.append(rgb) # each element 3 x H x W
|
|
|
|
trajs = trajs.long().detach().cpu().numpy() # S, N, 2
|
|
valids = valids.long().detach().cpu().numpy() # S, N
|
|
|
|
rgbs_color = [rgb.astype(np.uint8).copy() for rgb in rgbs_color]
|
|
|
|
for i in range(N):
|
|
traj = trajs[:,i] # S,2
|
|
valid = valids[:,i] # S
|
|
|
|
color_map = cm.get_cmap(cmap)
|
|
color = np.array(color_map(0)[:3]) * 255 # rgb
|
|
for s in range(S):
|
|
if valid[s]:
|
|
cv2.circle(rgbs_color[s], (traj[s,0], traj[s,1]), linewidth, color, -1)
|
|
rgbs = []
|
|
for rgb in rgbs_color:
|
|
rgb = torch.from_numpy(rgb).permute(2, 0, 1).unsqueeze(0)
|
|
rgbs.append(preprocess_color(rgb))
|
|
|
|
return self.summ_rgbs(name, rgbs, only_return=only_return, frame_ids=frame_ids)
|
|
|
|
|
|
def summ_traj2ds_on_rgbs(self, name, trajs, rgbs, valids=None, frame_ids=None, only_return=False, show_dots=False, cmap='coolwarm', vals=None, linewidth=1):
|
|
# trajs is B, S, N, 2
|
|
# rgbs is B, S, C, H, W
|
|
B, S, C, H, W = rgbs.shape
|
|
B, S2, N, D = trajs.shape
|
|
assert(S==S2)
|
|
|
|
rgbs = rgbs[0] # S, C, H, W
|
|
trajs = trajs[0] # S, N, 2
|
|
if valids is None:
|
|
valids = torch.ones_like(trajs[:,:,0]) # S, N
|
|
else:
|
|
valids = valids[0]
|
|
|
|
# print('trajs', trajs.shape)
|
|
# print('valids', valids.shape)
|
|
|
|
if vals is not None:
|
|
vals = vals[0] # N
|
|
# print('vals', vals.shape)
|
|
|
|
rgbs_color = []
|
|
for rgb in rgbs:
|
|
rgb = back2color(rgb).detach().cpu().numpy()
|
|
rgb = np.transpose(rgb, [1, 2, 0]) # put channels last
|
|
rgbs_color.append(rgb) # each element 3 x H x W
|
|
|
|
for i in range(N):
|
|
if cmap=='onediff' and i==0:
|
|
cmap_ = 'spring'
|
|
elif cmap=='onediff':
|
|
cmap_ = 'winter'
|
|
else:
|
|
cmap_ = cmap
|
|
traj = trajs[:,i].long().detach().cpu().numpy() # S, 2
|
|
valid = valids[:,i].long().detach().cpu().numpy() # S
|
|
|
|
# print('traj', traj.shape)
|
|
# print('valid', valid.shape)
|
|
|
|
if vals is not None:
|
|
# val = vals[:,i].float().detach().cpu().numpy() # []
|
|
val = vals[i].float().detach().cpu().numpy() # []
|
|
# print('val', val.shape)
|
|
else:
|
|
val = None
|
|
|
|
for t in range(S):
|
|
# if valid[t]:
|
|
# traj_seq = traj[max(t-16,0):t+1]
|
|
traj_seq = traj[max(t-8,0):t+1]
|
|
val_seq = np.linspace(0,1,len(traj_seq))
|
|
# if t<2:
|
|
# val_seq = np.zeros_like(val_seq)
|
|
# print('val_seq', val_seq)
|
|
# val_seq = 1.0
|
|
# val_seq = np.arange(8)/8.0
|
|
# val_seq = val_seq[-len(traj_seq):]
|
|
# rgbs_color[t] = self.draw_traj_on_image_py(rgbs_color[t], traj_seq, S=S, show_dots=show_dots, cmap=cmap_, val=val_seq, linewidth=linewidth)
|
