Added BPT

This commit is contained in:
Easymode 2025-02-18 23:44:55 +00:00 committed by GitHub
parent 39fe034d36
commit 7700bf7396
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
57 changed files with 3790 additions and 0 deletions

View File

@ -0,0 +1,10 @@
# BPT Installation
Original repo: https://github.com/whaohan/bpt
### Installation
pip install -r requirements.txt
### Download weights (From main Hunyuan3D2 directory)
huggingface-cli download whaohan/bpt --local-dir ./weights

Binary file not shown.

View File

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

View File

View File

@ -0,0 +1,74 @@
# -*- coding: utf-8 -*-
import argparse
from omegaconf import OmegaConf
import numpy as np
import torch
from .michelangelo.utils.misc import instantiate_from_config
def load_surface(fp):
with np.load(fp) as input_pc:
surface = input_pc['points']
normal = input_pc['normals']
rng = np.random.default_rng()
ind = rng.choice(surface.shape[0], 4096, replace=False)
surface = torch.FloatTensor(surface[ind])
normal = torch.FloatTensor(normal[ind])
surface = torch.cat([surface, normal], dim=-1).unsqueeze(0).cuda()
return surface
def reconstruction(args, model, bounds=(-1.25, -1.25, -1.25, 1.25, 1.25, 1.25), octree_depth=7, num_chunks=10000):
surface = load_surface(args.pointcloud_path)
# old_surface = surface.clone()
# surface[0,:,0]*=-1
# surface[0,:,1]*=-1
surface[0,:,2]*=-1
# encoding
shape_embed, shape_latents = model.model.encode_shape_embed(surface, return_latents=True)
shape_zq, posterior = model.model.shape_model.encode_kl_embed(shape_latents)
# decoding
latents = model.model.shape_model.decode(shape_zq)
# geometric_func = partial(model.model.shape_model.query_geometry, latents=latents)
return 0
def load_model(ckpt_path="shapevae-256.ckpt", config_path="shapevae-256.yaml"):
model_config = OmegaConf.load(config_path)
print(model_config)
if hasattr(model_config, "model"):
model_config = model_config.model
model = instantiate_from_config(model_config, ckpt_path=ckpt_path)
model = model.eval()
return model
if __name__ == "__main__":
'''
1. Reconstruct point cloud
2. Image-conditioned generation
3. Text-conditioned generation
'''
parser = argparse.ArgumentParser()
parser.add_argument("--config_path", type=str, required=True)
parser.add_argument("--ckpt_path", type=str, required=True)
parser.add_argument("--pointcloud_path", type=str, default='./example_data/surface.npz',
help='Path to the input point cloud')
parser.add_argument("--image_path", type=str, help='Path to the input image')
parser.add_argument("--text", type=str,
help='Input text within a format: A 3D model of motorcar; Porsche 911.')
parser.add_argument("--output_dir", type=str, default='./output')
parser.add_argument("-s", "--seed", type=int, default=0)
args = parser.parse_args()
print(f'-----------------------------------------------------------------------------')
print(f'>>> Output directory: {args.output_dir}')
print(f'-----------------------------------------------------------------------------')
reconstruction(args, load_model(args))

View File

@ -0,0 +1 @@
# -*- coding: utf-8 -*-

View File

@ -0,0 +1 @@
# -*- coding: utf-8 -*-

View File

@ -0,0 +1,4 @@
# -*- coding: utf-8 -*-
from .volume import generate_dense_grid_points

View File

@ -0,0 +1,21 @@
# -*- coding: utf-8 -*-
import numpy as np
# produce dense points
def generate_dense_grid_points(bbox_min: np.ndarray,
bbox_max: np.ndarray,
octree_depth: int,
indexing: str = "ij"):
length = bbox_max - bbox_min
num_cells = np.exp2(octree_depth)
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
xyz = np.stack((xs, ys, zs), axis=-1)
xyz = xyz.reshape(-1, 3)
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]
return xyz, grid_size, length

