mirror of
https://git.datalinker.icu/kijai/ComfyUI-CogVideoXWrapper.git
synced 2025-12-08 20:34:23 +08:00
721 lines
33 KiB
Python
721 lines
33 KiB
Python
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
|
|
# All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import Any, Dict, Optional, Tuple, Union
|
|
|
|
import torch
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
|
|
import numpy as np
|
|
from einops import rearrange
|
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
from diffusers.utils import logging
|
|
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
|
from diffusers.models.attention import Attention, FeedForward
|
|
from diffusers.models.attention_processor import AttentionProcessor
|
|
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
|
from diffusers.models.modeling_utils import ModelMixin
|
|
from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero
|
|
from diffusers.loaders import PeftAdapterMixin
|
|
from diffusers.models.embeddings import apply_rotary_emb
|
|
from .embeddings import CogVideoXPatchEmbed
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
try:
|
|
from sageattention import sageattn
|
|
SAGEATTN_IS_AVAILABLE = True
|
|
except:
|
|
SAGEATTN_IS_AVAILABLE = False
|
|
|
|
from comfy.ldm.modules.attention import optimized_attention
|
|
|
|
|
|
def set_attention_func(attention_mode, heads):
|
|
if attention_mode == "sdpa" or attention_mode == "fused_sdpa":
|
|
def func(q, k, v, is_causal=False, attn_mask=None):
|
|
return F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=0.0, is_causal=is_causal)
|
|
return func
|
|
elif attention_mode == "comfy":
|
|
def func(q, k, v, is_causal=False, attn_mask=None):
|
|
return optimized_attention(q, k, v, mask=attn_mask, heads=heads, skip_reshape=True)
|
|
return func
|
|
|
|
elif attention_mode == "sageattn" or attention_mode == "fused_sageattn":
|
|
@torch.compiler.disable()
|
|
def func(q, k, v, is_causal=False, attn_mask=None):
|
|
return sageattn(q, k, v, is_causal=is_causal, attn_mask=attn_mask)
|
|
return func
|
|
elif attention_mode == "sageattn_qk_int8_pv_fp16_cuda":
|
|
from sageattention import sageattn_qk_int8_pv_fp16_cuda
|
|
@torch.compiler.disable()
|
|
def func(q, k, v, is_causal=False, attn_mask=None):
|
|
return sageattn_qk_int8_pv_fp16_cuda(q, k, v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32")
|
|
return func
|
|
elif attention_mode == "sageattn_qk_int8_pv_fp16_triton":
|
|
from sageattention import sageattn_qk_int8_pv_fp16_triton
|
|
@torch.compiler.disable()
|
|
def func(q, k, v, is_causal=False, attn_mask=None):
|
|
return sageattn_qk_int8_pv_fp16_triton(q, k, v, is_causal=is_causal, attn_mask=attn_mask)
|
|
return func
|
|
elif attention_mode == "sageattn_qk_int8_pv_fp8_cuda":
|
|
from sageattention import sageattn_qk_int8_pv_fp8_cuda
|
|
@torch.compiler.disable()
|
|
def func(q, k, v, is_causal=False, attn_mask=None):
|
|
return sageattn_qk_int8_pv_fp8_cuda(q, k, v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32+fp32")
|
|
return func
|
|
|
|
def fft(tensor):
|
|
tensor_fft = torch.fft.fft2(tensor)
|
|
tensor_fft_shifted = torch.fft.fftshift(tensor_fft)
|
|
B, C, H, W = tensor.size()
|
|
radius = min(H, W) // 5
|
|
|
|
Y, X = torch.meshgrid(torch.arange(H), torch.arange(W))
|
|
center_x, center_y = W // 2, H // 2
|
|
mask = (X - center_x) ** 2 + (Y - center_y) ** 2 <= radius ** 2
|
|
low_freq_mask = mask.unsqueeze(0).unsqueeze(0).to(tensor.device)
|
|
high_freq_mask = ~low_freq_mask
|
|
|
|
low_freq_fft = tensor_fft_shifted * low_freq_mask
|
|
high_freq_fft = tensor_fft_shifted * high_freq_mask
|
|
|
|
return low_freq_fft, high_freq_fft
|
|
|
|
#region Attention
|
|
class CogVideoXAttnProcessor2_0:
|
|
r"""
|
|
Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on
|
|
query and key vectors, but does not include spatial normalization.