|
rgbs_color[t] = self.draw_traj_on_image_py(rgbs_color[t], traj_seq, S=S, show_dots=show_dots, cmap=cmap_, val=val_seq, linewidth=linewidth)
|
|
# input()
|
|
|
|
for i in range(N):
|
|
if cmap=='onediff' and i==0:
|
|
cmap_ = 'spring'
|
|
elif cmap=='onediff':
|
|
cmap_ = 'winter'
|
|
else:
|
|
cmap_ = cmap
|
|
traj = trajs[:,i] # S,2
|
|
# vis = visibles[:,i] # S
|
|
vis = torch.ones_like(traj[:,0]) # S
|
|
valid = valids[:,i] # S
|
|
rgbs_color = self.draw_circ_on_images_py(rgbs_color, traj, vis, S=0, show_dots=show_dots, cmap=cmap_, linewidth=linewidth)
|
|
|
|
rgbs = []
|
|
for rgb in rgbs_color:
|
|
rgb = torch.from_numpy(rgb).permute(2, 0, 1).unsqueeze(0)
|
|
rgbs.append(preprocess_color(rgb))
|
|
|
|
return self.summ_rgbs(name, rgbs, only_return=only_return, frame_ids=frame_ids)
|
|
|
|
def summ_traj2ds_on_rgbs2(self, name, trajs, visibles, rgbs, valids=None, frame_ids=None, only_return=False, show_dots=True, cmap=None, linewidth=1):
|
|
# trajs is B, S, N, 2
|
|
# rgbs is B, S, C, H, W
|
|
B, S, C, H, W = rgbs.shape
|
|
B, S2, N, D = trajs.shape
|
|
assert(S==S2)
|
|
|
|
rgbs = rgbs[0] # S, C, H, W
|
|
trajs = trajs[0] # S, N, 2
|
|
visibles = visibles[0] # S, N
|
|
if valids is None:
|
|
valids = torch.ones_like(trajs[:,:,0]) # S, N
|
|
else:
|
|
valids = valids[0]
|
|
# print('trajs', trajs.shape)
|
|
# print('valids', valids.shape)
|
|
|
|
rgbs_color = []
|
|
for rgb in rgbs:
|
|
rgb = back2color(rgb).detach().cpu().numpy()
|
|
rgb = np.transpose(rgb, [1, 2, 0]) # put channels last
|
|
rgbs_color.append(rgb) # each element 3 x H x W
|
|
|
|
trajs = trajs.long().detach().cpu().numpy() # S, N, 2
|
|
visibles = visibles.float().detach().cpu().numpy() # S, N
|
|
valids = valids.long().detach().cpu().numpy() # S, N
|
|
|
|
for i in range(N):
|
|
if cmap=='onediff' and i==0:
|
|
cmap_ = 'spring'
|
|
elif cmap=='onediff':
|
|
cmap_ = 'winter'
|
|
else:
|
|
cmap_ = cmap
|
|
traj = trajs[:,i] # S,2
|
|
vis = visibles[:,i] # S
|
|
valid = valids[:,i] # S
|
|
rgbs_color = self.draw_traj_on_images_py(rgbs_color, traj, S=S, show_dots=show_dots, cmap=cmap_, linewidth=linewidth)
|
|
|
|
for i in range(N):
|
|
if cmap=='onediff' and i==0:
|
|
cmap_ = 'spring'
|
|
elif cmap=='onediff':
|
|
cmap_ = 'winter'
|
|
else:
|
|
cmap_ = cmap
|
|
traj = trajs[:,i] # S,2
|
|
vis = visibles[:,i] # S
|
|
valid = valids[:,i] # S
|
|
if valid[0]:
|
|
rgbs_color = self.draw_circ_on_images_py(rgbs_color, traj, vis, S=S, show_dots=show_dots, cmap=None, linewidth=linewidth)
|
|
|
|
rgbs = []
