ComfyUI-CogVideoXWrapper/pipeline_cogvideox.py
2024-11-09 15:15:10 +02:00

913 lines
47 KiB
Python

# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import math
from diffusers.models import AutoencoderKLCogVideoX#, CogVideoXTransformer3DModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
from diffusers.utils import logging
from diffusers.utils.torch_utils import randn_tensor
from diffusers.video_processor import VideoProcessor
from diffusers.models.embeddings import get_3d_rotary_pos_embed
from diffusers.loaders import CogVideoXLoraLoaderMixin
from .custom_cogvideox_transformer_3d import CogVideoXTransformer3DModel
from comfy.utils import ProgressBar
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
from .videosys.core.pipeline import VideoSysPipeline
from .videosys.cogvideox_transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelPAB
from .videosys.core.pab_mgr import set_pab_manager
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
tw = tgt_width
th = tgt_height
h, w = src
r = h / w
if r > (th / tw):
resize_height = th
resize_width = int(round(th / h * w))
else:
resize_width = tw
resize_height = int(round(tw / w * h))
crop_top = int(round((th - resize_height) / 2.0))
crop_left = int(round((tw - resize_width) / 2.0))
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
r"""
Pipeline for text-to-video generation using CogVideoX.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
text_encoder ([`T5EncoderModel`]):
Frozen text-encoder. CogVideoX uses
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
tokenizer (`T5Tokenizer`):
Tokenizer of class
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
transformer ([`CogVideoXTransformer3DModel`]):
A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
"""
_optional_components = ["tokenizer", "text_encoder"]
model_cpu_offload_seq = "text_encoder->transformer->vae"
def __init__(
self,
vae: AutoencoderKLCogVideoX,
transformer: Union[CogVideoXTransformer3DModel, CogVideoXTransformer3DModelPAB],
scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler],
original_mask = None,
pab_config = None
):
super().__init__()
self.register_modules(
vae=vae, transformer=transformer, scheduler=scheduler
)
self.vae_scale_factor_spatial = (
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
)
self.vae_scale_factor_temporal = (
self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4
)
self.original_mask = original_mask
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
if pab_config is not None:
set_pab_manager(pab_config)
self.input_with_padding = True
def prepare_latents(
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, timesteps, denoise_strength,
num_inference_steps, latents=None, freenoise=True, context_size=None, context_overlap=None
):
shape = (
batch_size,
(num_frames - 1) // self.vae_scale_factor_temporal + 1,
num_channels_latents,
height // self.vae_scale_factor_spatial,
width // self.vae_scale_factor_spatial,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
noise = randn_tensor(shape, generator=generator, device=torch.device("cpu"), dtype=self.vae.dtype)
if freenoise:
print("Applying FreeNoise")
# code and comments from AnimateDiff-Evolved by Kosinkadink (https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved)
video_length = num_frames // 4
delta = context_size - context_overlap
for start_idx in range(0, video_length-context_size, delta):
# start_idx corresponds to the beginning of a context window
# goal: place shuffled in the delta region right after the end of the context window
# if space after context window is not enough to place the noise, adjust and finish
place_idx = start_idx + context_size
# if place_idx is outside the valid indexes, we are already finished
if place_idx >= video_length:
break
end_idx = place_idx - 1
#print("video_length:", video_length, "start_idx:", start_idx, "end_idx:", end_idx, "place_idx:", place_idx, "delta:", delta)
# if there is not enough room to copy delta amount of indexes, copy limited amount and finish
if end_idx + delta >= video_length:
final_delta = video_length - place_idx
# generate list of indexes in final delta region
list_idx = torch.tensor(list(range(start_idx,start_idx+final_delta)), device=torch.device("cpu"), dtype=torch.long)
# shuffle list
list_idx = list_idx[torch.randperm(final_delta, generator=generator)]
# apply shuffled indexes
noise[:, place_idx:place_idx + final_delta, :, :, :] = noise[:, list_idx, :, :, :]