|
|
"""
|
|
|
|
def __init__(self, attn_func, attention_mode: Optional[str] = None):
|
|
if not hasattr(F, "scaled_dot_product_attention"):
|
|
raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
|
self.attention_mode = attention_mode
|
|
self.attn_func = attn_func
|
|
def __call__(
|
|
self,
|
|
attn: Attention,
|
|
hidden_states: torch.Tensor,
|
|
encoder_hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
image_rotary_emb: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
text_seq_length = encoder_hidden_states.size(1)
|
|
|
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
|
|
|
batch_size, sequence_length, _ = (
|
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
|
|
|
if attn.to_q.weight.dtype == torch.float16 or attn.to_q.weight.dtype == torch.bfloat16:
|
|
hidden_states = hidden_states.to(attn.to_q.weight.dtype)
|
|
|
|
if not "fused" in self.attention_mode:
|
|
query = attn.to_q(hidden_states)
|
|
key = attn.to_k(hidden_states)
|
|
value = attn.to_v(hidden_states)
|
|
else:
|
|
qkv = attn.to_qkv(hidden_states)
|
|
split_size = qkv.shape[-1] // 3
|
|
query, key, value = torch.split(qkv, split_size, dim=-1)
|
|
|
|
inner_dim = key.shape[-1]
|
|
head_dim = inner_dim // attn.heads
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
if attn.norm_q is not None:
|
|
query = attn.norm_q(query)
|
|
if attn.norm_k is not None:
|
|
key = attn.norm_k(key)
|
|
|
|
# Apply RoPE if needed
|
|
if image_rotary_emb is not None:
|
|
query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb)
|
|
if not attn.is_cross_attention:
|
|
key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb)
|
|
|
|
hidden_states = self.attn_func(query, key, value, attn_mask=attention_mask, is_causal=False)
|
|
|
|
if self.attention_mode != "comfy":
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
|
|
# linear proj
|
|
hidden_states = attn.to_out[0](hidden_states)
|
|
# dropout
|
|
hidden_states = attn.to_out[1](hidden_states)
|
|
|
|
encoder_hidden_states, hidden_states = hidden_states.split(
|
|
[text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
|
|
)
|
|
return hidden_states, encoder_hidden_states
|
|
|
|
#region Blocks
|
|
@maybe_allow_in_graph
|
|
class CogVideoXBlock(nn.Module):
|
|
|
|
r"""
|
|
Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model.
|
|
|
|
Parameters:
|
|
dim (`int`):
|
|
The number of channels in the input and output.
|
|
num_attention_heads (`int`):
|
|
The number of heads to use for multi-head attention.
|
|
attention_head_dim (`int`):
|
|
The number of channels in each head.
|
|
time_embed_dim (`int`):
|
|
The number of channels in timestep embedding.
|
|
dropout (`float`, defaults to `0.0`):
|
|
The dropout probability to use.
|
|
activation_fn (`str`, defaults to `"gelu-approximate"`):
|
|
Activation function to be used in feed-forward.
|
|
attention_bias (`bool`, defaults to `False`):
|
|
Whether or not to use bias in attention projection layers.
|
|
qk_norm (`bool`, defaults to `True`):
|
|
Whether or not to use normalization after query and key projections in Attention.
|
|
norm_elementwise_affine (`bool`, defaults to `True`):
|
|
Whether to use learnable elementwise affine parameters for normalization.
|
|
norm_eps (`float`, defaults to `1e-5`):
|
|
Epsilon value for normalization layers.
|
|
final_dropout (`bool` defaults to `False`):
|
|
Whether to apply a final dropout after the last feed-forward layer.
|
|
ff_inner_dim (`int`, *optional*, defaults to `None`):
|
|
Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used.
