mirror of
https://git.datalinker.icu/kijai/ComfyUI-CogVideoXWrapper.git
synced 2025-12-09 04:44:22 +08:00
657 lines
28 KiB
Python
657 lines
28 KiB
Python
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
|
|
# All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import Any, Dict, Optional, Tuple, Union
|
|
|
|
import torch
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
|
|
import numpy as np
|
|
from einops import rearrange
|
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
from diffusers.utils import is_torch_version, logging
|
|
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
|
from diffusers.models.attention import Attention, FeedForward
|
|
from diffusers.models.attention_processor import AttentionProcessor
|
|
from diffusers.models.embeddings import CogVideoXPatchEmbed, TimestepEmbedding, Timesteps
|
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
|
from diffusers.models.modeling_utils import ModelMixin
|
|
from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
try:
|
|
from sageattention import sageattn
|
|
SAGEATTN_IS_AVAVILABLE = True
|
|
logger.info("Using sageattn")
|
|
except:
|
|
logger.info("sageattn not found, using sdpa")
|
|
SAGEATTN_IS_AVAVILABLE = False
|
|
|
|
class CogVideoXAttnProcessor2_0:
|
|
r"""
|
|
Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on
|
|
query and key vectors, but does not include spatial normalization.
|
|
"""
|
|
|
|
def __init__(self):
|
|
if not hasattr(F, "scaled_dot_product_attention"):
|
|
raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
|
|
|
def __call__(
|
|
self,
|
|
attn: Attention,
|
|
hidden_states: torch.Tensor,
|
|
encoder_hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
image_rotary_emb: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
text_seq_length = encoder_hidden_states.size(1)
|
|
|
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
|
|
|
batch_size, sequence_length, _ = (
|
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
|
|
|
query = attn.to_q(hidden_states)
|
|
key = attn.to_k(hidden_states)
|
|
value = attn.to_v(hidden_states)
|
|
|
|
inner_dim = key.shape[-1]
|
|
head_dim = inner_dim // attn.heads
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
if attn.norm_q is not None:
|
|
query = attn.norm_q(query)
|
|
if attn.norm_k is not None:
|
|
key = attn.norm_k(key)
|
|
|
|
# Apply RoPE if needed
|
|
if image_rotary_emb is not None:
|
|
from diffusers.models.embeddings import apply_rotary_emb
|
|
|
|
query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb)
|
|
if not attn.is_cross_attention:
|
|
key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb)
|
|
|
|
if SAGEATTN_IS_AVAVILABLE:
|
|
hidden_states = sageattn(query, key, value, is_causal=False)
|
|
else:
|
|
hidden_states = F.scaled_dot_product_attention(
|
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
|
)
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
|
|
# linear proj
|
|
hidden_states = attn.to_out[0](hidden_states)
|
|
# dropout
|
|
hidden_states = attn.to_out[1](hidden_states)
|
|
|
|
encoder_hidden_states, hidden_states = hidden_states.split(
|
|
[text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
|
|
)
|
|
return hidden_states, encoder_hidden_states
|
|
|
|
|
|
class FusedCogVideoXAttnProcessor2_0:
|
|
r"""
|
|
Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on
|
|
query and key vectors, but does not include spatial normalization.
|
|
"""
|
|
|
|
def __init__(self):
|
|
if not hasattr(F, "scaled_dot_product_attention"):
|
|
raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
|
|
|
def __call__(
|
|
self,
|
|
attn: Attention,
|
|
hidden_states: torch.Tensor,
|
|
encoder_hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
image_rotary_emb: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
text_seq_length = encoder_hidden_states.size(1)
|
|
|
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
|
|
|
batch_size, sequence_length, _ = (
|
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
|
|
|
qkv = attn.to_qkv(hidden_states)
|
|
split_size = qkv.shape[-1] // 3
|
|
query, key, value = torch.split(qkv, split_size, dim=-1)
|
|
|
|
inner_dim = key.shape[-1]
|
|
head_dim = inner_dim // attn.heads
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
if attn.norm_q is not None:
|
|
query = attn.norm_q(query)
|
|
if attn.norm_k is not None:
|
|
key = attn.norm_k(key)
|
|
|
|
# Apply RoPE if needed
|
|
if image_rotary_emb is not None:
|
|
from diffusers.models.embeddings import apply_rotary_emb
|
|
|
|
query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb)
|
|
if not attn.is_cross_attention:
|
|
key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb)
|
|
|
|
if SAGEATTN_IS_AVAVILABLE:
|
|
hidden_states = sageattn(query, key, value, is_causal=False)
|
|
else:
|
|
hidden_states = F.scaled_dot_product_attention(
|
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
|
)
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
|
|
# linear proj
|
|
hidden_states = attn.to_out[0](hidden_states)
|
|
# dropout
|
|
hidden_states = attn.to_out[1](hidden_states)
|
|
|
|
encoder_hidden_states, hidden_states = hidden_states.split(
|
|
[text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
|
|
)
|
|
return hidden_states, encoder_hidden_states
|
|
|
|
@maybe_allow_in_graph
|
|
class CogVideoXBlock(nn.Module):
|
|
r"""
|
|
Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model.