View File

@ -0,0 +1 @@
# -*- coding: utf-8 -*-

View File

@ -0,0 +1,3 @@
# -*- coding: utf-8 -*-
from .checkpoint import checkpoint

View File

@ -0,0 +1,64 @@
# -*- coding: utf-8 -*-
import torch
from typing import Callable, Iterable, Sequence, Union
def checkpoint(
func: Callable[..., Union[torch.Tensor, Sequence[torch.Tensor]]],
inputs: Sequence[torch.Tensor],
params: Iterable[torch.Tensor],
flag: bool,
use_deepspeed: bool = False
):
# Evaluate a function without caching intermediate activations, allowing for
# reduced memory at the expense of extra compute in the backward pass.
# :param func: the function to evaluate.
# :param inputs: the argument sequence to pass to `func`.
# :param params: a sequence of parameters `func` depends on but does not
# explicitly take as arguments.
# :param flag: if False, disable gradient checkpointing.
# :param use_deepspeed: if True, use deepspeed
if flag:
if use_deepspeed:
import deepspeed
return deepspeed.checkpointing.checkpoint(func, *inputs)
args = tuple(inputs) + tuple(params)
return CheckpointFunction.apply(func, len(inputs), *args)
else:
return func(*inputs)
class CheckpointFunction(torch.autograd.Function):
@staticmethod
@torch.amp.custom_fwd(device_type="cuda")
def forward(ctx, run_function, length, *args):
ctx.run_function = run_function
ctx.input_tensors = list(args[:length])
ctx.input_params = list(args[length:])
with torch.no_grad():
output_tensors = ctx.run_function(*ctx.input_tensors)
return output_tensors
@staticmethod
@torch.amp.custom_bwd(device_type="cuda")
def backward(ctx, *output_grads):
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
with torch.enable_grad():
# Fixes a bug where the first op in run_function modifies the
# Tensor storage in place, which is not allowed for detach()'d
# Tensors.
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
output_tensors = ctx.run_function(*shallow_copies)
input_grads = torch.autograd.grad(
output_tensors,
ctx.input_tensors + ctx.input_params,
output_grads,
allow_unused=True,
)
del ctx.input_tensors
del ctx.input_params
del output_tensors
return (None, None) + input_grads

View File

@ -0,0 +1,83 @@
# -*- coding: utf-8 -*-
import torch
import numpy as np
from typing import Union, List
class DiagonalGaussianDistribution(object):
# Gaussian distribution
def __init__(self, parameters: Union[torch.Tensor, List[torch.Tensor]], deterministic=False, feat_dim=1):
self.feat_dim = feat_dim
self.parameters = parameters
if isinstance(parameters, list):
self.mean = parameters[0]
self.logvar = parameters[1]
else:
self.mean, self.logvar = torch.chunk(parameters, 2, dim=feat_dim)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
if self.deterministic:
self.var = self.std = torch.zeros_like(self.mean)
# sample from the guassian distribution
def sample(self):
x = self.mean + self.std * torch.randn_like(self.mean)
return x
def kl(self, other=None, dims=(1, 2, 3)):
if self.deterministic:
return torch.Tensor([0.])
else:
if other is None:
return 0.5 * torch.mean(torch.pow(self.mean, 2)
+ self.var - 1.0 - self.logvar,
dim=dims)
else:
return 0.5 * torch.mean(
torch.pow(self.mean - other.mean, 2) / other.var
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
dim=dims)
def nll(self, sample, dims=(1, 2, 3)):
if self.deterministic:
return torch.Tensor([0.])
logtwopi = np.log(2.0 * np.pi)
return 0.5 * torch.sum(
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
dim=dims)
def mode(self):
return self.mean
def normal_kl(mean1, logvar1, mean2, logvar2):
# Compute the KL divergence between two gaussians.
# Shapes are automatically broadcasted, so batches can be compared to
# scalars, among other use cases.
tensor = None
for obj in (mean1, logvar1, mean2, logvar2):
if isinstance(obj, torch.Tensor):
tensor = obj
break
assert tensor is not None, "at least one argument must be a Tensor"
# Force variances to be Tensors. Broadcasting helps convert scalars to
# Tensors, but it does not work for torch.exp().
logvar1, logvar2 = [
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
for x in (logvar1, logvar2)
]
return 0.5 * (
-1.0
+ logvar2
- logvar1
+ torch.exp(logvar1 - logvar2)
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
)

