206 lines
7.0 KiB
Python

from dataclasses import dataclass
from typing import Iterable, List, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from videosys.models.modules.normalization import LlamaRMSNorm
class OpenSoraAttention(nn.Module):
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
qk_norm: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
norm_layer: nn.Module = LlamaRMSNorm,
enable_flash_attn: bool = False,
rope=None,
qk_norm_legacy: bool = False,
) -> None:
super().__init__()
assert dim % num_heads == 0, "dim should be divisible by num_heads"
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim**-0.5
self.enable_flash_attn = enable_flash_attn
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.qk_norm_legacy = qk_norm_legacy
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.rope = False
if rope is not None:
self.rope = True
self.rotary_emb = rope
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, N, C = x.shape
# flash attn is not memory efficient for small sequences, this is empirical
enable_flash_attn = self.enable_flash_attn and (N > B)
qkv = self.qkv(x)
qkv_shape = (B, N, 3, self.num_heads, self.head_dim)
qkv = qkv.view(qkv_shape).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
if self.qk_norm_legacy:
# WARNING: this may be a bug
if self.rope:
q = self.rotary_emb(q)
k = self.rotary_emb(k)
q, k = self.q_norm(q), self.k_norm(k)
else:
q, k = self.q_norm(q), self.k_norm(k)
if self.rope:
q = self.rotary_emb(q)
k = self.rotary_emb(k)
if enable_flash_attn:
from flash_attn import flash_attn_func
# (B, #heads, N, #dim) -> (B, N, #heads, #dim)
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
x = flash_attn_func(
q,
k,
v,
dropout_p=self.attn_drop.p if self.training else 0.0,
softmax_scale=self.scale,
)
else:
x = F.scaled_dot_product_attention(q, k, v)
x_output_shape = (B, N, C)
if not enable_flash_attn:
x = x.transpose(1, 2)
x = x.reshape(x_output_shape)
x = self.proj(x)
x = self.proj_drop(x)
return x
class OpenSoraMultiHeadCrossAttention(nn.Module):
def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0, enable_flash_attn=False):
super(OpenSoraMultiHeadCrossAttention, self).__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
self.q_linear = nn.Linear(d_model, d_model)
self.kv_linear = nn.Linear(d_model, d_model * 2)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(d_model, d_model)
self.proj_drop = nn.Dropout(proj_drop)
self.enable_flash_attn = enable_flash_attn
def forward(self, x, cond, mask=None):
# query/value: img tokens; key: condition; mask: if padding tokens
B, N, C = x.shape
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim)
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim)
k, v = kv.unbind(2)
if self.enable_flash_attn:
x = self.flash_attn_impl(q, k, v, mask, B, N, C)
else:
x = self.torch_impl(q, k, v, mask, B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def flash_attn_impl(self, q, k, v, mask, B, N, C):
from flash_attn import flash_attn_varlen_func
q_seqinfo = _SeqLenInfo.from_seqlens([N] * B)
k_seqinfo = _SeqLenInfo.from_seqlens(mask)
x = flash_attn_varlen_func(
q.view(-1, self.num_heads, self.head_dim),
k.view(-1, self.num_heads, self.head_dim),
v.view(-1, self.num_heads, self.head_dim),
cu_seqlens_q=q_seqinfo.seqstart.cuda(),
cu_seqlens_k=k_seqinfo.seqstart.cuda(),
max_seqlen_q=q_seqinfo.max_seqlen,
max_seqlen_k=k_seqinfo.max_seqlen,
dropout_p=self.attn_drop.p if self.training else 0.0,
)
x = x.view(B, N, C)
return x
def torch_impl(self, q, k, v, mask, B, N, C):
q = q.view(B, -1, self.num_heads, self.head_dim).transpose(1, 2)
k = k.view(B, -1, self.num_heads, self.head_dim).transpose(1, 2)
v = v.view(B, -1, self.num_heads, self.head_dim).transpose(1, 2)
attn_mask = torch.zeros(B, 1, N, k.shape[2], dtype=torch.bool, device=q.device)
for i, m in enumerate(mask):
attn_mask[i, :, :, :m] = -1e9
out = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
x = out.transpose(1, 2).contiguous().view(B, N, C)
return x
@dataclass
class _SeqLenInfo:
"""
from xformers
(Internal) Represents the division of a dimension into blocks.
For example, to represents a dimension of length 7 divided into
three blocks of lengths 2, 3 and 2, use `from_seqlength([2, 3, 2])`.
The members will be:
max_seqlen: 3
min_seqlen: 2
seqstart_py: [0, 2, 5, 7]
seqstart: torch.IntTensor([0, 2, 5, 7])
"""
seqstart: torch.Tensor
max_seqlen: int
min_seqlen: int
seqstart_py: List[int]
def to(self, device: torch.device) -> None:
self.seqstart = self.seqstart.to(device, non_blocking=True)
def intervals(self) -> Iterable[Tuple[int, int]]:
yield from zip(self.seqstart_py, self.seqstart_py[1:])
@classmethod
def from_seqlens(cls, seqlens: Iterable[int]) -> "_SeqLenInfo":
"""
Input tensors are assumed to be in shape [B, M, *]
"""
assert not isinstance(seqlens, torch.Tensor)
seqstart_py = [0]
max_seqlen = -1
min_seqlen = -1
for seqlen in seqlens:
min_seqlen = min(min_seqlen, seqlen) if min_seqlen != -1 else seqlen
max_seqlen = max(max_seqlen, seqlen)
seqstart_py.append(seqstart_py[len(seqstart_py) - 1] + seqlen)
seqstart = torch.tensor(seqstart_py, dtype=torch.int32)
return cls(
max_seqlen=max_seqlen,
min_seqlen=min_seqlen,
seqstart=seqstart,
seqstart_py=seqstart_py,
)