|
|
for rgb in rgbs_color:
|
|
rgb = torch.from_numpy(rgb).permute(2, 0, 1).unsqueeze(0)
|
|
rgbs.append(preprocess_color(rgb))
|
|
|
|
return self.summ_rgbs(name, rgbs, only_return=only_return, frame_ids=frame_ids)
|
|
|
|
def summ_traj2ds_on_rgb(self, name, trajs, rgb, valids=None, show_dots=False, show_lines=True, frame_id=None, only_return=False, cmap='coolwarm', linewidth=1):
|
|
# trajs is B, S, N, 2
|
|
# rgb is B, C, H, W
|
|
B, C, H, W = rgb.shape
|
|
B, S, N, D = trajs.shape
|
|
|
|
rgb = rgb[0] # S, C, H, W
|
|
trajs = trajs[0] # S, N, 2
|
|
|
|
if valids is None:
|
|
valids = torch.ones_like(trajs[:,:,0])
|
|
else:
|
|
valids = valids[0]
|
|
|
|
rgb_color = back2color(rgb).detach().cpu().numpy()
|
|
rgb_color = np.transpose(rgb_color, [1, 2, 0]) # put channels last
|
|
|
|
# using maxdist will dampen the colors for short motions
|
|
norms = torch.sqrt(1e-4 + torch.sum((trajs[-1] - trajs[0])**2, dim=1)) # N
|
|
maxdist = torch.quantile(norms, 0.95).detach().cpu().numpy()
|
|
maxdist = None
|
|
trajs = trajs.long().detach().cpu().numpy() # S, N, 2
|
|
valids = valids.long().detach().cpu().numpy() # S, N
|
|
|
|
for i in range(N):
|
|
if cmap=='onediff' and i==0:
|
|
cmap_ = 'spring'
|
|
elif cmap=='onediff':
|
|
cmap_ = 'winter'
|
|
else:
|
|
cmap_ = cmap
|
|
traj = trajs[:,i] # S, 2
|
|
valid = valids[:,i] # S
|
|
if valid[0]==1:
|
|
traj = traj[valid>0]
|
|
rgb_color = self.draw_traj_on_image_py(
|
|
rgb_color, traj, S=S, show_dots=show_dots, show_lines=show_lines, cmap=cmap_, maxdist=maxdist, linewidth=linewidth)
|
|
|
|
rgb_color = torch.from_numpy(rgb_color).permute(2, 0, 1).unsqueeze(0)
|
|
rgb = preprocess_color(rgb_color)
|
|
return self.summ_rgb(name, rgb, only_return=only_return, frame_id=frame_id)
|
|
|
|
def draw_traj_on_image_py(self, rgb, traj, S=50, linewidth=1, show_dots=False, show_lines=True, cmap='coolwarm', val=None, maxdist=None):
|
|
# all inputs are numpy tensors
|
|
# rgb is 3 x H x W
|
|
# traj is S x 2
|
|
|
|
H, W, C = rgb.shape
|
|
assert(C==3)
|
|
|
|
rgb = rgb.astype(np.uint8).copy()
|
|
|
|
S1, D = traj.shape
|
|
assert(D==2)
|
|
|
|
color_map = cm.get_cmap(cmap)
|
|
S1, D = traj.shape
|
|
|
|
for s in range(S1):
|
|
if val is not None:
|
|
# if len(val) == S1:
|
|
color = np.array(color_map(val[s])[:3]) * 255 # rgb
|
|
# else:
|
|
# color = np.array(color_map(val)[:3]) * 255 # rgb
|
|
else:
|
|
if maxdist is not None:
|
|
val = (np.sqrt(np.sum((traj[s]-traj[0])**2))/maxdist).clip(0,1)
|
|
color = np.array(color_map(val)[:3]) * 255 # rgb
|
|
else:
|
|