View File

@ -0,0 +1,213 @@
# -*- coding: utf-8 -*-
import numpy as np
import torch
import torch.nn as nn
import math
VALID_EMBED_TYPES = ["identity", "fourier", "hashgrid", "sphere_harmonic", "triplane_fourier"]
class FourierEmbedder(nn.Module):
"""The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts
each feature dimension of `x[..., i]` into:
[
sin(x[..., i]),
sin(f_1*x[..., i]),
sin(f_2*x[..., i]),
...
sin(f_N * x[..., i]),
cos(x[..., i]),
cos(f_1*x[..., i]),
cos(f_2*x[..., i]),
...
cos(f_N * x[..., i]),
x[..., i] # only present if include_input is True.
], here f_i is the frequency.
Denote the space is [0 / num_freqs, 1 / num_freqs, 2 / num_freqs, 3 / num_freqs, ..., (num_freqs - 1) / num_freqs].
If logspace is True, then the frequency f_i is [2^(0 / num_freqs), ..., 2^(i / num_freqs), ...];
Otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)].
Args:
num_freqs (int): the number of frequencies, default is 6;
logspace (bool): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)];
input_dim (int): the input dimension, default is 3;
include_input (bool): include the input tensor or not, default is True.
Attributes:
frequencies (torch.Tensor): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1);
out_dim (int): the embedding size, if include_input is True, it is input_dim * (num_freqs * 2 + 1),
otherwise, it is input_dim * num_freqs * 2.
"""
def __init__(self,
num_freqs: int = 6,
logspace: bool = True,
input_dim: int = 3,
include_input: bool = True,
include_pi: bool = True) -> None:
"""The initialization"""
super().__init__()
if logspace:
frequencies = 2.0 ** torch.arange(
num_freqs,
dtype=torch.float32
)
else:
frequencies = torch.linspace(
1.0,
2.0 ** (num_freqs - 1),
num_freqs,
dtype=torch.float32
)
if include_pi:
frequencies *= torch.pi
self.register_buffer("frequencies", frequencies, persistent=False)
self.include_input = include_input
self.num_freqs = num_freqs
self.out_dim = self.get_dims(input_dim)
def get_dims(self, input_dim):
temp = 1 if self.include_input or self.num_freqs == 0 else 0
out_dim = input_dim * (self.num_freqs * 2 + temp)
return out_dim
def forward(self, x: torch.Tensor) -> torch.Tensor:
""" Forward process.
Args:
x: tensor of shape [..., dim]
Returns:
embedding: an embedding of `x` of shape [..., dim * (num_freqs * 2 + temp)]
where temp is 1 if include_input is True and 0 otherwise.
"""
if self.num_freqs > 0:
embed = (x[..., None].contiguous() * self.frequencies).view(*x.shape[:-1], -1)
if self.include_input:
return torch.cat((x, embed.sin(), embed.cos()), dim=-1)
else:
return torch.cat((embed.sin(), embed.cos()), dim=-1)
else:
return x
class LearnedFourierEmbedder(nn.Module):
""" following @crowsonkb "s lead with learned sinusoidal pos emb """
""" https://github.com/crowsonkb/v-diffusion-jax/blob/master/diffusion/models/danbooru_128.py#L8 """
def __init__(self, in_channels, dim):
super().__init__()
assert (dim % 2) == 0
half_dim = dim // 2
per_channel_dim = half_dim // in_channels
self.weights = nn.Parameter(torch.randn(per_channel_dim))
def forward(self, x):
"""
Args:
x (torch.FloatTensor): [..., c]
Returns:
x (torch.FloatTensor): [..., d]
"""
# [b, t, c, 1] * [1, d] = [b, t, c, d] -> [b, t, c * d]
freqs = (x[..., None] * self.weights[None] * 2 * np.pi).view(*x.shape[:-1], -1)
fouriered = torch.cat((x, freqs.sin(), freqs.cos()), dim=-1)
return fouriered
class TriplaneLearnedFourierEmbedder(nn.Module):
def __init__(self, in_channels, dim):
super().__init__()
self.yz_plane_embedder = LearnedFourierEmbedder(in_channels, dim)
self.xz_plane_embedder = LearnedFourierEmbedder(in_channels, dim)
self.xy_plane_embedder = LearnedFourierEmbedder(in_channels, dim)
self.out_dim = in_channels + dim
def forward(self, x):
yz_embed = self.yz_plane_embedder(x)
xz_embed = self.xz_plane_embedder(x)
xy_embed = self.xy_plane_embedder(x)
embed = yz_embed + xz_embed + xy_embed
return embed
def sequential_pos_embed(num_len, embed_dim):
assert embed_dim % 2 == 0
pos = torch.arange(num_len, dtype=torch.float32)
omega = torch.arange(embed_dim // 2, dtype=torch.float32)
omega /= embed_dim / 2.
omega = 1. / 10000 ** omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = torch.sin(out) # (M, D/2)
emb_cos = torch.cos(out) # (M, D/2)
embeddings = torch.cat([emb_sin, emb_cos], dim=1) # (M, D)
return embeddings
def timestep_embedding(timesteps, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=timesteps.device)
args = timesteps[:, None].to(timesteps.dtype) * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def get_embedder(embed_type="fourier", num_freqs=-1, input_dim=3, degree=4,
num_levels=16, level_dim=2, per_level_scale=2, base_resolution=16,
log2_hashmap_size=19, desired_resolution=None):
if embed_type == "identity" or (embed_type == "fourier" and num_freqs == -1):
return nn.Identity(), input_dim
elif embed_type == "fourier":
embedder_obj = FourierEmbedder(num_freqs=num_freqs, input_dim=input_dim,
logspace=True, include_input=True)
return embedder_obj, embedder_obj.out_dim
elif embed_type == "hashgrid":
raise NotImplementedError
elif embed_type == "sphere_harmonic":
raise NotImplementedError
else:
raise ValueError(f"{embed_type} is not valid. Currently only supprts {VALID_EMBED_TYPES}")

