mirror of
https://git.datalinker.icu/kijai/ComfyUI-CogVideoXWrapper.git
synced 2025-12-09 04:44:22 +08:00
477 lines
17 KiB
Python
477 lines
17 KiB
Python
# LoRA network module
|
|
# reference:
|
|
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
|
|
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
|
|
# https://github.com/bmaltais/kohya_ss
|
|
|
|
import hashlib
|
|
import math
|
|
import os
|
|
from collections import defaultdict
|
|
from io import BytesIO
|
|
from typing import List, Optional, Type, Union
|
|
|
|
import safetensors.torch
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
|
from safetensors.torch import load_file
|
|
from transformers import T5EncoderModel
|
|
|
|
|
|
class LoRAModule(torch.nn.Module):
|
|
"""
|
|
replaces forward method of the original Linear, instead of replacing the original Linear module.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
lora_name,
|
|
org_module: torch.nn.Module,
|
|
multiplier=1.0,
|
|
lora_dim=4,
|
|
alpha=1,
|
|
dropout=None,
|
|
rank_dropout=None,
|
|
module_dropout=None,
|
|
):
|
|
"""if alpha == 0 or None, alpha is rank (no scaling)."""
|
|
super().__init__()
|
|
self.lora_name = lora_name
|
|
|
|
if org_module.__class__.__name__ == "Conv2d":
|
|
in_dim = org_module.in_channels
|
|
out_dim = org_module.out_channels
|
|
else:
|
|
in_dim = org_module.in_features
|
|
out_dim = org_module.out_features
|
|
|
|
self.lora_dim = lora_dim
|
|
if org_module.__class__.__name__ == "Conv2d":
|
|
kernel_size = org_module.kernel_size
|
|
stride = org_module.stride
|
|
padding = org_module.padding
|
|
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
|
|
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
|
|
else:
|
|
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
|
|
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)
|
|
|
|
if type(alpha) == torch.Tensor:
|
|
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
|
|
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
|
|
self.scale = alpha / self.lora_dim
|
|
self.register_buffer("alpha", torch.tensor(alpha))
|
|
|
|
# same as microsoft's
|
|
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
|
|
torch.nn.init.zeros_(self.lora_up.weight)
|
|
|
|
self.multiplier = multiplier
|
|
self.org_module = org_module # remove in applying
|
|
self.dropout = dropout
|
|
self.rank_dropout = rank_dropout
|
|
self.module_dropout = module_dropout
|
|
|
|
def apply_to(self):
|
|
self.org_forward = self.org_module.forward
|
|
self.org_module.forward = self.forward
|
|
del self.org_module
|
|
|
|
def forward(self, x, *args, **kwargs):
|
|
weight_dtype = x.dtype
|
|
org_forwarded = self.org_forward(x)
|
|
|
|
# module dropout
|
|
if self.module_dropout is not None and self.training:
|
|
if torch.rand(1) < self.module_dropout:
|
|
return org_forwarded
|
|
|
|
lx = self.lora_down(x.to(self.lora_down.weight.dtype))
|
|
|
|
# normal dropout
|
|
if self.dropout is not None and self.training:
|
|
lx = torch.nn.functional.dropout(lx, p=self.dropout)
|
|
|
|
# rank dropout
|
|
if self.rank_dropout is not None and self.training:
|
|
mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout
|
|
if len(lx.size()) == 3:
|
|
mask = mask.unsqueeze(1) # for Text Encoder
|
|
elif len(lx.size()) == 4:
|
|
mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d
|
|
lx = lx * mask
|
|
|
|
# scaling for rank dropout: treat as if the rank is changed
|
|
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability
|
|
else:
|
|
scale = self.scale
|
|
|
|
lx = self.lora_up(lx)
|
|
|
|
return org_forwarded.to(weight_dtype) + lx.to(weight_dtype) * self.multiplier * scale
|
|
|
|
|
|
def addnet_hash_legacy(b):
|
|
"""Old model hash used by sd-webui-additional-networks for .safetensors format files"""
|
|
m = hashlib.sha256()
|
|
|
|
b.seek(0x100000)
|
|
m.update(b.read(0x10000))
|
|
return m.hexdigest()[0:8]
|
|
|
|
|
|
def addnet_hash_safetensors(b):
|
|
"""New model hash used by sd-webui-additional-networks for .safetensors format files"""
|
|
hash_sha256 = hashlib.sha256()
|
|
blksize = 1024 * 1024
|
|
|
|
b.seek(0)
|
|
header = b.read(8)
|
|
n = int.from_bytes(header, "little")
|
|
|
|
offset = n + 8
|
|
b.seek(offset)
|
|
for chunk in iter(lambda: b.read(blksize), b""):
|
|
hash_sha256.update(chunk)
|
|
|
|
return hash_sha256.hexdigest()
|
|
|
|
|
|
def precalculate_safetensors_hashes(tensors, metadata):
|
|
"""Precalculate the model hashes needed by sd-webui-additional-networks to
|
|
save time on indexing the model later."""