color = np.array(color_map((s)/max(1,float(S-2)))[:3]) * 255 # rgb
|
|
|
|
if show_lines and s<(S1-1):
|
|
cv2.line(rgb,
|
|
(int(traj[s,0]), int(traj[s,1])),
|
|
(int(traj[s+1,0]), int(traj[s+1,1])),
|
|
color,
|
|
linewidth,
|
|
cv2.LINE_AA)
|
|
if show_dots:
|
|
cv2.circle(rgb, (int(traj[s,0]), int(traj[s,1])), linewidth, np.array(color_map(1)[:3])*255, -1)
|
|
|
|
# if maxdist is not None:
|
|
# val = (np.sqrt(np.sum((traj[-1]-traj[0])**2))/maxdist).clip(0,1)
|
|
# color = np.array(color_map(val)[:3]) * 255 # rgb
|
|
# else:
|
|
# # draw the endpoint of traj, using the next color (which may be the last color)
|
|
# color = np.array(color_map((S1-1)/max(1,float(S-2)))[:3]) * 255 # rgb
|
|
|
|
# # emphasize endpoint
|
|
# cv2.circle(rgb, (traj[-1,0], traj[-1,1]), linewidth*2, color, -1)
|
|
|
|
return rgb
|
|
|
|
|
|
|
|
def draw_traj_on_images_py(self, rgbs, traj, S=50, linewidth=1, show_dots=False, cmap='coolwarm', maxdist=None):
|
|
# all inputs are numpy tensors
|
|
# rgbs is a list of H,W,3
|
|
# traj is S,2
|
|
H, W, C = rgbs[0].shape
|
|
assert(C==3)
|
|
|
|
rgbs = [rgb.astype(np.uint8).copy() for rgb in rgbs]
|
|
|
|
S1, D = traj.shape
|
|
assert(D==2)
|
|
|
|
x = int(np.clip(traj[0,0], 0, W-1))
|
|
y = int(np.clip(traj[0,1], 0, H-1))
|
|
color = rgbs[0][y,x]
|
|
color = (int(color[0]),int(color[1]),int(color[2]))
|
|
for s in range(S):
|
|
# bak_color = np.array(color_map(1.0)[:3]) * 255 # rgb
|
|
# cv2.circle(rgbs[s], (traj[s,0], traj[s,1]), linewidth*4, bak_color, -1)
|
|
cv2.polylines(rgbs[s],
|
|
[traj[:s+1]],
|
|
False,
|
|
color,
|
|
linewidth,
|
|
cv2.LINE_AA)
|
|
return rgbs
|
|
|
|
def draw_circs_on_image_py(self, rgb, xy, colors=None, linewidth=10, radius=3, show_dots=False, maxdist=None):
|
|
# all inputs are numpy tensors
|
|
# rgbs is a list of 3,H,W
|
|
# xy is N,2
|
|
H, W, C = rgb.shape
|
|
assert(C==3)
|
|
|
|
rgb = rgb.astype(np.uint8).copy()
|
|
|
|
N, D = xy.shape
|
|
assert(D==2)
|
|
|
|
|
|
xy = xy.astype(np.float32)
|
|
xy[:,0] = np.clip(xy[:,0], 0, W-1)
|
|
xy[:,1] = np.clip(xy[:,1], 0, H-1)
|
|
xy = xy.astype(np.int32)
|
|
|
|
|
|
|
|
if colors is None:
|
|
colors = get_n_colors(N)
|
|
|
|
for n in range(N):
|
|
color = colors[n]
|
|
# print('color', color)
|
|
# color = (color[0]*255).astype(np.uint8)
|
|
color = (int(color[0]),int(color[1]),int(color[2]))
|
|
|
|
# x = int(np.clip(xy[0,0], 0, W-1))
|
|
# y = int(np.clip(xy[0,1], 0, H-1))
|
|
# color_ = rgbs[0][y,x]
|
|
# color_ = (int(color_[0]),int(color_[1]),int(color_[2]))
|
|
# color_ = (int(color_[0]),int(color_[1]),int(color_[2]))
|
|
|
|