|
|
|
|
Parameters:
|
|
dim (`int`):
|
|
The number of channels in the input and output.
|
|
num_attention_heads (`int`):
|
|
The number of heads to use for multi-head attention.
|
|
attention_head_dim (`int`):
|
|
The number of channels in each head.
|
|
time_embed_dim (`int`):
|
|
The number of channels in timestep embedding.
|
|
dropout (`float`, defaults to `0.0`):
|
|
The dropout probability to use.
|
|
activation_fn (`str`, defaults to `"gelu-approximate"`):
|
|
Activation function to be used in feed-forward.
|
|
attention_bias (`bool`, defaults to `False`):
|
|
Whether or not to use bias in attention projection layers.
|
|
qk_norm (`bool`, defaults to `True`):
|
|
Whether or not to use normalization after query and key projections in Attention.
|
|
norm_elementwise_affine (`bool`, defaults to `True`):
|
|
Whether to use learnable elementwise affine parameters for normalization.
|
|
norm_eps (`float`, defaults to `1e-5`):
|
|
Epsilon value for normalization layers.
|
|
final_dropout (`bool` defaults to `False`):
|
|
Whether to apply a final dropout after the last feed-forward layer.
|
|
ff_inner_dim (`int`, *optional*, defaults to `None`):
|
|
Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used.
|
|
ff_bias (`bool`, defaults to `True`):
|
|
Whether or not to use bias in Feed-forward layer.
|
|
attention_out_bias (`bool`, defaults to `True`):
|
|
Whether or not to use bias in Attention output projection layer.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
num_attention_heads: int,
|
|
attention_head_dim: int,
|
|
time_embed_dim: int,
|
|
dropout: float = 0.0,
|
|
activation_fn: str = "gelu-approximate",
|
|
attention_bias: bool = False,
|
|
qk_norm: bool = True,
|
|
norm_elementwise_affine: bool = True,
|
|
norm_eps: float = 1e-5,
|
|
final_dropout: bool = True,
|
|
ff_inner_dim: Optional[int] = None,
|
|
ff_bias: bool = True,
|
|
attention_out_bias: bool = True,
|
|
):
|
|
super().__init__()
|
|
|
|
# 1. Self Attention
|
|
self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
|
|
|
|
self.attn1 = Attention(
|
|
query_dim=dim,
|
|
dim_head=attention_head_dim,
|
|
heads=num_attention_heads,
|
|
qk_norm="layer_norm" if qk_norm else None,
|
|
eps=1e-6,
|
|
bias=attention_bias,
|
|
out_bias=attention_out_bias,
|
|
processor=CogVideoXAttnProcessor2_0(),
|
|
)
|
|
|
|
# 2. Feed Forward
|
|
self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
|
|
|
|
self.ff = FeedForward(
|
|
dim,
|
|
dropout=dropout,
|
|
activation_fn=activation_fn,
|
|
final_dropout=final_dropout,
|
|
inner_dim=ff_inner_dim,
|
|
bias=ff_bias,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
encoder_hidden_states: torch.Tensor,
|
|
temb: torch.Tensor,
|
|
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
video_flow_feature: Optional[torch.Tensor] = None,
|
|
fuser=None,
|
|
) -> torch.Tensor:
|
|
text_seq_length = encoder_hidden_states.size(1)
|
|
|
|
# norm & modulate
|
|
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
|
|
hidden_states, encoder_hidden_states, temb
|
|
)
|
|
|
|
# Tora Motion-guidance Fuser
|
|
if video_flow_feature is not None:
|
|
H, W = video_flow_feature.shape[-2:]
|
|
T = norm_hidden_states.shape[1] // H // W
|
|
|
|
h = rearrange(norm_hidden_states, "B (T H W) C -> (B T) C H W", H=H, W=W).to(torch.float16)
|
|
h = fuser(h, video_flow_feature.to(h), T=T)
|
|
norm_hidden_states = rearrange(h, "(B T) C H W -> B (T H W) C", T=T)
|
|
del h, fuser
|
|
|
|
# attention
|
|
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
|
|
hidden_states=norm_hidden_states,
|
|
encoder_hidden_states=norm_encoder_hidden_states,
|
|
image_rotary_emb=image_rotary_emb,
|
|
)
|
|
|
|
hidden_states = hidden_states + gate_msa * attn_hidden_states
|
|
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states
|
|
|
|
# norm & modulate
|
|
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
|
|
hidden_states, encoder_hidden_states, temb
|
|
)
|
|
|
|
# feed-forward
|
|
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
|
|
ff_output = self.ff(norm_hidden_states)
|
|
|
|
hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:]
|
|
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length]
|
|
|
|
return hidden_states, encoder_hidden_states
|
|
|
|
|
|
class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin):
|
|
"""
|
|
A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo).