|
|
ff_bias (`bool`, defaults to `True`):
|
|
Whether or not to use bias in Feed-forward layer.
|
|
attention_out_bias (`bool`, defaults to `True`):
|
|
Whether or not to use bias in Attention output projection layer.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
num_attention_heads: int,
|
|
attention_head_dim: int,
|
|
time_embed_dim: int,
|
|
dropout: float = 0.0,
|
|
activation_fn: str = "gelu-approximate",
|
|
attention_bias: bool = False,
|
|
qk_norm: bool = True,
|
|
norm_elementwise_affine: bool = True,
|
|
norm_eps: float = 1e-5,
|
|
final_dropout: bool = True,
|
|
ff_inner_dim: Optional[int] = None,
|
|
ff_bias: bool = True,
|
|
attention_out_bias: bool = True,
|
|
attention_mode: Optional[str] = "sdpa",
|
|
):
|
|
super().__init__()
|
|
|
|
# 1. Self Attention
|
|
self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
|
|
|
|
attn_func = set_attention_func(attention_mode, num_attention_heads)
|
|
|
|
self.attn1 = Attention(
|
|
query_dim=dim,
|
|
dim_head=attention_head_dim,
|
|
heads=num_attention_heads,
|
|
qk_norm="layer_norm" if qk_norm else None,
|
|
eps=1e-6,
|
|
bias=attention_bias,
|
|
out_bias=attention_out_bias,
|
|
processor=CogVideoXAttnProcessor2_0(attn_func, attention_mode=attention_mode),
|
|
)
|
|
|
|
# 2. Feed Forward
|
|
self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
|
|
|
|
self.ff = FeedForward(
|
|
dim,
|
|
dropout=dropout,
|
|
activation_fn=activation_fn,
|
|
final_dropout=final_dropout,
|
|
inner_dim=ff_inner_dim,
|
|
bias=ff_bias,
|
|
)
|
|
self.cached_hidden_states = []
|
|
self.cached_encoder_hidden_states = []
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
encoder_hidden_states: torch.Tensor,
|
|
temb: torch.Tensor,
|
|
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
video_flow_feature: Optional[torch.Tensor] = None,
|
|
fuser=None,
|
|
block_use_fastercache=False,
|
|
fastercache_counter=0,
|
|
fastercache_start_step=15,
|
|
fastercache_device="cuda:0",
|
|
) -> torch.Tensor:
|
|
#print("hidden_states in block: ", hidden_states.shape) #1.5: torch.Size([2, 3200, 3072]) 10.: torch.Size([2, 6400, 3072])
|
|
text_seq_length = encoder_hidden_states.size(1)
|
|
|
|
# norm & modulate
|
|
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
|
|
hidden_states, encoder_hidden_states, temb
|
|
)
|
|
#print("norm_hidden_states in block: ", norm_hidden_states.shape) #torch.Size([2, 3200, 3072])
|
|
|
|
# Tora Motion-guidance Fuser
|
|
if video_flow_feature is not None:
|
|
H, W = video_flow_feature.shape[-2:]
|
|
T = norm_hidden_states.shape[1] // H // W
|
|
h = rearrange(norm_hidden_states, "B (T H W) C -> (B T) C H W", H=H, W=W)
|
|
h = fuser(h, video_flow_feature.to(h), T=T)
|
|
norm_hidden_states = rearrange(h, "(B T) C H W -> B (T H W) C", T=T)
|
|
del h, fuser
|
|
|
|
#region fastercache
|
|
if block_use_fastercache:
|
|
B = norm_hidden_states.shape[0]
|
|
if fastercache_counter >= fastercache_start_step + 3 and fastercache_counter%3!=0 and self.cached_hidden_states[-1].shape[0] >= B:
|
|
attn_hidden_states = (
|
|
self.cached_hidden_states[1][:B] +
|
|
(self.cached_hidden_states[1][:B] - self.cached_hidden_states[0][:B])
|
|
* 0.3
|
|
).to(norm_hidden_states.device, non_blocking=True)
|
|
attn_encoder_hidden_states = (
|
|
self.cached_encoder_hidden_states[1][:B] +
|
|
(self.cached_encoder_hidden_states[1][:B] - self.cached_encoder_hidden_states[0][:B])
|
|
* 0.3
|
|
).to(norm_hidden_states.device, non_blocking=True)
|
|
else:
|
|
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
|
|
hidden_states=norm_hidden_states,
|
|
encoder_hidden_states=norm_encoder_hidden_states,
|
|
