mirror of
https://git.datalinker.icu/kijai/ComfyUI-CogVideoXWrapper.git
synced 2025-12-08 20:34:23 +08:00
https://huggingface.co/Kijai/CogVideoX_GGUF/blob/main/CogVideoX_5b_I2V_GGUF_Q4_0.safetensors
861 lines
40 KiB
Python
861 lines
40 KiB
Python
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
|
|
# All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
import math
|
|
from dataclasses import dataclass
|
|
from typing import Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from einops import rearrange
|
|
|
|
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
|
from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel
|
|
from diffusers.models.embeddings import get_3d_rotary_pos_embed
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
|
from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
|
|
from diffusers.utils import BaseOutput, logging, replace_example_docstring
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
from diffusers.video_processor import VideoProcessor
|
|
from diffusers.image_processor import VaeImageProcessor
|
|
from einops import rearrange
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
EXAMPLE_DOC_STRING = """
|
|
Examples:
|
|
```python
|
|
>>> import torch
|
|
>>> from diffusers import CogVideoX_Fun_Pipeline
|
|
>>> from diffusers.utils import export_to_video
|
|
|
|
>>> # Models: "THUDM/CogVideoX-2b" or "THUDM/CogVideoX-5b"
|
|
>>> pipe = CogVideoX_Fun_Pipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=torch.float16).to("cuda")
|
|
>>> prompt = (
|
|
... "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. "
|
|
... "The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other "
|
|
... "pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, "
|
|
... "casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. "
|
|
... "The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical "
|
|
... "atmosphere of this unique musical performance."
|
|
... )
|
|
>>> video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]
|
|
>>> export_to_video(video, "output.mp4", fps=8)
|
|
```
|
|
"""
|
|
|
|
|
|
# Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid
|
|
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
|
|
tw = tgt_width
|
|
th = tgt_height
|
|
h, w = src
|
|
r = h / w
|
|
if r > (th / tw):
|
|
resize_height = th
|
|
resize_width = int(round(th / h * w))
|
|
else:
|
|
resize_width = tw
|
|
resize_height = int(round(tw / w * h))
|
|
|
|
crop_top = int(round((th - resize_height) / 2.0))
|
|
crop_left = int(round((tw - resize_width) / 2.0))
|
|
|
|
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
|
def retrieve_timesteps(
|
|
scheduler,
|
|
num_inference_steps: Optional[int] = None,
|
|
device: Optional[Union[str, torch.device]] = None,
|
|
timesteps: Optional[List[int]] = None,
|
|
sigmas: Optional[List[float]] = None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
|
|
|
Args:
|
|
scheduler (`SchedulerMixin`):
|
|
The scheduler to get timesteps from.
|
|
num_inference_steps (`int`):
|
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
|
must be `None`.
|
|
device (`str` or `torch.device`, *optional*):
|
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
|
timesteps (`List[int]`, *optional*):
|
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
|
`num_inference_steps` and `sigmas` must be `None`.
|
|
sigmas (`List[float]`, *optional*):
|
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
|
`num_inference_steps` and `timesteps` must be `None`.
|
|
|
|
Returns:
|
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
|
second element is the number of inference steps.
|
|
"""
|
|
if timesteps is not None and sigmas is not None:
|
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
|
if timesteps is not None:
|
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
if not accepts_timesteps:
|
|
raise ValueError(
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
f" timestep schedules. Please check whether you are using the correct scheduler."