|
|
|
|
Parameters:
|
|
num_attention_heads (`int`, defaults to `30`):
|
|
The number of heads to use for multi-head attention.
|
|
attention_head_dim (`int`, defaults to `64`):
|
|
The number of channels in each head.
|
|
in_channels (`int`, defaults to `16`):
|
|
The number of channels in the input.
|
|
out_channels (`int`, *optional*, defaults to `16`):
|
|
The number of channels in the output.
|
|
flip_sin_to_cos (`bool`, defaults to `True`):
|
|
Whether to flip the sin to cos in the time embedding.
|
|
time_embed_dim (`int`, defaults to `512`):
|
|
Output dimension of timestep embeddings.
|
|
text_embed_dim (`int`, defaults to `4096`):
|
|
Input dimension of text embeddings from the text encoder.
|
|
num_layers (`int`, defaults to `30`):
|
|
The number of layers of Transformer blocks to use.
|
|
dropout (`float`, defaults to `0.0`):
|
|
The dropout probability to use.
|
|
attention_bias (`bool`, defaults to `True`):
|
|
Whether or not to use bias in the attention projection layers.
|
|
sample_width (`int`, defaults to `90`):
|
|
The width of the input latents.
|
|
sample_height (`int`, defaults to `60`):
|
|
The height of the input latents.
|
|
sample_frames (`int`, defaults to `49`):
|
|
The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49
|
|
instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings,
|
|
but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with
|
|
K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1).
|
|
patch_size (`int`, defaults to `2`):
|
|
The size of the patches to use in the patch embedding layer.
|
|
temporal_compression_ratio (`int`, defaults to `4`):
|
|
The compression ratio across the temporal dimension. See documentation for `sample_frames`.
|
|
max_text_seq_length (`int`, defaults to `226`):
|
|
The maximum sequence length of the input text embeddings.
|
|
activation_fn (`str`, defaults to `"gelu-approximate"`):
|
|
Activation function to use in feed-forward.
|
|
timestep_activation_fn (`str`, defaults to `"silu"`):
|
|
Activation function to use when generating the timestep embeddings.
|
|
norm_elementwise_affine (`bool`, defaults to `True`):
|
|
Whether or not to use elementwise affine in normalization layers.
|
|
norm_eps (`float`, defaults to `1e-5`):
|
|
The epsilon value to use in normalization layers.
|
|
spatial_interpolation_scale (`float`, defaults to `1.875`):
|
|
Scaling factor to apply in 3D positional embeddings across spatial dimensions.
|
|
temporal_interpolation_scale (`float`, defaults to `1.0`):
|
|
Scaling factor to apply in 3D positional embeddings across temporal dimensions.
|
|
"""
|
|
|
|
_supports_gradient_checkpointing = True
|
|
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
num_attention_heads: int = 30,
|
|
attention_head_dim: int = 64,
|
|
in_channels: int = 16,
|
|
out_channels: Optional[int] = 16,
|
|
flip_sin_to_cos: bool = True,
|
|
freq_shift: int = 0,
|
|
time_embed_dim: int = 512,
|
|
text_embed_dim: int = 4096,
|
|
num_layers: int = 30,
|
|
dropout: float = 0.0,
|
|
attention_bias: bool = True,
|
|
sample_width: int = 90,
|
|
sample_height: int = 60,
|
|
sample_frames: int = 49,
|
|
patch_size: int = 2,
|
|
temporal_compression_ratio: int = 4,
|
|
max_text_seq_length: int = 226,
|
|
activation_fn: str = "gelu-approximate",
|
|
timestep_activation_fn: str = "silu",
|
|
norm_elementwise_affine: bool = True,
|
|
norm_eps: float = 1e-5,
|
|
spatial_interpolation_scale: float = 1.875,
|
|
temporal_interpolation_scale: float = 1.0,
|
|
use_rotary_positional_embeddings: bool = False,
|
|
use_learned_positional_embeddings: bool = False,
|
|
):
|
|
super().__init__()
|
|
inner_dim = num_attention_heads * attention_head_dim
|
|
|
|
if not use_rotary_positional_embeddings and use_learned_positional_embeddings:
|
|
raise ValueError(
|
|
"There are no CogVideoX checkpoints available with disable rotary embeddings and learned positional "
|
|
"embeddings. If you're using a custom model and/or believe this should be supported, please open an "
|
|
"issue at https://github.com/huggingface/diffusers/issues."