image_rotary_emb=image_rotary_emb,
|
|
)
|
|
if fastercache_counter == fastercache_start_step:
|
|
self.cached_hidden_states = [attn_hidden_states.to(fastercache_device), attn_hidden_states.to(fastercache_device)]
|
|
self.cached_encoder_hidden_states = [attn_encoder_hidden_states.to(fastercache_device), attn_encoder_hidden_states.to(fastercache_device)]
|
|
elif fastercache_counter > fastercache_start_step:
|
|
self.cached_hidden_states[-1].copy_(attn_hidden_states.to(fastercache_device))
|
|
self.cached_encoder_hidden_states[-1].copy_(attn_encoder_hidden_states.to(fastercache_device))
|
|
else:
|
|
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
|
|
hidden_states=norm_hidden_states,
|
|
encoder_hidden_states=norm_encoder_hidden_states,
|
|
image_rotary_emb=image_rotary_emb
|
|
)
|
|
|
|
hidden_states = hidden_states + gate_msa * attn_hidden_states
|
|
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states
|
|
|
|
# norm & modulate
|
|
|
|
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
|
|
hidden_states, encoder_hidden_states, temb
|
|
)
|
|
|
|
# feed-forward
|
|
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
|
|
ff_output = self.ff(norm_hidden_states)
|
|
|
|
hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:]
|
|
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length]
|
|
|
|
return hidden_states, encoder_hidden_states
|
|
|
|
#region Transformer
|
|
class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
|
"""
|
|
A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo).
|
|
|
|
Parameters:
|
|
num_attention_heads (`int`, defaults to `30`):
|
|
The number of heads to use for multi-head attention.
|
|
attention_head_dim (`int`, defaults to `64`):
|
|
The number of channels in each head.
|
|
in_channels (`int`, defaults to `16`):
|
|
The number of channels in the input.
|
|
out_channels (`int`, *optional*, defaults to `16`):
|
|
The number of channels in the output.
|
|
flip_sin_to_cos (`bool`, defaults to `True`):
|
|
Whether to flip the sin to cos in the time embedding.
|
|
time_embed_dim (`int`, defaults to `512`):
|
|
Output dimension of timestep embeddings.
|
|
text_embed_dim (`int`, defaults to `4096`):
|
|
Input dimension of text embeddings from the text encoder.
|
|
num_layers (`int`, defaults to `30`):
|
|
The number of layers of Transformer blocks to use.
|
|
dropout (`float`, defaults to `0.0`):
|
|
The dropout probability to use.
|
|
attention_bias (`bool`, defaults to `True`):
|
|
Whether or not to use bias in the attention projection layers.
|
|
sample_width (`int`, defaults to `90`):
|
|
The width of the input latents.
|
|
sample_height (`int`, defaults to `60`):
|
|
The height of the input latents.
|
|
sample_frames (`int`, defaults to `49`):
|
|
The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49
|
|
instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings,
|
|
but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with
|
|
K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1).
|
|
patch_size (`int`, defaults to `2`):
|
|
The size of the patches to use in the patch embedding layer.
|
|
temporal_compression_ratio (`int`, defaults to `4`):
|
|
The compression ratio across the temporal dimension. See documentation for `sample_frames`.
|
|
max_text_seq_length (`int`, defaults to `226`):
|
|
The maximum sequence length of the input text embeddings.
|
|
activation_fn (`str`, defaults to `"gelu-approximate"`):
|
|
Activation function to use in feed-forward.
|
|
timestep_activation_fn (`str`, defaults to `"silu"`):
|
|
Activation function to use when generating the timestep embeddings.