View File

@ -0,0 +1,286 @@
# -*- coding: utf-8 -*-
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional
from hy3dgen.shapegen.bpt.miche.michelangelo.models.modules.checkpoint import checkpoint
# Initialize linear layers with normal distribution weights and zero biases
def init_linear(l, stddev):
nn.init.normal_(l.weight, std=stddev)
if l.bias is not None:
nn.init.constant_(l.bias, 0.0)
# Multihead attention module
class MultiheadAttention(nn.Module):
def __init__(
self,
*,
device: torch.device,
dtype: torch.dtype,
n_ctx: int, # Context size
width: int, # Width of the input tensor
heads: int, # Number of attention heads
init_scale: float, # Initialization scale for weights
qkv_bias: bool, # Whether to use bias in QKV layers
flash: bool = False # Whether to use flash attention
):
super().__init__()
self.n_ctx = n_ctx
self.width = width
self.heads = heads
self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias, device=device, dtype=dtype)
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
self.attention = QKVMultiheadAttention(device=device, dtype=dtype, heads=heads, n_ctx=n_ctx, flash=flash)
init_linear(self.c_qkv, init_scale)
init_linear(self.c_proj, init_scale)
def forward(self, x):
x = self.c_qkv(x)
x = checkpoint(self.attention, (x,), (), True)
x = self.c_proj(x)
return x
# QKV multihead attention module
class QKVMultiheadAttention(nn.Module):
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_ctx: int, flash: bool = False):
super().__init__()
self.device = device
self.dtype = dtype
self.heads = heads
self.n_ctx = n_ctx
self.flash = flash
def forward(self, qkv):
bs, n_ctx, width = qkv.shape
attn_ch = width // self.heads // 3
scale = 1 / math.sqrt(math.sqrt(attn_ch))
qkv = qkv.view(bs, n_ctx, self.heads, -1)
q, k, v = torch.split(qkv, attn_ch, dim=-1)
if self.flash:
out = F.scaled_dot_product_attention(q, k, v)
else:
weight = torch.einsum(
"bthc,bshc->bhts", q * scale, k * scale
) # More stable with f16 than dividing afterwards
wdtype = weight.dtype
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
return out
# Residual attention block module
class ResidualAttentionBlock(nn.Module):
def __init__(
self,
*,
device: torch.device,
dtype: torch.dtype,
use_checkpoint: bool = False,
n_ctx: int, # Context size
width: int, # Width of the input tensor
heads: int, # Number of attention heads
init_scale: float, # Initialization scale for weights
qkv_bias: bool, # Whether to use bias in QKV layers
flash: bool = False # Whether to use flash attention
):
super().__init__()
self.use_checkpoint = use_checkpoint
self.attn = MultiheadAttention(
device=device,
dtype=dtype,
n_ctx=n_ctx,
width=width,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
flash=flash
)
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale)
self.ln_2 = nn.LayerNorm(width, device=device, dtype=dtype)
def _forward(self, x: torch.Tensor):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
def forward(self, x: torch.Tensor):
return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint)
# Multihead cross attention module
class MultiheadCrossAttention(nn.Module):
def __init__(
self,
*,
device: torch.device,
dtype: torch.dtype,
n_data: Optional[int] = None,
data_width: Optional[int] = None,
width: int, # Width of the input tensor
heads: int, # Number of attention heads
init_scale: float, # Initialization scale for weights
qkv_bias: bool, # Whether to use bias in QKV layers
flash: bool = False # Whether to use flash attention
):
super().__init__()
self.n_data = n_data
self.width = width
self.heads = heads
self.data_width = width if data_width is None else data_width
self.c_q = nn.Linear(width, width, bias=qkv_bias, device=device, dtype=dtype)
self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias, device=device, dtype=dtype)