|
|
)
|
|
|
|
# 1. Patch embedding
|
|
self.patch_embed = CogVideoXPatchEmbed(
|
|
patch_size=patch_size,
|
|
in_channels=in_channels,
|
|
embed_dim=inner_dim,
|
|
text_embed_dim=text_embed_dim,
|
|
bias=True,
|
|
sample_width=sample_width,
|
|
sample_height=sample_height,
|
|
sample_frames=sample_frames,
|
|
temporal_compression_ratio=temporal_compression_ratio,
|
|
max_text_seq_length=max_text_seq_length,
|
|
spatial_interpolation_scale=spatial_interpolation_scale,
|
|
temporal_interpolation_scale=temporal_interpolation_scale,
|
|
use_positional_embeddings=not use_rotary_positional_embeddings,
|
|
use_learned_positional_embeddings=use_learned_positional_embeddings,
|
|
)
|
|
self.embedding_dropout = nn.Dropout(dropout)
|
|
|
|
# 2. Time embeddings
|
|
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
|
|
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)
|
|
|
|
# 3. Define spatio-temporal transformers blocks
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[
|
|
CogVideoXBlock(
|
|
dim=inner_dim,
|
|
num_attention_heads=num_attention_heads,
|
|
attention_head_dim=attention_head_dim,
|
|
time_embed_dim=time_embed_dim,
|
|
dropout=dropout,
|
|
activation_fn=activation_fn,
|
|
attention_bias=attention_bias,
|
|
norm_elementwise_affine=norm_elementwise_affine,
|
|
norm_eps=norm_eps,
|
|
)
|
|
for _ in range(num_layers)
|
|
]
|
|
)
|
|
self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine)
|
|
|
|
# 4. Output blocks
|
|
self.norm_out = AdaLayerNorm(
|
|
embedding_dim=time_embed_dim,
|
|
output_dim=2 * inner_dim,
|
|
norm_elementwise_affine=norm_elementwise_affine,
|
|
norm_eps=norm_eps,
|
|
chunk_dim=1,
|
|
)
|
|
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
self.fuser_list = None
|
|
|
|
def _set_gradient_checkpointing(self, module, value=False):
|
|
self.gradient_checkpointing = value
|
|
|
|
@property
|
|
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
|
r"""
|
|
Returns:
|
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
|
indexed by its weight name.
|
|
"""
|
|
# set recursively
|
|
processors = {}
|
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
|
if hasattr(module, "get_processor"):
|
|
processors[f"{name}.processor"] = module.get_processor()
|
|
|
|
for sub_name, child in module.named_children():
|
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
|
|
|
return processors
|
|
|
|
for name, module in self.named_children():
|
|
fn_recursive_add_processors(name, module, processors)
|
|
|
|
return processors
|
|
|
|
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
|
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
|
r"""
|
|
Sets the attention processor to use to compute attention.
|
|
|
|
Parameters:
|
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
|
for **all** `Attention` layers.
|
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
|
processor. This is strongly recommended when setting trainable attention processors.
|
|
|
|
"""
|
|
count = len(self.attn_processors.keys())
|
|
|
|
if isinstance(processor, dict) and len(processor) != count:
|
|
raise ValueError(
|
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
|
)
|
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
|
if hasattr(module, "set_processor"):
|
|
if not isinstance(processor, dict):
|
|
module.set_processor(processor)
|
|
else:
|
|
module.set_processor(processor.pop(f"{name}.processor"))
|
|
|
|
for sub_name, child in module.named_children():
|
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
|
|
|
for name, module in self.named_children():
|
|
fn_recursive_attn_processor(name, module, processor)
|
|
|
|
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedCogVideoXAttnProcessor2_0
|
|
def fuse_qkv_projections(self):
|
|
"""
|
|
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
|
are fused. For cross-attention modules, key and value projection matrices are fused.