break
# otherwise, do normal behavior
# generate list of indexes in delta region
list_idx = torch.tensor(list(range(start_idx,start_idx+delta)), device=torch.device("cpu"), dtype=torch.long)
# shuffle list
list_idx = list_idx[torch.randperm(delta, generator=generator)]
# apply shuffled indexes
#print("place_idx:", place_idx, "delta:", delta, "list_idx:", list_idx)
noise[:, place_idx:place_idx + delta, :, :, :] = noise[:, list_idx, :, :, :]
if latents is None:
latents = noise.to(device)
else:
latents = latents.to(device)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, denoise_strength, device)
latent_timestep = timesteps[:1]
noise = randn_tensor(shape, generator=generator, device=device, dtype=self.vae.dtype)
frames_needed = noise.shape[1]
current_frames = latents.shape[1]
if frames_needed > current_frames:
repeat_factor = frames_needed // current_frames
additional_frame = torch.randn((latents.size(0), repeat_factor, latents.size(2), latents.size(3), latents.size(4)), dtype=latents.dtype, device=latents.device)
latents = torch.cat((latents, additional_frame), dim=1)
elif frames_needed < current_frames:
latents = latents[:, :frames_needed, :, :, :]
latents = self.scheduler.add_noise(latents, noise, latent_timestep)
latents = latents * self.scheduler.init_noise_sigma # scale the initial noise by the standard deviation required by the scheduler
return latents, timesteps, noise
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
# Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs
def check_inputs(
self,
height,
width,
prompt_embeds=None,
negative_prompt_embeds=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
if hasattr(self.scheduler, "set_begin_index"):
self.scheduler.set_begin_index(t_start * self.scheduler.order)
return timesteps.to(device), num_inference_steps - t_start
def _gaussian_weights(self, t_tile_length, t_batch_size):
from numpy import pi, exp, sqrt
var = 0.01
midpoint = (t_tile_length - 1) / 2 # -1 because index goes from 0 to latent_width - 1
t_probs = [exp(-(t-midpoint)*(t-midpoint)/(t_tile_length*t_tile_length)/(2*var)) / sqrt(2*pi*var) for t in range(t_tile_length)]
weights = torch.tensor(t_probs)
weights = weights.unsqueeze(0).unsqueeze(2).unsqueeze(3).unsqueeze(4).repeat(1, t_batch_size,1, 1, 1)
return weights
# def fuse_qkv_projections(self) -> None:
# r"""Enables fused QKV projections."""
# self.fusing_transformer = True
# self.transformer.fuse_qkv_projections()
# def unfuse_qkv_projections(self) -> None:
# r"""Disable QKV projection fusion if enabled."""
# if not self.fusing_transformer:
# logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.")
# else:
# self.transformer.unfuse_qkv_projections()
# self.fusing_transformer = False
def _prepare_rotary_positional_embeddings(
self,
height: int,
width: int,
num_frames: int,
device: torch.device,
) -> Tuple[torch.Tensor, torch.Tensor]:
grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
p = self.transformer.config.patch_size
p_t = self.transformer.config.patch_size_t or 1
base_size_width = self.transformer.config.sample_width // p
base_size_height = self.transformer.config.sample_height // p
base_num_frames = (num_frames + p_t - 1) // p_t
grid_crops_coords = get_resize_crop_region_for_grid(
(grid_height, grid_width), base_size_width, base_size_height
)
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
embed_dim=self.transformer.config.attention_head_dim,
crops_coords=grid_crops_coords,
grid_size=(grid_height, grid_width),
temporal_size=base_num_frames
)
freqs_cos = freqs_cos.to(device=device)
freqs_sin = freqs_sin.to(device=device)
return freqs_cos, freqs_sin
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
def __call__(
self,
height: int = 480,
width: int = 720,
num_frames: int = 48,
t_tile_length: int = 12,
t_tile_overlap: int = 4,
num_inference_steps: int = 50,
timesteps: Optional[List[int]] = None,
guidance_scale: float = 6,
denoise_strength: float = 1.0,
num_videos_per_prompt: int = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
image_cond_latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
device = torch.device("cuda"),
context_schedule: Optional[str] = None,
context_frames: Optional[int] = None,
context_stride: Optional[int] = None,
context_overlap: Optional[int] = None,
freenoise: Optional[bool] = True,
controlnet: Optional[dict] = None,
tora: Optional[dict] = None,
):
"""
Function invoked when calling the pipeline for generation.