cv2.circle(rgb, (xy[n,0], xy[n,1]), linewidth, color, 3)
|
|
# vis_color = int(np.squeeze(vis[s])*255)
|
|
# vis_color = (vis_color,vis_color,vis_color)
|
|
# cv2.circle(rgbs[s], (traj[s,0], traj[s,1]), linewidth+1, vis_color, -1)
|
|
return rgb
|
|
|
|
def draw_circ_on_images_py(self, rgbs, traj, vis, S=50, linewidth=1, show_dots=False, cmap=None, maxdist=None):
|
|
# all inputs are numpy tensors
|
|
# rgbs is a list of 3,H,W
|
|
# traj is S,2
|
|
H, W, C = rgbs[0].shape
|
|
assert(C==3)
|
|
|
|
rgbs = [rgb.astype(np.uint8).copy() for rgb in rgbs]
|
|
|
|
S1, D = traj.shape
|
|
assert(D==2)
|
|
|
|
if cmap is None:
|
|
bremm = ColorMap2d()
|
|
traj_ = traj[0:1].astype(np.float32)
|
|
traj_[:,0] /= float(W)
|
|
traj_[:,1] /= float(H)
|
|
color = bremm(traj_)
|
|
# print('color', color)
|
|
color = (color[0]*255).astype(np.uint8)
|
|
# color = (int(color[0]),int(color[1]),int(color[2]))
|
|
color = (int(color[2]),int(color[1]),int(color[0]))
|
|
|
|
for s in range(S1):
|
|
if cmap is not None:
|
|
color_map = cm.get_cmap(cmap)
|
|
# color = np.array(color_map(s/(S-1))[:3]) * 255 # rgb
|
|
color = np.array(color_map((s+1)/max(1,float(S-1)))[:3]) * 255 # rgb
|
|
# color = color.astype(np.uint8)
|
|
# color = (color[0], color[1], color[2])
|
|
# print('color', color)
|
|
# import ipdb; ipdb.set_trace()
|
|
|
|
cv2.circle(rgbs[s], (int(traj[s,0]), int(traj[s,1])), linewidth+1, color, -1)
|
|
# vis_color = int(np.squeeze(vis[s])*255)
|
|
# vis_color = (vis_color,vis_color,vis_color)
|
|
# cv2.circle(rgbs[s], (int(traj[s,0]), int(traj[s,1])), linewidth+1, vis_color, -1)
|
|
|
|
return rgbs
|
|
|
|
def summ_traj_as_crops(self, name, trajs_e, rgbs, frame_id=None, only_return=False, show_circ=False, trajs_g=None, is_g=False):
|
|
B, S, N, D = trajs_e.shape
|
|
assert(N==1)
|
|
assert(D==2)
|
|
|
|
rgbs_vis = []
|
|
n = 0
|
|
pad_amount = 100
|
|
trajs_e_py = trajs_e[0].detach().cpu().numpy()
|
|
# trajs_e_py = np.clip(trajs_e_py, min=pad_amount/2, max=pad_amoun
|
|
trajs_e_py = trajs_e_py + pad_amount
|
|
|
|
if trajs_g is not None:
|
|
trajs_g_py = trajs_g[0].detach().cpu().numpy()
|
|
trajs_g_py = trajs_g_py + pad_amount
|
|
|
|
for s in range(S):
|
|
rgb = rgbs[0,s].detach().cpu().numpy()
|
|
# print('orig rgb', rgb.shape)
|
|
rgb = np.transpose(rgb,(1,2,0)) # H, W, 3
|
|
|
|
rgb = np.pad(rgb, ((pad_amount,pad_amount),(pad_amount,pad_amount),(0,0)))
|
|
# print('pad rgb', rgb.shape)
|
|
H, W, C = rgb.shape
|
|
|
|
if trajs_g is not None:
|
|
xy_g = trajs_g_py[s,n]
|
|
xy_g[0] = np.clip(xy_g[0], pad_amount, W-pad_amount)
|
|