|
|
)
|
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
num_inference_steps = len(timesteps)
|
|
elif sigmas is not None:
|
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
if not accept_sigmas:
|
|
raise ValueError(
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
|
)
|
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
num_inference_steps = len(timesteps)
|
|
else:
|
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
return timesteps, num_inference_steps
|
|
|
|
|
|
def resize_mask(mask, latent, process_first_frame_only=True):
|
|
latent_size = latent.size()
|
|
batch_size, channels, num_frames, height, width = mask.shape
|
|
|
|
if process_first_frame_only:
|
|
target_size = list(latent_size[2:])
|
|
target_size[0] = 1
|
|
first_frame_resized = F.interpolate(
|
|
mask[:, :, 0:1, :, :],
|
|
size=target_size,
|
|
mode='trilinear',
|
|
align_corners=False
|
|
)
|
|
|
|
target_size = list(latent_size[2:])
|
|
target_size[0] = target_size[0] - 1
|
|
if target_size[0] != 0:
|
|
remaining_frames_resized = F.interpolate(
|
|
mask[:, :, 1:, :, :],
|
|
size=target_size,
|
|
mode='trilinear',
|
|
align_corners=False
|
|
)
|
|
resized_mask = torch.cat([first_frame_resized, remaining_frames_resized], dim=2)
|
|
else:
|
|
resized_mask = first_frame_resized
|
|
else:
|
|
target_size = list(latent_size[2:])
|
|
resized_mask = F.interpolate(
|
|
mask,
|
|
size=target_size,
|
|
mode='trilinear',
|
|
align_corners=False
|
|
)
|
|
return resized_mask
|
|
|
|
|
|
@dataclass
|
|
class CogVideoX_Fun_PipelineOutput(BaseOutput):
|
|
r"""
|
|
Output class for CogVideo pipelines.
|
|
|
|
Args:
|
|
video (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
|
|
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
|
|
denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
|
|
`(batch_size, num_frames, channels, height, width)`.
|
|
"""
|
|
|
|
videos: torch.Tensor
|
|
|
|
|
|
class CogVideoX_Fun_Pipeline_Inpaint(DiffusionPipeline):
|
|
r"""
|
|
Pipeline for text-to-video generation using CogVideoX.
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
|
|
Args:
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
|
|
transformer ([`CogVideoXTransformer3DModel`]):
|
|
A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents.
|
|
scheduler ([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
|
|
"""
|
|
|
|
_optional_components = []
|
|
model_cpu_offload_seq = ">vae->transformer->vae"
|
|
|
|
_callback_tensor_inputs = [
|
|
"latents",
|
|
"prompt_embeds",
|
|
"negative_prompt_embeds",
|
|
]
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKLCogVideoX,
|
|
transformer: CogVideoXTransformer3DModel,
|
|
scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler],
|
|
):
|
|
super().__init__()
|
|
|
|
self.register_modules(
|
|
vae=vae, transformer=transformer, scheduler=scheduler
|
|
)
|
|
self.vae_scale_factor_spatial = (
|
|
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
|
)
|
|
self.vae_scale_factor_temporal = (
|
|
self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4
|
|
)
|
|
|
|
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
|
|
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
|
self.mask_processor = VaeImageProcessor(
|
|
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
|
|
)
|
|
|
|
def prepare_latents(
|
|
self,
|
|
batch_size,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
video_length,
|
|
dtype,
|
|
device,
|
|
generator,
|
|
latents=None,
|
|
video=None,
|
|
timestep=None,
|
|
is_strength_max=True,
|
|
return_noise=False,
|
|
return_video_latents=False,
|
|
):
|
|
shape = (
|
|
batch_size,
|
|
(video_length - 1) // self.vae_scale_factor_temporal + 1,
|
|
num_channels_latents,
|
|
height // self.vae_scale_factor_spatial,
|
|
width // self.vae_scale_factor_spatial,
|
|
)
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
if return_video_latents or (latents is None and not is_strength_max):
|
|
video = video.to(device=device, dtype=self.vae.dtype)
|
|
|
|
bs = 1
|
|
new_video = []
|
|
for i in range(0, video.shape[0], bs):
|
|
video_bs = video[i : i + bs]
|
|
video_bs = self.vae.encode(video_bs)[0]
|
|
video_bs = video_bs.sample()
|
|
new_video.append(video_bs)
|
|
video = torch.cat(new_video, dim = 0)
|
|
video = video * self.vae.config.scaling_factor
|
|
|
|
video_latents = video.repeat(batch_size // video.shape[0], 1, 1, 1, 1)