Args:
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
num_frames (`int`, defaults to `48`):
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will
contain 1 extra frame because CogVideoX is conditioned with (num_seconds * fps + 1) frames where
num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that
needs to be satisfied is that of divisibility mentioned above.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 7.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
The number of videos to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
"""
height = height or self.transformer.config.sample_size * self.vae_scale_factor_spatial
width = width or self.transformer.config.sample_size * self.vae_scale_factor_spatial
num_videos_per_prompt = 1
# 1. Check inputs. Raise error if not correct
self.check_inputs(
height,
width,
prompt_embeds,
negative_prompt_embeds,
)
self._guidance_scale = guidance_scale
self._interrupt = False
# 2. Default call parameters
batch_size = prompt_embeds.shape[0]
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
prompt_embeds = prompt_embeds.to(self.vae.dtype)
# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
self._num_timesteps = len(timesteps)
# 5. Prepare latents.
latent_channels = self.vae.config.latent_channels
#if latents is None and num_frames == t_tile_length:
# num_frames += 1
if self.original_mask is not None:
image_latents = latents
original_image_latents = image_latents
latents, timesteps, noise = self.prepare_latents(
batch_size * num_videos_per_prompt,
latent_channels,
num_frames,
height,
width,
self.vae.dtype,
device,
generator,
timesteps,
denoise_strength,
num_inference_steps,
latents,
context_size=context_frames,
context_overlap=context_overlap,
freenoise=freenoise,
)
latents = latents.to(self.vae.dtype)
#print("latents", latents.shape)
# 5.5.
if image_cond_latents is not None:
if image_cond_latents.shape[1] > 1:
logger.info("More than one image conditioning frame received, interpolating")
padding_shape = (
batch_size,
(latents.shape[1] - 2),
self.vae.config.latent_channels,
height // self.vae_scale_factor_spatial,
width // self.vae_scale_factor_spatial,
)
latent_padding = torch.zeros(padding_shape, device=device, dtype=self.vae.dtype)
image_cond_latents = torch.cat([image_cond_latents[:, 0, :, :, :].unsqueeze(1), latent_padding, image_cond_latents[:, -1, :, :, :].unsqueeze(1)], dim=1)
logger.info(f"image cond latents shape: {image_cond_latents.shape}")
else:
logger.info("Only one image conditioning frame received, img2vid")
if self.input_with_padding:
padding_shape = (
batch_size,
(latents.shape[1] - 1),
self.vae.config.latent_channels,
height // self.vae_scale_factor_spatial,
width // self.vae_scale_factor_spatial,
)
latent_padding = torch.zeros(padding_shape, device=device, dtype=self.vae.dtype)
image_cond_latents = torch.cat([image_cond_latents, latent_padding], dim=1)
else:
image_cond_latents = image_cond_latents.repeat(1, latents.shape[1], 1, 1, 1)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# masks
if self.original_mask is not None:
mask = self.original_mask.to(device)
logger.info(f"self.original_mask: {self.original_mask.shape}")
mask = F.interpolate(self.original_mask.unsqueeze(1), size=(latents.shape[-2], latents.shape[-1]), mode='bilinear', align_corners=False)
if mask.shape[0] != latents.shape[1]:
mask = mask.unsqueeze(1).repeat(1, latents.shape[1], 16, 1, 1)
else:
mask = mask.unsqueeze(0).repeat(1, 1, 16, 1, 1)
logger.info(f"latents: {latents.shape}")
logger.info(f"mask: {mask.shape}")
# 7. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
comfy_pbar = ProgressBar(num_inference_steps)
# 8. context schedule and temporal tiling
if context_schedule is not None and context_schedule == "temporal_tiling":
t_tile_length = context_frames
t_tile_overlap = context_overlap
t_tile_weights = self._gaussian_weights(t_tile_length=t_tile_length, t_batch_size=1).to(latents.device).to(self.vae.dtype)
use_temporal_tiling = True
logger.info("Temporal tiling enabled")
elif context_schedule is not None:
if image_cond_latents is not None:
raise NotImplementedError("Context schedule not currently supported with image conditioning")
logger.info(f"Context schedule enabled: {context_frames} frames, {context_stride} stride, {context_overlap} overlap")
use_temporal_tiling = False
use_context_schedule = True
from .cogvideox_fun.context import get_context_scheduler
context = get_context_scheduler(context_schedule)
else:
use_temporal_tiling = False
use_context_schedule = False
logger.info("Temporal tiling and context schedule disabled")
# 8.5. Create rotary embeds if required
image_rotary_emb = (
self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device)
if self.transformer.config.use_rotary_positional_embeddings
else None
)
if tora is not None and do_classifier_free_guidance:
video_flow_features = tora["video_flow_features"].repeat(1, 2, 1, 1, 1).contiguous()
# 9. Controlnet
if controlnet is not None:
self.controlnet = controlnet["control_model"].to(device)
if self.transformer.dtype == torch.float8_e4m3fn:
for name, param in self.controlnet.named_parameters():
if "patch_embed" not in name and param.data.dtype != torch.float8_e4m3fn:
param.data = param.data.to(torch.float8_e4m3fn)
else:
self.controlnet.to(self.transformer.dtype)
if getattr(self.transformer, 'fp8_matmul_enabled', False):
from .fp8_optimization import convert_fp8_linear
if not hasattr(self.controlnet, 'fp8_matmul_enabled') or not self.controlnet.fp8_matmul_enabled:
convert_fp8_linear(self.controlnet, torch.float16)
setattr(self.controlnet, "fp8_matmul_enabled", True)
control_frames = controlnet["control_frames"].to(device).to(self.controlnet.dtype).contiguous()
control_frames = torch.cat([control_frames] * 2) if do_classifier_free_guidance else control_frames
control_weights = controlnet["control_weights"]
logger.info(f"Controlnet enabled with weights: {control_weights}")
control_start = controlnet["control_start"]
control_end = controlnet["control_end"]
else:
controlnet_states = None
control_weights= None
if tora is not None:
trajectory_length = tora["video_flow_features"].shape[1]
logger.info(f"Tora trajectory length: {trajectory_length}")
if trajectory_length != latents.shape[1]:
raise ValueError(f"Tora trajectory length {trajectory_length} does not match inpaint_latents count {latents.shape[2]}")
for module in self.transformer.fuser_list:
for param in module.parameters():
param.data = param.data.to(device)
# 10. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
old_pred_original_sample = None # for DPM-solver++
for i, t in enumerate(timesteps):
if self.interrupt:
continue
if use_temporal_tiling and isinstance(self.scheduler, CogVideoXDDIMScheduler):
#temporal tiling code based on https://github.com/mayuelala/FollowYourEmoji/blob/main/models/video_pipeline.py
# =====================================================
grid_ts = 0
cur_t = 0
while cur_t < latents.shape[1]:
cur_t = max(grid_ts * t_tile_length - t_tile_overlap * grid_ts, 0) + t_tile_length
grid_ts += 1
all_t = latents.shape[1]
latents_all_list = []
# =====================================================
for t_i in range(grid_ts):
if t_i < grid_ts - 1:
ofs_t = max(t_i * t_tile_length - t_tile_overlap * t_i, 0)
if t_i == grid_ts - 1:
ofs_t = all_t - t_tile_length
input_start_t = ofs_t
input_end_t = ofs_t + t_tile_length
#latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
#latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
image_rotary_emb = (
self._prepare_rotary_positional_embeddings(height, width, t_tile_length, device)
if self.transformer.config.use_rotary_positional_embeddings
else None
)
latents_tile = latents[:, input_start_t:input_end_t,:, :, :]
latent_model_input_tile = torch.cat([latents_tile] * 2) if do_classifier_free_guidance else latents_tile
latent_model_input_tile = self.scheduler.scale_model_input(latent_model_input_tile, t)
#t_input = t[None].to(device)
t_input = t.expand(latent_model_input_tile.shape[0]) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
# predict noise model_output
noise_pred = self.transformer(