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
self.attention = QKVMultiheadCrossAttention(
device=device, dtype=dtype, heads=heads, n_data=n_data, flash=flash
)
init_linear(self.c_q, init_scale)
init_linear(self.c_kv, init_scale)
init_linear(self.c_proj, init_scale)
def forward(self, x, data):
x = self.c_q(x)
data = self.c_kv(data)
x = checkpoint(self.attention, (x, data), (), True)
x = self.c_proj(x)
return x
# QKV multihead cross attention module
class QKVMultiheadCrossAttention(nn.Module):
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int,
flash: bool = False, n_data: Optional[int] = None):
super().__init__()
self.device = device
self.dtype = dtype
self.heads = heads
self.n_data = n_data
self.flash = flash
def forward(self, q, kv):
_, n_ctx, _ = q.shape
bs, n_data, width = kv.shape
attn_ch = width // self.heads // 2
scale = 1 / math.sqrt(math.sqrt(attn_ch))
q = q.view(bs, n_ctx, self.heads, -1)
kv = kv.view(bs, n_data, self.heads, -1)
k, v = torch.split(kv, attn_ch, dim=-1)
if self.flash:
out = F.scaled_dot_product_attention(q, k, v)
else:
weight = torch.einsum(
"bthc,bshc->bhts", q * scale, k * scale
) # More stable with f16 than dividing afterwards
wdtype = weight.dtype
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
return out
# Residual cross attention block module
class ResidualCrossAttentionBlock(nn.Module):
def __init__(
self,
*,
device: Optional[torch.device],
dtype: Optional[torch.dtype],
n_data: Optional[int] = None,
data_width: Optional[int] = None,
width: int, # Width of the input tensor
heads: int, # Number of attention heads
init_scale: float, # Initialization scale for weights
qkv_bias: bool, # Whether to use bias in QKV layers
flash: bool = False # Whether to use flash attention
):
super().__init__()
if data_width is None:
data_width = width
self.attn = MultiheadCrossAttention(
device=device,
dtype=dtype,
n_data=n_data,
width=width,
heads=heads,
data_width=data_width,
init_scale=init_scale,
qkv_bias=qkv_bias,
flash=flash,
)
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
self.ln_2 = nn.LayerNorm(data_width, device=device, dtype=dtype)
self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale)
self.ln_3 = nn.LayerNorm(width, device=device, dtype=dtype)
def forward(self, x: torch.Tensor, data: torch.Tensor):
x = x + self.attn(self.ln_1(x), self.ln_2(data))
x = x + self.mlp(self.ln_3(x))
return x
# MLP Module
class MLP(nn.Module):
def __init__(self, *,
device: Optional[torch.device],
dtype: Optional[torch.dtype],
width: int,
init_scale: float):
super().__init__()
self.width = width
self.c_fc = nn.Linear(width, width * 4, device=device, dtype=dtype)
self.c_proj = nn.Linear(width * 4, width, device=device, dtype=dtype)
self.gelu = nn.GELU()
init_linear(self.c_fc, init_scale)
init_linear(self.c_proj, init_scale)
def forward(self, x):
return self.c_proj(self.gelu(self.c_fc(x)))
# Transformer Module
class Transformer(nn.Module):
def __init__(
self,
*,
device: Optional[torch.device],
dtype: Optional[torch.dtype],
layers: int,
use_checkpoint: bool = False,
n_ctx: int, # Context size
width: int, # Width of the input tensor
heads: int, # Number of attention heads
init_scale: float, # Initialization scale for weights
qkv_bias: bool, # Whether to use bias in QKV layers
flash: bool = False # Whether to use flash attention
):
super().__init__()
self.n_ctx = n_ctx
self.width = width
self.layers = layers
self.resblocks = nn.ModuleList(
[
ResidualAttentionBlock(
device=device,
dtype=dtype,
n_ctx=n_ctx,
width=width,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
flash=flash,
use_checkpoint=use_checkpoint
)
for _ in range(layers)
]
)
def forward(self, x: torch.Tensor):
for block in self.resblocks:
x = block(x)
return x