|
|
|
|
<Tip warning={true}>
|
|
|
|
This API is 🧪 experimental.
|
|
|
|
</Tip>
|
|
"""
|
|
self.original_attn_processors = None
|
|
|
|
for _, attn_processor in self.attn_processors.items():
|
|
if "Added" in str(attn_processor.__class__.__name__):
|
|
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
|
|
|
self.original_attn_processors = self.attn_processors
|
|
|
|
for module in self.modules():
|
|
if isinstance(module, Attention):
|
|
module.fuse_projections(fuse=True)
|
|
|
|
self.set_attn_processor(FusedCogVideoXAttnProcessor2_0())
|
|
|
|
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
|
def unfuse_qkv_projections(self):
|
|
"""Disables the fused QKV projection if enabled.
|
|
|
|
<Tip warning={true}>
|
|
|
|
This API is 🧪 experimental.
|
|
|
|
</Tip>
|
|
|
|
"""
|
|
if self.original_attn_processors is not None:
|
|
self.set_attn_processor(self.original_attn_processors)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
encoder_hidden_states: torch.Tensor,
|
|
timestep: Union[int, float, torch.LongTensor],
|
|
timestep_cond: Optional[torch.Tensor] = None,
|
|
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
controlnet_states: torch.Tensor = None,
|
|
controlnet_weights: Optional[Union[float, int, list, np.ndarray, torch.FloatTensor]] = 1.0,
|
|
video_flow_features: Optional[torch.Tensor] = None,
|
|
return_dict: bool = True,
|
|
):
|
|
batch_size, num_frames, channels, height, width = hidden_states.shape
|
|
|
|
# 1. Time embedding
|
|
timesteps = timestep
|
|
t_emb = self.time_proj(timesteps)
|
|
|
|
# timesteps does not contain any weights and will always return f32 tensors
|
|
# but time_embedding might actually be running in fp16. so we need to cast here.
|
|
# there might be better ways to encapsulate this.
|
|
t_emb = t_emb.to(dtype=hidden_states.dtype)
|
|
emb = self.time_embedding(t_emb, timestep_cond)
|
|
|
|
# 2. Patch embedding
|
|
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
|
|
hidden_states = self.embedding_dropout(hidden_states)
|
|
|
|
text_seq_length = encoder_hidden_states.shape[1]
|
|
encoder_hidden_states = hidden_states[:, :text_seq_length]
|
|
hidden_states = hidden_states[:, text_seq_length:]
|
|
|
|
# 3. Transformer blocks
|
|
for i, block in enumerate(self.transformer_blocks):
|
|
|
|
hidden_states, encoder_hidden_states = block(
|
|
hidden_states=hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
temb=emb,
|
|
image_rotary_emb=image_rotary_emb,
|
|
video_flow_feature=video_flow_features[i] if video_flow_features is not None else None,
|
|
fuser = self.fuser_list[i] if self.fuser_list is not None else None,
|
|
)
|
|
|
|
if (controlnet_states is not None) and (i < len(controlnet_states)):
|
|
controlnet_states_block = controlnet_states[i]
|
|
controlnet_block_weight = 1.0
|
|
if isinstance(controlnet_weights, (list, np.ndarray)) or torch.is_tensor(controlnet_weights):
|
|
controlnet_block_weight = controlnet_weights[i]
|
|
elif isinstance(controlnet_weights, (float, int)):
|
|
controlnet_block_weight = controlnet_weights
|
|
|
|
hidden_states = hidden_states + controlnet_states_block * controlnet_block_weight
|
|
|
|
if not self.config.use_rotary_positional_embeddings:
|
|
# CogVideoX-2B
|
|
hidden_states = self.norm_final(hidden_states)
|
|
else:
|
|
# CogVideoX-5B
|
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
|
hidden_states = self.norm_final(hidden_states)
|
|
hidden_states = hidden_states[:, text_seq_length:]
|
|
|
|
# 4. Final block
|
|
hidden_states = self.norm_out(hidden_states, temb=emb)
|
|
hidden_states = self.proj_out(hidden_states)
|
|
|
|
# 5. Unpatchify
|
|
# Note: we use `-1` instead of `channels`:
|
|
# - It is okay to `channels` use for CogVideoX-2b and CogVideoX-5b (number of input channels is equal to output channels)
|
|
# - However, for CogVideoX-5b-I2V also takes concatenated input image latents (number of input channels is twice the output channels)
|
|
p = self.config.patch_size
|
|
output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p)
|
|
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
|
|
|
|
if not return_dict:
|
|
return (output,)
|
|
return Transformer2DModelOutput(sample=output)
|