hidden_states=latent_model_input_tile,
encoder_hidden_states=prompt_embeds,
timestep=t_input,
image_rotary_emb=image_rotary_emb,
return_dict=False,
)[0]
noise_pred = noise_pred.float()
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self._guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents_tile = self.scheduler.step(noise_pred, t, latents_tile.to(self.vae.dtype), **extra_step_kwargs, return_dict=False)[0]
latents_all_list.append(latents_tile)
# ==========================================
latents_all = torch.zeros(latents.shape, device=latents.device, dtype=self.vae.dtype)
contributors = torch.zeros(latents.shape, device=latents.device, dtype=self.vae.dtype)
# Add each tile contribution to overall latents
for t_i in range(grid_ts):
if t_i < grid_ts - 1:
ofs_t = max(t_i * t_tile_length - t_tile_overlap * t_i, 0)
if t_i == grid_ts - 1:
ofs_t = all_t - t_tile_length
input_start_t = ofs_t
input_end_t = ofs_t + t_tile_length
latents_all[:, input_start_t:input_end_t,:, :, :] += latents_all_list[t_i] * t_tile_weights
contributors[:, input_start_t:input_end_t,:, :, :] += t_tile_weights
latents_all /= contributors
latents = latents_all
#print("latents",latents.shape)
# start diff diff
if i < len(timesteps) - 1 and self.original_mask is not None:
noise_timestep = timesteps[i + 1]
image_latent = self.scheduler.add_noise(original_image_latents, noise, torch.tensor([noise_timestep])
)
mask = mask.to(latents)
ts_from = timesteps[0]
ts_to = timesteps[-1]
threshold = (t - ts_to) / (ts_from - ts_to)
mask = torch.where(mask >= threshold, mask, torch.zeros_like(mask))
latents = image_latent * mask + latents * (1 - mask)
# end diff diff
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
comfy_pbar.update(1)
# ==========================================
elif use_context_schedule:
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
counter = torch.zeros_like(latent_model_input)
noise_pred = torch.zeros_like(latent_model_input)
if image_cond_latents is not None:
latent_image_input = torch.cat([image_cond_latents] * 2) if do_classifier_free_guidance else image_cond_latents
latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0])
current_step_percentage = i / num_inference_steps
# use same rotary embeddings for all context windows
image_rotary_emb = (
self._prepare_rotary_positional_embeddings(height, width, context_frames, device)
if self.transformer.config.use_rotary_positional_embeddings
else None
)
context_queue = list(context(
i, num_inference_steps, latents.shape[1], context_frames, context_stride, context_overlap,
))
if controlnet is not None:
# controlnet frames are not temporally compressed, so try to match the context frames that are
control_context_queue = list(context(
i,
num_inference_steps,
control_frames.shape[1],
context_frames * self.vae_scale_factor_temporal,
context_stride * self.vae_scale_factor_temporal,
context_overlap * self.vae_scale_factor_temporal,
))
for c, control_c in zip(context_queue, control_context_queue):
partial_latent_model_input = latent_model_input[:, c, :, :, :]
partial_control_frames = control_frames[:, control_c, :, :, :]
controlnet_states = None
if (control_start <= current_step_percentage <= control_end):
# extract controlnet hidden state
controlnet_states = self.controlnet(
hidden_states=partial_latent_model_input,
encoder_hidden_states=prompt_embeds,
image_rotary_emb=image_rotary_emb,
controlnet_states=partial_control_frames,
timestep=timestep,
return_dict=False,
)[0]
if isinstance(controlnet_states, (tuple, list)):
controlnet_states = [x.to(dtype=self.controlnet.dtype) for x in controlnet_states]
else:
controlnet_states = controlnet_states.to(dtype=self.controlnet.dtype)
# predict noise model_output
noise_pred[:, c, :, :, :] += self.transformer(
hidden_states=partial_latent_model_input,
encoder_hidden_states=prompt_embeds,
timestep=timestep,
image_rotary_emb=image_rotary_emb,
return_dict=False,
controlnet_states=controlnet_states,
controlnet_weights=control_weights,
)[0]
counter[:, c, :, :, :] += 1