|
|
|
|
# Because writing user metadata to the file can change the result of
|
|
# sd_models.model_hash(), only retain the training metadata for purposes of
|
|
# calculating the hash, as they are meant to be immutable
|
|
metadata = {k: v for k, v in metadata.items() if k.startswith("ss_")}
|
|
|
|
bytes = safetensors.torch.save(tensors, metadata)
|
|
b = BytesIO(bytes)
|
|
|
|
model_hash = addnet_hash_safetensors(b)
|
|
legacy_hash = addnet_hash_legacy(b)
|
|
return model_hash, legacy_hash
|
|
|
|
|
|
class LoRANetwork(torch.nn.Module):
|
|
TRANSFORMER_TARGET_REPLACE_MODULE = ["CogVideoXTransformer3DModel"]
|
|
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["T5LayerSelfAttention", "T5LayerFF", "BertEncoder"]
|
|
LORA_PREFIX_TRANSFORMER = "lora_unet"
|
|
LORA_PREFIX_TEXT_ENCODER = "lora_te"
|
|
def __init__(
|
|
self,
|
|
text_encoder: Union[List[T5EncoderModel], T5EncoderModel],
|
|
unet,
|
|
multiplier: float = 1.0,
|
|
lora_dim: int = 4,
|
|
alpha: float = 1,
|
|
dropout: Optional[float] = None,
|
|
module_class: Type[object] = LoRAModule,
|
|
add_lora_in_attn_temporal: bool = False,
|
|
varbose: Optional[bool] = False,
|
|
) -> None:
|
|
super().__init__()
|
|
self.multiplier = multiplier
|
|
|
|
self.lora_dim = lora_dim
|
|
self.alpha = alpha
|
|
self.dropout = dropout
|
|
|
|
print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}")
|
|
print(f"neuron dropout: p={self.dropout}")
|
|
|
|
# create module instances
|
|
def create_modules(
|
|
is_unet: bool,
|
|
root_module: torch.nn.Module,
|
|
target_replace_modules: List[torch.nn.Module],
|
|
) -> List[LoRAModule]:
|
|
prefix = (
|
|
self.LORA_PREFIX_TRANSFORMER
|
|
if is_unet
|
|
else self.LORA_PREFIX_TEXT_ENCODER
|
|
)
|
|
loras = []
|
|
skipped = []
|
|
for name, module in root_module.named_modules():
|
|
if module.__class__.__name__ in target_replace_modules:
|
|
for child_name, child_module in module.named_modules():
|
|
is_linear = child_module.__class__.__name__ == "Linear" or child_module.__class__.__name__ == "LoRACompatibleLinear"
|
|
is_conv2d = child_module.__class__.__name__ == "Conv2d" or child_module.__class__.__name__ == "LoRACompatibleConv"
|
|
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
|
|
|
|
if not add_lora_in_attn_temporal:
|
|
if "attn_temporal" in child_name:
|
|
continue
|
|
|
|
if is_linear or is_conv2d:
|
|
lora_name = prefix + "." + name + "." + child_name
|
|
lora_name = lora_name.replace(".", "_")
|
|
|
|
dim = None
|
|
alpha = None
|
|
|
|
if is_linear or is_conv2d_1x1:
|
|
dim = self.lora_dim
|
|
alpha = self.alpha
|
|
|
|
if dim is None or dim == 0:
|
|
if is_linear or is_conv2d_1x1:
|
|
skipped.append(lora_name)
|
|
continue
|
|
|
|
lora = module_class(
|
|
lora_name,
|
|
child_module,
|
|
self.multiplier,
|
|
dim,
|
|
alpha,
|
|
dropout=dropout,
|
|
)
|
|
loras.append(lora)
|
|
return loras, skipped
|
|
|
|
text_encoders = text_encoder if type(text_encoder) == list else [text_encoder]
|
|
|
|
self.text_encoder_loras = []
|
|
skipped_te = []
|
|
for i, text_encoder in enumerate(text_encoders):
|
|
if text_encoder is not None:
|
|
text_encoder_loras, skipped = create_modules(False, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
|
|
self.text_encoder_loras.extend(text_encoder_loras)
|
|
skipped_te += skipped
|
|
print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
|
|
|
|
self.unet_loras, skipped_un = create_modules(True, unet, LoRANetwork.TRANSFORMER_TARGET_REPLACE_MODULE)
|
|
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
|
|
|
|
