mirror of
https://git.datalinker.icu/kijai/ComfyUI-CogVideoXWrapper.git
synced 2026-01-13 07:34:26 +08:00
167 lines
5.4 KiB
Python
167 lines
5.4 KiB
Python
import torch
|
|
import numpy as np
|
|
import math
|
|
from prettytable import PrettyTable
|
|
|
|
def count_parameters(model):
|
|
table = PrettyTable(["Modules", "Parameters"])
|
|
total_params = 0
|
|
for name, parameter in model.named_parameters():
|
|
if not parameter.requires_grad:
|
|
continue
|
|
param = parameter.numel()
|
|
if param > 100000:
|
|
table.add_row([name, param])
|
|
total_params+=param
|
|
print(table)
|
|
print('total params: %.2f M' % (total_params/1000000.0))
|
|
return total_params
|
|
|
|
def posemb_sincos_2d_xy(xy, C, temperature=10000, dtype=torch.float32, cat_coords=False):
|
|
device = xy.device
|
|
dtype = xy.dtype
|
|
B, S, D = xy.shape
|
|
assert(D==2)
|
|
x = xy[:,:,0]
|
|
y = xy[:,:,1]
|
|
assert (C % 4) == 0, 'feature dimension must be multiple of 4 for sincos emb'
|
|
omega = torch.arange(C // 4, device=device) / (C // 4 - 1)
|
|
omega = 1. / (temperature ** omega)
|
|
|
|
y = y.flatten()[:, None] * omega[None, :]
|
|
x = x.flatten()[:, None] * omega[None, :]
|
|
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1)
|
|
pe = pe.reshape(B,S,C).type(dtype)
|
|
if cat_coords:
|
|
pe = torch.cat([pe, xy], dim=2) # B,N,C+2
|
|
return pe
|
|
|
|
class SimplePool():
|
|
def __init__(self, pool_size, version='pt'):
|
|
self.pool_size = pool_size
|
|
self.version = version
|
|
self.items = []
|
|
|
|
if not (version=='pt' or version=='np'):
|
|
print('version = %s; please choose pt or np')
|
|
assert(False) # please choose pt or np
|
|
|
|
def __len__(self):
|
|
return len(self.items)
|
|
|
|
def mean(self, min_size=1):
|
|
if min_size=='half':
|
|
pool_size_thresh = self.pool_size/2
|
|
else:
|
|
pool_size_thresh = min_size
|
|
|
|
if self.version=='np':
|
|
if len(self.items) >= pool_size_thresh:
|
|
return np.sum(self.items)/float(len(self.items))
|
|
else:
|
|
return np.nan
|
|
if self.version=='pt':
|
|
if len(self.items) >= pool_size_thresh:
|
|
return torch.sum(self.items)/float(len(self.items))
|
|
else:
|
|
return torch.from_numpy(np.nan)
|
|
|
|
def sample(self, with_replacement=True):
|
|
idx = np.random.randint(len(self.items))
|
|
if with_replacement:
|
|
return self.items[idx]
|
|
else:
|
|
return self.items.pop(idx)
|
|
|
|
def fetch(self, num=None):
|
|
if self.version=='pt':
|
|
item_array = torch.stack(self.items)
|
|
elif self.version=='np':
|
|
item_array = np.stack(self.items)
|
|
if num is not None:
|
|
# there better be some items
|
|
assert(len(self.items) >= num)
|
|
|
|
# if there are not that many elements just return however many there are
|
|
if len(self.items) < num:
|
|
return item_array
|
|
else:
|
|
idxs = np.random.randint(len(self.items), size=num)
|
|
return item_array[idxs]
|
|
else:
|
|
return item_array
|
|
|
|
def is_full(self):
|
|
full = len(self.items)==self.pool_size
|
|
return full
|
|
|
|
def empty(self):
|
|
self.items = []
|
|
|
|
def update(self, items):
|
|
for item in items:
|
|
if len(self.items) < self.pool_size:
|
|
# the pool is not full, so let's add this in
|
|
self.items.append(item)
|
|
else:
|
|
# the pool is full
|
|
# pop from the front
|
|
self.items.pop(0)
|
|
# add to the back
|
|
self.items.append(item)
|
|
return self.items
|
|
|
|
def farthest_point_sample(xyz, npoint, include_ends=False, deterministic=False):
|
|
"""
|
|
Input:
|
|
xyz: pointcloud data, [B, N, C], where C is probably 3
|
|
npoint: number of samples
|
|
Return:
|
|
inds: sampled pointcloud index, [B, npoint]
|
|
"""
|
|
device = xyz.device
|
|
B, N, C = xyz.shape
|
|
xyz = xyz.float()
|
|
inds = torch.zeros(B, npoint, dtype=torch.long).to(device)
|
|
distance = torch.ones(B, N).to(device) * 1e10
|
|
if deterministic:
|
|
farthest = torch.randint(0, 1, (B,), dtype=torch.long).to(device)
|
|
else:
|
|
farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)
|
|
batch_indices = torch.arange(B, dtype=torch.long).to(device)
|
|
for i in range(npoint):
|
|
if include_ends:
|
|
if i==0:
|
|
farthest = 0
|
|
elif i==1:
|
|
farthest = N-1
|
|
inds[:, i] = farthest
|
|
centroid = xyz[batch_indices, farthest, :].view(B, 1, C)
|
|
dist = torch.sum((xyz - centroid) ** 2, -1)
|
|
mask = dist < distance
|
|
distance[mask] = dist[mask]
|
|
farthest = torch.max(distance, -1)[1]
|
|
|
|
if npoint > N:
|
|
# if we need more samples, make them random
|
|
distance += torch.randn_like(distance)
|
|
return inds
|
|
|
|
def farthest_point_sample_py(xyz, npoint):
|
|
N,C = xyz.shape
|
|
inds = np.zeros(npoint, dtype=np.int32)
|
|
distance = np.ones(N) * 1e10
|
|
farthest = np.random.randint(0, N, dtype=np.int32)
|
|
for i in range(npoint):
|
|
inds[i] = farthest
|
|
centroid = xyz[farthest, :].reshape(1,C)
|
|
dist = np.sum((xyz - centroid) ** 2, -1)
|
|
mask = dist < distance
|
|
distance[mask] = dist[mask]
|
|
farthest = np.argmax(distance, -1)
|
|
if npoint > N:
|
|
# if we need more samples, make them random
|
|
distance += np.random.randn(*distance.shape)
|
|
return inds
|
|
|