|
|
video_latents = video_latents.to(device=device, dtype=dtype)
|
|
video_latents = rearrange(video_latents, "b c f h w -> b f c h w")
|
|
|
|
if latents is None:
|
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
# if strength is 1. then initialise the latents to noise, else initial to image + noise
|
|
latents = noise if is_strength_max else self.scheduler.add_noise(video_latents, noise, timestep)
|
|
# if pure noise then scale the initial latents by the Scheduler's init sigma
|
|
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
|
|
else:
|
|
noise = latents.to(device)
|
|
latents = noise * self.scheduler.init_noise_sigma
|
|
|
|
# scale the initial noise by the standard deviation required by the scheduler
|
|
outputs = (latents,)
|
|
|
|
if return_noise:
|
|
outputs += (noise,)
|
|
|
|
if return_video_latents:
|
|
outputs += (video_latents,)
|
|
|
|
return outputs
|
|
|
|
def prepare_mask_latents(
|
|
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
|
):
|
|
# resize the mask to latents shape as we concatenate the mask to the latents
|
|
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
|
# and half precision
|
|
|
|
if mask is not None:
|
|
mask = mask.to(device=device, dtype=self.vae.dtype)
|
|
bs = 1
|
|
new_mask = []
|
|
for i in range(0, mask.shape[0], bs):
|
|
mask_bs = mask[i : i + bs]
|
|
mask_bs = self.vae.encode(mask_bs)[0]
|
|
mask_bs = mask_bs.mode()
|
|
new_mask.append(mask_bs)
|
|
mask = torch.cat(new_mask, dim = 0)
|
|
mask = mask * self.vae.config.scaling_factor
|
|
|
|
if masked_image is not None:
|
|
masked_image = masked_image.to(device=device, dtype=self.vae.dtype)
|
|
bs = 1
|
|
new_mask_pixel_values = []
|
|
for i in range(0, masked_image.shape[0], bs):
|
|
mask_pixel_values_bs = masked_image[i : i + bs]
|
|
mask_pixel_values_bs = self.vae.encode(mask_pixel_values_bs)[0]
|
|
mask_pixel_values_bs = mask_pixel_values_bs.mode()
|
|
new_mask_pixel_values.append(mask_pixel_values_bs)
|
|
masked_image_latents = torch.cat(new_mask_pixel_values, dim = 0)
|
|
masked_image_latents = masked_image_latents * self.vae.config.scaling_factor
|
|
else:
|
|
masked_image_latents = None
|
|
|
|
return mask, masked_image_latents
|
|
|
|
def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
|
|
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
|
|
latents = 1 / self.vae.config.scaling_factor * latents
|
|
|
|
frames = self.vae.decode(latents).sample
|
|
frames = (frames / 2 + 0.5).clamp(0, 1)
|
|
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
|
frames = frames.cpu().float().numpy()
|
|
return frames
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
|
# and should be between [0, 1]
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
# check if the scheduler accepts generator
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
# Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs
|
|
def check_inputs(
|
|
self,
|
|
prompt,
|
|
height,
|
|
width,
|
|
negative_prompt,
|
|
callback_on_step_end_tensor_inputs,
|
|
prompt_embeds=None,
|
|
negative_prompt_embeds=None,
|
|
):
|
|
if height % 8 != 0 or width % 8 != 0:
|
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all(
|
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
|
):
|
|
raise ValueError(
|
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
|
)
|
|
if prompt is not None and prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
" only forward one of the two."
|
|
)
|
|
elif prompt is None and prompt_embeds is None:
|
|
raise ValueError(
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|
)
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
|
|
if prompt is not None and negative_prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|
)
|
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|
)
|
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
|
raise ValueError(
|
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
|
f" {negative_prompt_embeds.shape}."
|
|
)
|
|
|
|
def fuse_qkv_projections(self) -> None:
|
|
r"""Enables fused QKV projections."""
|
|
self.fusing_transformer = True
|
|
self.transformer.fuse_qkv_projections()
|
|
|
|
def unfuse_qkv_projections(self) -> None:
|
|
r"""Disable QKV projection fusion if enabled."""
|
|
if not self.fusing_transformer:
|
|
logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.")