# assertion
|
|
names = set()
|
|
for lora in self.text_encoder_loras + self.unet_loras:
|
|
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
|
|
names.add(lora.lora_name)
|
|
|
|
def apply_to(self, text_encoder, unet, apply_text_encoder=True, apply_unet=True):
|
|
if apply_text_encoder:
|
|
print("enable LoRA for text encoder")
|
|
else:
|
|
self.text_encoder_loras = []
|
|
|
|
if apply_unet:
|
|
print("enable LoRA for U-Net")
|
|
else:
|
|
self.unet_loras = []
|
|
|
|
for lora in self.text_encoder_loras + self.unet_loras:
|
|
lora.apply_to()
|
|
self.add_module(lora.lora_name, lora)
|
|
|
|
def set_multiplier(self, multiplier):
|
|
self.multiplier = multiplier
|
|
for lora in self.text_encoder_loras + self.unet_loras:
|
|
lora.multiplier = self.multiplier
|
|
|
|
def load_weights(self, file):
|
|
if os.path.splitext(file)[1] == ".safetensors":
|
|
from safetensors.torch import load_file
|
|
|
|
weights_sd = load_file(file)
|
|
else:
|
|
weights_sd = torch.load(file, map_location="cpu")
|
|
info = self.load_state_dict(weights_sd, False)
|
|
return info
|
|
|
|
def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr):
|
|
self.requires_grad_(True)
|
|
all_params = []
|
|
|
|
def enumerate_params(loras):
|
|
params = []
|
|
for lora in loras:
|
|
params.extend(lora.parameters())
|
|
return params
|
|
|
|
if self.text_encoder_loras:
|
|
param_data = {"params": enumerate_params(self.text_encoder_loras)}
|
|
if text_encoder_lr is not None:
|
|
param_data["lr"] = text_encoder_lr
|
|
all_params.append(param_data)
|
|
|
|
if self.unet_loras:
|
|
param_data = {"params": enumerate_params(self.unet_loras)}
|
|
if unet_lr is not None:
|
|
param_data["lr"] = unet_lr
|
|
all_params.append(param_data)
|
|
|
|
return all_params
|
|
|
|
def enable_gradient_checkpointing(self):
|
|
pass
|
|
|
|
def get_trainable_params(self):
|
|
return self.parameters()
|
|
|
|
def save_weights(self, file, dtype, metadata):
|
|
if metadata is not None and len(metadata) == 0:
|
|
metadata = None
|
|
|
|
state_dict = self.state_dict()
|
|
|
|
if dtype is not None:
|
|
for key in list(state_dict.keys()):
|
|
v = state_dict[key]
|
|
v = v.detach().clone().to("cpu").to(dtype)
|
|
state_dict[key] = v
|
|
|
|
if os.path.splitext(file)[1] == ".safetensors":
|
|
from safetensors.torch import save_file
|
|
|
|
# Precalculate model hashes to save time on indexing
|
|
if metadata is None:
|
|
metadata = {}
|
|
model_hash, legacy_hash = precalculate_safetensors_hashes(state_dict, metadata)
|
|
metadata["sshs_model_hash"] = model_hash
|
|
metadata["sshs_legacy_hash"] = legacy_hash
|
|
|
|
save_file(state_dict, file, metadata)
|
|
else:
|
|
torch.save(state_dict, file)
|
|
|
|
def create_network(
|
|
multiplier: float,
|
|
network_dim: Optional[int],
|
|
network_alpha: Optional[float],
|
|
text_encoder: Union[T5EncoderModel, List[T5EncoderModel]],
|
|
transformer,
|
|
neuron_dropout: Optional[float] = None,
|
|
add_lora_in_attn_temporal: bool = False,
|
|
**kwargs,
|
|
):
|
|
if network_dim is None:
|
|
network_dim = 4 # default
|
|
if network_alpha is None:
|
|
network_alpha = 1.0
|
|
|
|
network = LoRANetwork(
|
|
text_encoder,
|
|
transformer,
|
|
multiplier=multiplier,
|
|
lora_dim=network_dim,
|
|
alpha=network_alpha,
|
|
dropout=neuron_dropout,
|
|
add_lora_in_attn_temporal=add_lora_in_attn_temporal,
|
|
varbose=True,
|
|
)
|
|
return network
|
|
|
|
def merge_lora(transformer, lora_path, multiplier, device='cpu', dtype=torch.float32, state_dict=None):
|
|
LORA_PREFIX_TRANSFORMER = "lora_unet"
|
|
