2025-06-20 00:10:24 +03:00

217 lines
8.9 KiB
Python

from typing import Any, Dict, Optional, Tuple, Union
import torch
from torch import nn
from diffusers.models.transformers.cogvideox_transformer_3d import Transformer2DModelOutput, CogVideoXBlock
from diffusers.utils import is_torch_version
from diffusers.loaders import PeftAdapterMixin
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.embeddings import CogVideoXPatchEmbed, TimestepEmbedding, Timesteps
from diffusers.models.modeling_utils import ModelMixin
from diffusers.configuration_utils import ConfigMixin, register_to_config
class EF_Net(ModelMixin, ConfigMixin, PeftAdapterMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
num_attention_heads: int = 30,
attention_head_dim: int = 64,
vae_channels: int = 16,
in_channels: int = 3,
downscale_coef: int = 8,
flip_sin_to_cos: bool = True,
freq_shift: int = 0,
time_embed_dim: int = 512,
num_layers: int = 8,
dropout: float = 0.0,
attention_bias: bool = True,
sample_width: int = 90,
sample_height: int = 60,
sample_frames: int = 1,
patch_size: int = 2,
temporal_compression_ratio: int = 4,
max_text_seq_length: int = 226,
activation_fn: str = "gelu-approximate",
timestep_activation_fn: str = "silu",
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
spatial_interpolation_scale: float = 1.875,
temporal_interpolation_scale: float = 1.0,
use_rotary_positional_embeddings: bool = False,
use_learned_positional_embeddings: bool = False,
out_proj_dim = None,
):
super().__init__()
inner_dim = num_attention_heads * attention_head_dim
out_proj_dim = inner_dim
if not use_rotary_positional_embeddings and use_learned_positional_embeddings:
raise ValueError(
"There are no CogVideoX checkpoints available with disable rotary embeddings and learned positional "
"embeddings. If you're using a custom model and/or believe this should be supported, please open an "
"issue at https://github.com/huggingface/diffusers/issues."
)
# 1. Patch embedding
self.patch_embed = CogVideoXPatchEmbed(
patch_size=patch_size,
in_channels=vae_channels,
embed_dim=inner_dim,
bias=True,
sample_width=sample_width,
sample_height=sample_height,
sample_frames=49,
temporal_compression_ratio=temporal_compression_ratio,
spatial_interpolation_scale=spatial_interpolation_scale,
temporal_interpolation_scale=temporal_interpolation_scale,
use_positional_embeddings=not use_rotary_positional_embeddings,
use_learned_positional_embeddings=use_learned_positional_embeddings,
)
self.patch_embed_first = CogVideoXPatchEmbed(
patch_size=patch_size,
in_channels=vae_channels,
embed_dim=inner_dim,
bias=True,
sample_width=sample_width,
sample_height=sample_height,
sample_frames=sample_frames,
temporal_compression_ratio=temporal_compression_ratio,
spatial_interpolation_scale=spatial_interpolation_scale,
temporal_interpolation_scale=temporal_interpolation_scale,
use_positional_embeddings=not use_rotary_positional_embeddings,
use_learned_positional_embeddings=use_learned_positional_embeddings,
)
self.embedding_dropout = nn.Dropout(dropout)
self.weights = nn.ModuleList([nn.Linear(inner_dim, 13) for _ in range(num_layers)])
self.first_weights = nn.ModuleList([nn.Linear(2*inner_dim, inner_dim) for _ in range(num_layers)])
# 2. Time embeddings
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)
# 3. Define spatio-temporal transformers blocks
self.transformer_blocks = nn.ModuleList(
[
CogVideoXBlock(
dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
time_embed_dim=time_embed_dim,
dropout=dropout,
activation_fn=activation_fn,
attention_bias=attention_bias,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
)
for _ in range(num_layers)
]
)
self.out_projectors = None
self.relu = nn.LeakyReLU(negative_slope=0.01)
if out_proj_dim is not None:
self.out_projectors = nn.ModuleList(
[nn.Linear(inner_dim, out_proj_dim) for _ in range(num_layers)]
)
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, enable=False, gradient_checkpointing_func=None):
self.gradient_checkpointing = enable
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
EF_Net_states: torch.Tensor,
timestep: Union[int, float, torch.LongTensor],
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
timestep_cond: Optional[torch.Tensor] = None,
return_dict: bool = True,
):
batch_size, num_frames, channels, height, width = EF_Net_states.shape
o_hidden_states = hidden_states
hidden_states = EF_Net_states
encoder_hidden_states_ = encoder_hidden_states
# 1. Time embedding
timesteps = timestep
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=hidden_states.dtype)
emb = self.time_embedding(t_emb, timestep_cond)
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
hidden_states = self.embedding_dropout(hidden_states)
text_seq_length = encoder_hidden_states.shape[1]
encoder_hidden_states = hidden_states[:, :text_seq_length]
hidden_states = hidden_states[:, text_seq_length:]
o_hidden_states = self.patch_embed_first(encoder_hidden_states_, o_hidden_states)
o_hidden_states = self.embedding_dropout(o_hidden_states)
text_seq_length = encoder_hidden_states_.shape[1]
o_hidden_states = o_hidden_states[:, text_seq_length:]
EF_Net_hidden_states = ()
# 2. Transformer blocks
for i, block in enumerate(self.transformer_blocks):
#if self.training and self.gradient_checkpointing:
if self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
emb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
hidden_states, encoder_hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=emb,
image_rotary_emb=image_rotary_emb,
)
if self.out_projectors is not None:
coff = self.weights[i](hidden_states)
temp_list = []
for j in range(coff.shape[2]):
temp_list.append(hidden_states*coff[:,:,j:(j+1)])
out = torch.concat(temp_list, dim=1)
out = torch.concat([out, o_hidden_states], dim=2)
out = self.first_weights[i](out)
out = self.relu(out)
out = self.out_projectors[i](out)
EF_Net_hidden_states += (out,)
else:
out = torch.concat([weight*hidden_states for weight in self.weights], dim=1)
EF_Net_hidden_states += (out,)
if not return_dict:
return (EF_Net_hidden_states,)
return Transformer2DModelOutput(sample=EF_Net_hidden_states)