|
|
norm_elementwise_affine (`bool`, defaults to `True`):
|
|
Whether or not to use elementwise affine in normalization layers.
|
|
norm_eps (`float`, defaults to `1e-5`):
|
|
The epsilon value to use in normalization layers.
|
|
spatial_interpolation_scale (`float`, defaults to `1.875`):
|
|
Scaling factor to apply in 3D positional embeddings across spatial dimensions.
|
|
temporal_interpolation_scale (`float`, defaults to `1.0`):
|
|
Scaling factor to apply in 3D positional embeddings across temporal dimensions.
|
|
"""
|
|
|
|
_supports_gradient_checkpointing = True
|
|
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
num_attention_heads: int = 30,
|
|
attention_head_dim: int = 64,
|
|
in_channels: int = 16,
|
|
out_channels: Optional[int] = 16,
|
|
flip_sin_to_cos: bool = True,
|
|
freq_shift: int = 0,
|
|
time_embed_dim: int = 512,
|
|
ofs_embed_dim: Optional[int] = None,
|
|
text_embed_dim: int = 4096,
|
|
num_layers: int = 30,
|
|
dropout: float = 0.0,
|
|
attention_bias: bool = True,
|
|
sample_width: int = 90,
|
|
sample_height: int = 60,
|
|
sample_frames: int = 49,
|
|
patch_size: int = 2,
|
|
patch_size_t: int = None,
|
|
temporal_compression_ratio: int = 4,
|
|
max_text_seq_length: int = 226,
|
|
activation_fn: str = "gelu-approximate",
|
|
timestep_activation_fn: str = "silu",
|
|
norm_elementwise_affine: bool = True,
|
|
norm_eps: float = 1e-5,
|
|
spatial_interpolation_scale: float = 1.875,
|
|
temporal_interpolation_scale: float = 1.0,
|
|
use_rotary_positional_embeddings: bool = False,
|
|
use_learned_positional_embeddings: bool = False,
|
|
patch_bias: bool = True,
|
|
attention_mode: Optional[str] = "sdpa",
|
|
):
|
|
super().__init__()
|
|
inner_dim = num_attention_heads * attention_head_dim
|
|
|
|
if not use_rotary_positional_embeddings and use_learned_positional_embeddings:
|
|
raise ValueError(
|
|
"There are no CogVideoX checkpoints available with disable rotary embeddings and learned positional "
|
|
"embeddings. If you're using a custom model and/or believe this should be supported, please open an "
|
|
"issue at https://github.com/huggingface/diffusers/issues."
|
|
)
|
|
|
|
# 1. Patch embedding
|
|
self.patch_embed = CogVideoXPatchEmbed(
|
|
patch_size=patch_size,
|
|
patch_size_t=patch_size_t,
|
|
in_channels=in_channels,
|
|
embed_dim=inner_dim,
|
|
text_embed_dim=text_embed_dim,
|
|
bias=patch_bias,
|
|
sample_width=sample_width,
|
|
sample_height=sample_height,
|
|
sample_frames=sample_frames,
|
|
temporal_compression_ratio=temporal_compression_ratio,
|
|
max_text_seq_length=max_text_seq_length,
|
|
spatial_interpolation_scale=spatial_interpolation_scale,
|
|
temporal_interpolation_scale=temporal_interpolation_scale,
|
|
use_positional_embeddings=not use_rotary_positional_embeddings,
|
|
use_learned_positional_embeddings=use_learned_positional_embeddings,