|
|
else:
|
|
self.transformer.unfuse_qkv_projections()
|
|
self.fusing_transformer = False
|
|
|
|
def _prepare_rotary_positional_embeddings(
|
|
self,
|
|
height: int,
|
|
width: int,
|
|
num_frames: int,
|
|
device: torch.device,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
|
grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
|
base_size_width = 720 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
|
base_size_height = 480 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
|
|
|
grid_crops_coords = get_resize_crop_region_for_grid(
|
|
(grid_height, grid_width), base_size_width, base_size_height
|
|
)
|
|
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
|
|
embed_dim=self.transformer.config.attention_head_dim,
|
|
crops_coords=grid_crops_coords,
|
|
grid_size=(grid_height, grid_width),
|
|
temporal_size=num_frames,
|
|
use_real=True,
|
|
)
|
|
|
|
freqs_cos = freqs_cos.to(device=device)
|
|
freqs_sin = freqs_sin.to(device=device)
|
|
return freqs_cos, freqs_sin
|
|
|
|
@property
|
|
def guidance_scale(self):
|
|
return self._guidance_scale
|
|
|
|
@property
|
|
def num_timesteps(self):
|
|
return self._num_timesteps
|
|
|
|
@property
|
|
def interrupt(self):
|
|
return self._interrupt
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
|
def get_timesteps(self, num_inference_steps, strength, device):
|
|
# get the original timestep using init_timestep
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
|
|
|
t_start = max(num_inference_steps - init_timestep, 0)
|
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
|
|
|
return timesteps, num_inference_steps - t_start
|
|
|
|
@torch.no_grad()
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
def __call__(
|
|
self,
|
|
prompt: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
height: int = 480,
|
|
width: int = 720,
|
|
video: Union[torch.FloatTensor] = None,
|
|
mask_video: Union[torch.FloatTensor] = None,
|
|
masked_video_latents: Union[torch.FloatTensor] = None,
|
|
num_frames: int = 49,
|
|
num_inference_steps: int = 50,
|
|
timesteps: Optional[List[int]] = None,
|
|
guidance_scale: float = 6,
|
|
use_dynamic_cfg: bool = False,
|
|
num_videos_per_prompt: int = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
output_type: str = "numpy",
|
|
return_dict: bool = False,
|
|
callback_on_step_end: Optional[
|
|
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
|
] = None,
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
|
max_sequence_length: int = 226,
|
|
strength: float = 1,
|
|
comfyui_progressbar: bool = False,
|
|
) -> Union[CogVideoX_Fun_PipelineOutput, Tuple]:
|
|
"""
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|
instead.
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
less than `1`).
|
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
|
num_frames (`int`, defaults to `48`):
|
|
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will
|
|
contain 1 extra frame because CogVideoX_Fun is conditioned with (num_seconds * fps + 1) frames where
|
|
num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that
|
|
needs to be satisfied is that of divisibility mentioned above.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
timesteps (`List[int]`, *optional*):
|
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
|
passed will be used. Must be in descending order.
|
|
guidance_scale (`float`, *optional*, defaults to 7.0):
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
usually at the expense of lower image quality.
|
|
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of videos to generate per prompt.
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
to make generation deterministic.
|
|
latents (`torch.FloatTensor`, *optional*):
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generate image. Choose between
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
|
of a plain tuple.
|
|
callback_on_step_end (`Callable`, *optional*):
|
|
A function that calls at the end of each denoising steps during the inference. The function is called
|
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
|
`callback_on_step_end_tensor_inputs`.
|
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
|
`._callback_tensor_inputs` attribute of your pipeline class.
|
|
max_sequence_length (`int`, defaults to `226`):
|
|
Maximum sequence length in encoded prompt. Must be consistent with
|
|
`self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
|
|
|
|
Examples:
|
|
|
|
Returns:
|
|
[`~pipelines.cogvideo.pipeline_cogvideox.CogVideoX_Fun_PipelineOutput`] or `tuple`:
|
|
[`~pipelines.cogvideo.pipeline_cogvideox.CogVideoX_Fun_PipelineOutput`] if `return_dict` is True, otherwise a
|
|
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
|
"""
|
|
|
|
if num_frames > 49:
|
|
raise ValueError(
|
|
"The number of frames must be less than 49 for now due to static positional embeddings. This will be updated in the future to remove this limitation."