noise_pred = noise_pred.float()
else:
for c in context_queue:
partial_latent_model_input = latent_model_input[:, c, :, :, :]
if (tora is not None and tora["start_percent"] <= current_step_percentage <= tora["end_percent"]):
if do_classifier_free_guidance:
partial_video_flow_features = tora["video_flow_features"][:, c, :, :, :].repeat(1, 2, 1, 1, 1).contiguous()
else:
partial_video_flow_features = tora["video_flow_features"][:, c, :, :, :]
else:
partial_video_flow_features = None
# predict noise model_output
noise_pred[:, c, :, :, :] += self.transformer(
hidden_states=partial_latent_model_input,
encoder_hidden_states=prompt_embeds,
timestep=timestep,
image_rotary_emb=image_rotary_emb,
video_flow_features=partial_video_flow_features,
return_dict=False
)[0]
counter[:, c, :, :, :] += 1
noise_pred = noise_pred.float()
noise_pred /= counter
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self._guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
if not isinstance(self.scheduler, CogVideoXDPMScheduler):
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
else:
latents, old_pred_original_sample = self.scheduler.step(
noise_pred,
old_pred_original_sample,
t,
timesteps[i - 1] if i > 0 else None,
latents,
**extra_step_kwargs,
return_dict=False,
)
latents = latents.to(prompt_embeds.dtype)
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
comfy_pbar.update(1)
else:
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
if image_cond_latents is not None:
latent_image_input = torch.cat([image_cond_latents] * 2) if do_classifier_free_guidance else image_cond_latents
latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0])
current_step_percentage = i / num_inference_steps
if controlnet is not None:
controlnet_states = None
if (control_start <= current_step_percentage <= control_end):
# extract controlnet hidden state
controlnet_states = self.controlnet(
hidden_states=latent_model_input,
encoder_hidden_states=prompt_embeds,
image_rotary_emb=image_rotary_emb,
controlnet_states=control_frames,
timestep=timestep,
return_dict=False,
)[0]
if isinstance(controlnet_states, (tuple, list)):
controlnet_states = [x.to(dtype=self.vae.dtype) for x in controlnet_states]
else:
controlnet_states = controlnet_states.to(dtype=self.vae.dtype)
# predict noise model_output
noise_pred = self.transformer(
hidden_states=latent_model_input,
encoder_hidden_states=prompt_embeds,
timestep=timestep,
image_rotary_emb=image_rotary_emb,
return_dict=False,
controlnet_states=controlnet_states,
controlnet_weights=control_weights,
video_flow_features=video_flow_features if (tora is not None and tora["start_percent"] <= current_step_percentage <= tora["end_percent"]) else None,
)[0]
noise_pred = noise_pred.float()
if isinstance(self.scheduler, CogVideoXDPMScheduler):
self._guidance_scale = 1 + guidance_scale * (
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
)
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self._guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
if not isinstance(self.scheduler, CogVideoXDPMScheduler):
latents = self.scheduler.step(noise_pred, t, latents.to(self.vae.dtype), **extra_step_kwargs, return_dict=False)[0]
else:
latents, old_pred_original_sample = self.scheduler.step(
noise_pred,
old_pred_original_sample,
t,
timesteps[i - 1] if i > 0 else None,
latents.to(self.vae.dtype),
**extra_step_kwargs,
return_dict=False,
)
latents = latents.to(prompt_embeds.dtype)
# start diff diff
if i < len(timesteps) - 1 and self.original_mask is not None:
noise_timestep = timesteps[i + 1]
image_latent = self.scheduler.add_noise(original_image_latents, noise, torch.tensor([noise_timestep])
)
mask = mask.to(latents)
ts_from = timesteps[0]
ts_to = timesteps[-1]
threshold = (t - ts_to) / (ts_from - ts_to)
mask = torch.where(mask >= threshold, mask, torch.zeros_like(mask))
latents = image_latent * mask + latents * (1 - mask)
# end diff diff
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
comfy_pbar.update(1)
# Offload all models
self.maybe_free_model_hooks()
return latents