|
|
)
|
|
self.embedding_dropout = nn.Dropout(dropout)
|
|
|
|
# 2. Time embeddings
|
|
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
|
|
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)
|
|
|
|
self.ofs_proj = None
|
|
self.ofs_embedding = None
|
|
|
|
if ofs_embed_dim:
|
|
self.ofs_proj = Timesteps(ofs_embed_dim, flip_sin_to_cos, freq_shift)
|
|
self.ofs_embedding = TimestepEmbedding(ofs_embed_dim, ofs_embed_dim, timestep_activation_fn) # same as time embeddings, for ofs
|
|
|
|
# 3. Define spatio-temporal transformers blocks
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[
|
|
CogVideoXBlock(
|
|
dim=inner_dim,
|
|
num_attention_heads=num_attention_heads,
|
|
attention_head_dim=attention_head_dim,
|
|
time_embed_dim=time_embed_dim,
|
|
dropout=dropout,
|
|
activation_fn=activation_fn,
|
|
attention_bias=attention_bias,
|
|
attention_mode=attention_mode,
|
|
norm_elementwise_affine=norm_elementwise_affine,
|
|
norm_eps=norm_eps,
|
|
)
|
|
for _ in range(num_layers)
|
|
]
|
|
)
|
|
self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine)
|
|
|
|
# 4. Output blocks
|
|
self.norm_out = AdaLayerNorm(
|
|
embedding_dim=time_embed_dim,
|
|
output_dim=2 * inner_dim,
|
|
norm_elementwise_affine=norm_elementwise_affine,
|
|
norm_eps=norm_eps,
|
|
chunk_dim=1,
|
|
)
|
|
if patch_size_t is None:
|
|
# For CogVideox 1.0
|
|
output_dim = patch_size * patch_size * out_channels
|
|
else:
|
|
# For CogVideoX 1.5
|
|
output_dim = patch_size * patch_size * patch_size_t * out_channels
|
|
|
|
self.proj_out = nn.Linear(inner_dim, output_dim)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
self.fuser_list = None
|
|
self.use_fastercache = False
|
|
self.fastercache_counter = 0
|
|
self.fastercache_start_step = 15
|
|
self.fastercache_lf_step = 40
|
|
self.fastercache_hf_step = 30
|
|
self.fastercache_device = "cuda"
|
|
self.fastercache_num_blocks_to_cache = len(self.transformer_blocks)
|
|
self.attention_mode = attention_mode
|
|
|
|
|
|
def _set_gradient_checkpointing(self, module, value=False):
|
|
self.gradient_checkpointing = value
|
|
#region forward
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
encoder_hidden_states: torch.Tensor,
|
|
timestep: Union[int, float, torch.LongTensor],
|
|
timestep_cond: Optional[torch.Tensor] = None,
|
|
ofs: Optional[Union[int, float, torch.LongTensor]] = None,
|
|
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
controlnet_states: torch.Tensor = None,
|
|
controlnet_weights: Optional[Union[float, int, list, np.ndarray, torch.FloatTensor]] = 1.0,
|
|
video_flow_features: Optional[torch.Tensor] = None,
|
|
return_dict: bool = True,
|
|
):
|
|
batch_size, num_frames, channels, height, width = hidden_states.shape
|
|
|
|
# 1. Time embedding
|
|
timesteps = timestep
|
|
t_emb = self.time_proj(timesteps)