|
|
)
|
|
|
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
|
|
|
height = height or self.transformer.config.sample_size * self.vae_scale_factor_spatial
|
|
width = width or self.transformer.config.sample_size * self.vae_scale_factor_spatial
|
|
num_videos_per_prompt = 1
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(
|
|
prompt,
|
|
height,
|
|
width,
|
|
negative_prompt,
|
|
callback_on_step_end_tensor_inputs,
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
)
|
|
self._guidance_scale = guidance_scale
|
|
self._interrupt = False
|
|
|
|
# 2. Default call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
|
|
#self.vae.to(device)
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
if do_classifier_free_guidance:
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
|
|
|
# 4. set timesteps
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
timesteps, num_inference_steps = self.get_timesteps(
|
|
num_inference_steps=num_inference_steps, strength=strength, device=device
|
|
)
|
|
self._num_timesteps = len(timesteps)
|
|
if comfyui_progressbar:
|
|
from comfy.utils import ProgressBar
|
|
pbar = ProgressBar(num_inference_steps + 2)
|
|
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
|
|
latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
|
|
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
|
is_strength_max = strength == 1.0
|
|
|
|
# 5. Prepare latents.
|
|
if video is not None:
|
|
video_length = video.shape[2]
|
|
init_video = self.image_processor.preprocess(rearrange(video, "b c f h w -> (b f) c h w"), height=height, width=width)
|
|
init_video = init_video.to(dtype=torch.float32)
|
|
init_video = rearrange(init_video, "(b f) c h w -> b c f h w", f=video_length)
|
|
else:
|
|
init_video = None
|
|
|
|
num_channels_latents = self.vae.config.latent_channels
|
|
num_channels_transformer = self.transformer.config.in_channels
|
|
return_image_latents = num_channels_transformer == num_channels_latents
|
|
|
|
latents_outputs = self.prepare_latents(
|
|
batch_size * num_videos_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
video_length,
|
|
self.vae.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
video=init_video,
|
|
timestep=latent_timestep,
|
|
is_strength_max=is_strength_max,
|
|
return_noise=True,
|
|
return_video_latents=return_image_latents,
|
|
)
|
|
if return_image_latents:
|
|
latents, noise, image_latents = latents_outputs
|
|
else:
|
|
latents, noise = latents_outputs
|
|
if comfyui_progressbar:
|
|
pbar.update(1)
|
|
|
|
if mask_video is not None:
|
|
if (mask_video == 255).all():
|
|
mask_latents = torch.zeros_like(latents)[:, :, :1].to(latents.device, latents.dtype)
|
|
masked_video_latents = torch.zeros_like(latents).to(latents.device, latents.dtype)
|
|
|
|
mask_input = torch.cat([mask_latents] * 2) if do_classifier_free_guidance else mask_latents
|
|
masked_video_latents_input = (
|
|
torch.cat([masked_video_latents] * 2) if do_classifier_free_guidance else masked_video_latents
|
|
)
|
|
inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=2).to(latents.dtype)
|
|
else:
|
|
# Prepare mask latent variables
|
|
video_length = video.shape[2]
|
|
mask_condition = self.mask_processor.preprocess(rearrange(mask_video, "b c f h w -> (b f) c h w"), height=height, width=width)
|
|
mask_condition = mask_condition.to(dtype=torch.float32)
|
|
mask_condition = rearrange(mask_condition, "(b f) c h w -> b c f h w", f=video_length)
|
|
|
|
if num_channels_transformer != num_channels_latents:
|
|
mask_condition_tile = torch.tile(mask_condition, [1, 3, 1, 1, 1])
|
|
if masked_video_latents is None:
|
|
masked_video = init_video * (mask_condition_tile < 0.5) + torch.ones_like(init_video) * (mask_condition_tile > 0.5) * -1
|
|
else:
|
|
masked_video = masked_video_latents
|
|
|
|
_, masked_video_latents = self.prepare_mask_latents(
|
|
None,
|
|
masked_video,
|
|
batch_size,
|
|
height,
|
|
width,
|
|
self.vae.dtype,
|
|
device,
|
|
generator,
|
|
do_classifier_free_guidance,
|
|
)
|
|
mask_latents = resize_mask(1 - mask_condition, masked_video_latents)
|
|
mask_latents = mask_latents.to(masked_video_latents.device) * self.vae.config.scaling_factor
|
|
|
|
mask = torch.tile(mask_condition, [1, num_channels_latents, 1, 1, 1])