LORA_PREFIX_TEXT_ENCODER = "lora_te"
|
|
if state_dict is None:
|
|
state_dict = load_file(lora_path, device=device)
|
|
else:
|
|
state_dict = state_dict
|
|
updates = defaultdict(dict)
|
|
for key, value in state_dict.items():
|
|
layer, elem = key.split('.', 1)
|
|
updates[layer][elem] = value
|
|
|
|
for layer, elems in updates.items():
|
|
|
|
# if "lora_te" in layer:
|
|
# if transformer_only:
|
|
# continue
|
|
# else:
|
|
# layer_infos = layer.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
|
|
# curr_layer = pipeline.text_encoder
|
|
#else:
|
|
layer_infos = layer.split(LORA_PREFIX_TRANSFORMER + "_")[-1].split("_")
|
|
curr_layer = transformer
|
|
|
|
temp_name = layer_infos.pop(0)
|
|
while len(layer_infos) > -1:
|
|
try:
|
|
curr_layer = curr_layer.__getattr__(temp_name)
|
|
if len(layer_infos) > 0:
|
|
temp_name = layer_infos.pop(0)
|
|
elif len(layer_infos) == 0:
|
|
break
|
|
except Exception:
|
|
if len(layer_infos) == 0:
|
|
print('Error loading layer')
|
|
if len(temp_name) > 0:
|
|
temp_name += "_" + layer_infos.pop(0)
|
|
else:
|
|
temp_name = layer_infos.pop(0)
|
|
|
|
weight_up = elems['lora_up.weight'].to(dtype)
|
|
weight_down = elems['lora_down.weight'].to(dtype)
|
|
if 'alpha' in elems.keys():
|
|
alpha = elems['alpha'].item() / weight_up.shape[1]
|
|
else:
|
|
alpha = 1.0
|
|
|
|
curr_layer.weight.data = curr_layer.weight.data.to(device)
|
|
if len(weight_up.shape) == 4:
|
|
curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up.squeeze(3).squeeze(2),
|
|
weight_down.squeeze(3).squeeze(2)).unsqueeze(
|
|
2).unsqueeze(3)
|
|
else:
|
|
curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up, weight_down)
|
|
|
|
return transformer
|
|
|
|
# TODO: Refactor with merge_lora.
|
|
def unmerge_lora(pipeline, lora_path, multiplier=1, device="cpu", dtype=torch.float32):
|
|
"""Unmerge state_dict in LoRANetwork from the pipeline in diffusers."""
|
|
LORA_PREFIX_UNET = "lora_unet"
|
|
LORA_PREFIX_TEXT_ENCODER = "lora_te"
|
|
state_dict = load_file(lora_path, device=device)
|
|
|
|
updates = defaultdict(dict)
|
|
for key, value in state_dict.items():
|
|
layer, elem = key.split('.', 1)
|
|
updates[layer][elem] = value
|
|
|
|
for layer, elems in updates.items():
|
|
|
|
if "lora_te" in layer:
|
|
layer_infos = layer.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
|
|
curr_layer = pipeline.text_encoder
|
|
else:
|
|
layer_infos = layer.split(LORA_PREFIX_UNET + "_")[-1].split("_")
|
|
curr_layer = pipeline.transformer
|
|
|
|
temp_name = layer_infos.pop(0)
|
|
while len(layer_infos) > -1:
|
|
try:
|
|
curr_layer = curr_layer.__getattr__(temp_name)
|
|
if len(layer_infos) > 0:
|
|
temp_name = layer_infos.pop(0)
|
|
elif len(layer_infos) == 0:
|
|
break
|
|
except Exception:
|
|
if len(layer_infos) == 0:
|
|
print('Error loading layer')
|
|
if len(temp_name) > 0:
|
|
temp_name += "_" + layer_infos.pop(0)
|
|
else:
|
|
temp_name = layer_infos.pop(0)
|
|
|
|
weight_up = elems['lora_up.weight'].to(dtype)
|
|
weight_down = elems['lora_down.weight'].to(dtype)
|
|
if 'alpha' in elems.keys():
|
|
alpha = elems['alpha'].item() / weight_up.shape[1]
|
|
else:
|
|
alpha = 1.0
|
|
|
|
curr_layer.weight.data = curr_layer.weight.data.to(device)
|
|
if len(weight_up.shape) == 4:
|
|
curr_layer.weight.data -= multiplier * alpha * torch.mm(weight_up.squeeze(3).squeeze(2),
|
|
weight_down.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
|
|
else:
|
|
curr_layer.weight.data -= multiplier * alpha * torch.mm(weight_up, weight_down)
|
|
|
|
return pipeline |