|
|
|
|
# timesteps does not contain any weights and will always return f32 tensors
|
|
# but time_embedding might actually be running in fp16. so we need to cast here.
|
|
# there might be better ways to encapsulate this.
|
|
t_emb = t_emb.to(dtype=hidden_states.dtype)
|
|
|
|
emb = self.time_embedding(t_emb, timestep_cond)
|
|
if self.ofs_embedding is not None: #1.5 I2V
|
|
ofs_emb = self.ofs_proj(ofs)
|
|
ofs_emb = ofs_emb.to(dtype=hidden_states.dtype)
|
|
ofs_emb = self.ofs_embedding(ofs_emb)
|
|
emb = emb + ofs_emb
|
|
|
|
# 2. Patch embedding
|
|
p = self.config.patch_size
|
|
p_t = self.config.patch_size_t
|
|
|
|
#print("hidden_states before patch_embedding", hidden_states.shape) #torch.Size([2, 4, 16, 60, 90])
|
|
|
|
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
|
|
#print("hidden_states after patch_embedding", hidden_states.shape) #1.5: torch.Size([2, 2926, 3072]) #1.0: torch.Size([2, 5626, 3072])
|
|
hidden_states = self.embedding_dropout(hidden_states)
|
|
|
|
text_seq_length = encoder_hidden_states.shape[1]
|
|
encoder_hidden_states = hidden_states[:, :text_seq_length]
|
|
hidden_states = hidden_states[:, text_seq_length:]
|
|
#print("hidden_states after split", hidden_states.shape) #1.5: torch.Size([2, 2700, 3072]) #1.0: torch.Size([2, 5400, 3072])
|
|
|
|
if self.use_fastercache:
|
|
self.fastercache_counter+=1
|
|
if self.fastercache_counter >= self.fastercache_start_step + 3 and self.fastercache_counter % 5 !=0:
|
|
# 3. Transformer blocks
|
|
for i, block in enumerate(self.transformer_blocks):
|
|
hidden_states, encoder_hidden_states = block(
|
|
hidden_states=hidden_states[:1],
|
|
encoder_hidden_states=encoder_hidden_states[:1],
|
|
temb=emb[:1],
|
|
image_rotary_emb=image_rotary_emb,
|
|
video_flow_feature=video_flow_features[i][:1] if video_flow_features is not None else None,
|
|
fuser = self.fuser_list[i] if self.fuser_list is not None else None,
|
|
block_use_fastercache = i <= self.fastercache_num_blocks_to_cache,
|
|
fastercache_counter = self.fastercache_counter,
|
|
fastercache_start_step = self.fastercache_start_step,
|
|
fastercache_device = self.fastercache_device
|
|
)
|
|
|
|
if (controlnet_states is not None) and (i < len(controlnet_states)):
|
|
controlnet_states_block = controlnet_states[i]
|
|
controlnet_block_weight = 1.0
|
|
if isinstance(controlnet_weights, (list, np.ndarray)) or torch.is_tensor(controlnet_weights):
|
|
controlnet_block_weight = controlnet_weights[i]
|
|
elif isinstance(controlnet_weights, (float, int)):
|
|
controlnet_block_weight = controlnet_weights
|
|
|
|
hidden_states = hidden_states + controlnet_states_block * controlnet_block_weight
|
|
|
|
if not self.config.use_rotary_positional_embeddings:
|
|
# CogVideoX-2B
|
|
hidden_states = self.norm_final(hidden_states)
|
|
else:
|
|
# CogVideoX-5B
|
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
|
hidden_states = self.norm_final(hidden_states)
|
|
hidden_states = hidden_states[:, text_seq_length:]
|
|
|
|
# 4. Final block
|
|
hidden_states = self.norm_out(hidden_states, temb=emb[:1])
|
|
hidden_states = self.proj_out(hidden_states)
|
|
|
|
# 5. Unpatchify
|
|
# Note: we use `-1` instead of `channels`:
|
|
# - It is okay to `channels` use for CogVideoX-2b and CogVideoX-5b (number of input channels is equal to output channels)
|
|
# - However, for CogVideoX-5b-I2V also takes concatenated input image latents (number of input channels is twice the output channels)
|
|
|
|
if p_t is None:
|
|
output = hidden_states.reshape(1, num_frames, height // p, width // p, -1, p, p)
|
|
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
|
|
else:
|
|
output = hidden_states.reshape(
|
|
1, (num_frames + p_t - 1) // p_t, height // p, width // p, -1, p_t, p, p
|
|
)
|
|
output = output.permute(0, 1, 5, 4, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(1, 2)
|
|
|
|