|
|
mask = F.interpolate(mask, size=latents.size()[-3:], mode='trilinear', align_corners=True).to(latents.device, latents.dtype)
|
|
|
|
mask_input = torch.cat([mask_latents] * 2) if do_classifier_free_guidance else mask_latents
|
|
masked_video_latents_input = (
|
|
torch.cat([masked_video_latents] * 2) if do_classifier_free_guidance else masked_video_latents
|
|
)
|
|
|
|
mask = rearrange(mask, "b c f h w -> b f c h w")
|
|
mask_input = rearrange(mask_input, "b c f h w -> b f c h w")
|
|
masked_video_latents_input = rearrange(masked_video_latents_input, "b c f h w -> b f c h w")
|
|
|
|
inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=2).to(latents.dtype)
|
|
else:
|
|
mask = torch.tile(mask_condition, [1, num_channels_latents, 1, 1, 1])
|
|
mask = F.interpolate(mask, size=latents.size()[-3:], mode='trilinear', align_corners=True).to(latents.device, latents.dtype)
|
|
mask = rearrange(mask, "b c f h w -> b f c h w")
|
|
|
|
inpaint_latents = None
|
|
else:
|
|
if num_channels_transformer != num_channels_latents:
|
|
mask = torch.zeros_like(latents).to(latents.device, latents.dtype)
|
|
masked_video_latents = torch.zeros_like(latents).to(latents.device, latents.dtype)
|
|
|
|
mask_input = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
|
masked_video_latents_input = (
|
|
torch.cat([masked_video_latents] * 2) if do_classifier_free_guidance else masked_video_latents
|
|
)
|
|
inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(latents.dtype)
|
|
else:
|
|
mask = torch.zeros_like(init_video[:, :1])
|
|
mask = torch.tile(mask, [1, num_channels_latents, 1, 1, 1])
|
|
mask = F.interpolate(mask, size=latents.size()[-3:], mode='trilinear', align_corners=True).to(latents.device, latents.dtype)
|
|
mask = rearrange(mask, "b c f h w -> b f c h w")
|
|
|
|
inpaint_latents = None
|
|
if comfyui_progressbar:
|
|
pbar.update(1)
|
|
|
|
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
# 7. Create rotary embeds if required
|
|
image_rotary_emb = (
|
|
self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device)
|
|
if self.transformer.config.use_rotary_positional_embeddings
|
|
else None
|
|
)
|
|
|
|
# 8. Denoising loop
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
# for DPM-solver++
|
|
old_pred_original_sample = None
|
|
for i, t in enumerate(timesteps):
|
|
if self.interrupt:
|
|
continue
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
|
timestep = t.expand(latent_model_input.shape[0])
|
|
|
|
# predict noise model_output
|
|
noise_pred = self.transformer(
|
|
hidden_states=latent_model_input,
|
|
encoder_hidden_states=prompt_embeds,
|
|
timestep=timestep,
|
|
image_rotary_emb=image_rotary_emb,
|
|
return_dict=False,
|
|
inpaint_latents=inpaint_latents,
|
|
)[0]
|
|
noise_pred = noise_pred.float()
|
|
|
|
# perform guidance
|
|
if use_dynamic_cfg:
|
|
self._guidance_scale = 1 + guidance_scale * (
|
|
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
|
|
)
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
if not isinstance(self.scheduler, CogVideoXDPMScheduler):
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|
else:
|
|
latents, old_pred_original_sample = self.scheduler.step(
|
|
noise_pred,
|
|
old_pred_original_sample,
|
|
t,
|
|
timesteps[i - 1] if i > 0 else None,
|
|
latents,
|
|
**extra_step_kwargs,
|
|
return_dict=False,
|
|
)
|
|
latents = latents.to(prompt_embeds.dtype)
|
|
|
|
# call the callback, if provided
|
|
if callback_on_step_end is not None:
|
|
callback_kwargs = {}
|
|
for k in callback_on_step_end_tensor_inputs:
|
|
callback_kwargs[k] = locals()[k]
|
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
|
|
|
latents = callback_outputs.pop("latents", latents)
|
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
if comfyui_progressbar:
|
|
pbar.update(1)
|
|
|
|
# if output_type == "numpy":
|
|
# video = self.decode_latents(latents)
|
|
# elif not output_type == "latent":
|
|
# video = self.decode_latents(latents)
|
|
# video = self.video_processor.postprocess_video(video=video, output_type=output_type)
|
|
# else:
|
|
# video = latents
|
|
|
|
# Offload all models
|
|
self.maybe_free_model_hooks()
|
|
|
|
# if not return_dict:
|
|
# video = torch.from_numpy(video)
|
|
|
|
return latents |