xy_g[1] = np.clip(xy_g[1], pad_amount, H-pad_amount)
|
|
rgb = self.draw_circs_on_image_py(rgb, xy_g.reshape(1,2), colors=[(0,255,0)], linewidth=2, radius=3)
|
|
|
|
xy_e = trajs_e_py[s,n]
|
|
xy_e[0] = np.clip(xy_e[0], pad_amount, W-pad_amount)
|
|
xy_e[1] = np.clip(xy_e[1], pad_amount, H-pad_amount)
|
|
|
|
if show_circ:
|
|
if is_g:
|
|
rgb = self.draw_circs_on_image_py(rgb, xy_e.reshape(1,2), colors=[(0,255,0)], linewidth=2, radius=3)
|
|
else:
|
|
rgb = self.draw_circs_on_image_py(rgb, xy_e.reshape(1,2), colors=[(255,0,255)], linewidth=2, radius=3)
|
|
|
|
|
|
xmin = int(xy_e[0])-pad_amount//2
|
|
xmax = int(xy_e[0])+pad_amount//2
|
|
ymin = int(xy_e[1])-pad_amount//2
|
|
ymax = int(xy_e[1])+pad_amount//2
|
|
|
|
rgb_ = rgb[ymin:ymax, xmin:xmax]
|
|
|
|
H_, W_ = rgb_.shape[:2]
|
|
# if np.any(rgb_.shape==0):
|
|
# input()
|
|
if H_==0 or W_==0:
|
|
import ipdb; ipdb.set_trace()
|
|
|
|
rgb_ = rgb_.transpose(2,0,1)
|
|
rgb_ = torch.from_numpy(rgb_)
|
|
|
|
rgbs_vis.append(rgb_)
|
|
|
|
# nrow = int(np.sqrt(S)*(16.0/9)/2.0)
|
|
nrow = int(np.sqrt(S)*1.5)
|
|
grid_img = torchvision.utils.make_grid(torch.stack(rgbs_vis, dim=0), nrow=nrow).unsqueeze(0)
|
|
# print('grid_img', grid_img.shape)
|
|
return self.summ_rgb(name, grid_img.byte(), frame_id=frame_id, only_return=only_return)
|
|
|
|
def summ_occ(self, name, occ, reduce_axes=[3], bev=False, fro=False, pro=False, frame_id=None, only_return=False):
|
|
if self.save_this:
|
|
B, C, D, H, W = list(occ.shape)
|
|
if bev:
|
|
reduce_axes = [3]
|
|
elif fro:
|
|
reduce_axes = [2]
|
|
elif pro:
|
|
reduce_axes = [4]
|
|
for reduce_axis in reduce_axes:
|
|
height = convert_occ_to_height(occ, reduce_axis=reduce_axis)
|
|
if reduce_axis == reduce_axes[-1]:
|
|
return self.summ_oned(name=('%s_ax%d' % (name, reduce_axis)), im=height, norm=False, frame_id=frame_id, only_return=only_return)
|
|
else:
|
|
self.summ_oned(name=('%s_ax%d' % (name, reduce_axis)), im=height, norm=False, frame_id=frame_id, only_return=only_return)
|
|
|
|
def erode2d(im, times=1, device='cuda'):
|
|
weights2d = torch.ones(1, 1, 3, 3, device=device)
|
|
for time in range(times):
|
|
im = 1.0 - F.conv2d(1.0 - im, weights2d, padding=1).clamp(0, 1)
|
|
return im
|
|
|
|
def dilate2d(im, times=1, device='cuda', mode='square'):
|
|
weights2d = torch.ones(1, 1, 3, 3, device=device)
|
|
if mode=='cross':
|
|
weights2d[:,:,0,0] = 0.0
|
|
weights2d[:,:,0,2] = 0.0
|
|
weights2d[:,:,2,0] = 0.0
|
|
weights2d[:,:,2,2] = 0.0
|
|
for time in range(times):
|
|
im = F.conv2d(im, weights2d, padding=1).clamp(0, 1)
|
|
return im
|
|
|
|
|