(bb, tt, cc, hh, ww) = output.shape
|
|
cond = rearrange(output, "B T C H W -> (B T) C H W", B=bb, C=cc, T=tt, H=hh, W=ww)
|
|
lf_c, hf_c = fft(cond.float())
|
|
#lf_step = 40
|
|
#hf_step = 30
|
|
if self.fastercache_counter <= self.fastercache_lf_step:
|
|
self.delta_lf = self.delta_lf * 1.1
|
|
if self.fastercache_counter >= self.fastercache_hf_step:
|
|
self.delta_hf = self.delta_hf * 1.1
|
|
|
|
new_hf_uc = self.delta_hf + hf_c
|
|
new_lf_uc = self.delta_lf + lf_c
|
|
|
|
combine_uc = new_lf_uc + new_hf_uc
|
|
combined_fft = torch.fft.ifftshift(combine_uc)
|
|
recovered_uncond = torch.fft.ifft2(combined_fft).real
|
|
recovered_uncond = rearrange(recovered_uncond.to(output.dtype), "(B T) C H W -> B T C H W", B=bb, C=cc, T=tt, H=hh, W=ww)
|
|
output = torch.cat([output, recovered_uncond])
|
|
else:
|
|
for i, block in enumerate(self.transformer_blocks):
|
|
hidden_states, encoder_hidden_states = block(
|
|
hidden_states=hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
temb=emb,
|
|
image_rotary_emb=image_rotary_emb,
|
|
video_flow_feature=video_flow_features[i] if video_flow_features is not None else None,
|
|
fuser = self.fuser_list[i] if self.fuser_list is not None else None,
|
|
block_use_fastercache = i <= self.fastercache_num_blocks_to_cache,
|
|
fastercache_counter = self.fastercache_counter,
|
|
fastercache_start_step = self.fastercache_start_step,
|
|
fastercache_device = self.fastercache_device
|
|
)
|
|
#has_nan = torch.isnan(hidden_states).any()
|
|
#if has_nan:
|
|
# raise ValueError(f"block output hidden_states has nan: {has_nan}")
|
|
|
|
#controlnet
|
|
if (controlnet_states is not None) and (i < len(controlnet_states)):
|
|
controlnet_states_block = controlnet_states[i]
|
|
controlnet_block_weight = 1.0
|
|
if isinstance(controlnet_weights, (list, np.ndarray)) or torch.is_tensor(controlnet_weights):
|
|
controlnet_block_weight = controlnet_weights[i]
|
|
print(controlnet_block_weight)
|
|
elif isinstance(controlnet_weights, (float, int)):
|
|
controlnet_block_weight = controlnet_weights
|
|
hidden_states = hidden_states + controlnet_states_block * controlnet_block_weight
|
|
|
|
if not self.config.use_rotary_positional_embeddings:
|
|
# CogVideoX-2B
|
|
hidden_states = self.norm_final(hidden_states)
|
|
else:
|
|
# CogVideoX-5B
|
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
|
hidden_states = self.norm_final(hidden_states)
|
|
hidden_states = hidden_states[:, text_seq_length:]
|
|
|
|
# 4. Final block
|
|
hidden_states = self.norm_out(hidden_states, temb=emb)
|
|
hidden_states = self.proj_out(hidden_states)
|
|
|
|
# 5. Unpatchify
|
|
# Note: we use `-1` instead of `channels`:
|
|
# - It is okay to `channels` use for CogVideoX-2b and CogVideoX-5b (number of input channels is equal to output channels)
|
|
# - However, for CogVideoX-5b-I2V also takes concatenated input image latents (number of input channels is twice the output channels)
|
|
|
|
if p_t is None:
|
|
output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p)
|
|
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
|
|
else:
|
|
output = hidden_states.reshape(
|
|
batch_size, (num_frames + p_t - 1) // p_t, height // p, width // p, -1, p_t, p, p
|
|
)
|
|
output = output.permute(0, 1, 5, 4, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(1, 2)
|
|
|
|
if self.fastercache_counter >= self.fastercache_start_step + 1:
|
|
(bb, tt, cc, hh, ww) = output.shape
|
|
cond = rearrange(output[0:1].float(), "B T C H W -> (B T) C H W", B=bb//2, C=cc, T=tt, H=hh, W=ww)
|
|
uncond = rearrange(output[1:2].float(), "B T C H W -> (B T) C H W", B=bb//2, C=cc, T=tt, H=hh, W=ww)
|
|
|
|
lf_c, hf_c = fft(cond)
|
|
lf_uc, hf_uc = fft(uncond)
|
|
|
|
self.delta_lf = lf_uc - lf_c
|
|
self.delta_hf = hf_uc - hf_c
|
|
|
|
if not return_dict:
|
|
return (output,)
|
|
return Transformer2DModelOutput(sample=output)
|
|
|