View File

@ -0,0 +1 @@
# -*- coding: utf-8 -*-

View File

@ -0,0 +1,383 @@
# -*- coding: utf-8 -*-
from typing import List, Tuple, Dict, Optional
from omegaconf import DictConfig
import torch
import torch.nn.functional as F
from torch import nn
from torch.optim import lr_scheduler
from typing import Union
from functools import partial
from .....miche.michelangelo.utils import instantiate_from_config
from .tsal_base import (
AlignedShapeAsLatentModule,
ShapeAsLatentModule,
Latent2MeshOutput,
AlignedMeshOutput
)
from .....miche.michelangelo.models.tsal.inference_utils import extract_geometry
import trimesh
class AlignedShapeAsLatentPLModule(nn.Module):
def __init__(self, *,
shape_module_cfg,
aligned_module_cfg,
loss_cfg,
optimizer_cfg: Optional[DictConfig] = None,
ckpt_path: Optional[str] = None,
ignore_keys: Union[Tuple[str], List[str]] = ()):
super().__init__()
shape_model: ShapeAsLatentModule = instantiate_from_config(
shape_module_cfg, device=None, dtype=None
)
self.model: AlignedShapeAsLatentModule = instantiate_from_config(
aligned_module_cfg, shape_model=shape_model
)
self.loss = instantiate_from_config(loss_cfg)
self.optimizer_cfg = optimizer_cfg
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
def set_shape_model_only(self):
self.model.set_shape_model_only()
@property
def latent_shape(self):
return self.model.shape_model.latent_shape
@property
def zero_rank(self):
if self._trainer:
zero_rank = self.trainer.local_rank == 0
else:
zero_rank = True
return zero_rank
def init_from_ckpt(self, path, ignore_keys=()):
state_dict = torch.load(path, map_location="cpu")["state_dict"]
keys = list(state_dict.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del state_dict[k]
missing, unexpected = self.load_state_dict(state_dict, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
if len(missing) > 0:
print(f"Missing Keys: {missing}")
print(f"Unexpected Keys: {unexpected}")
def configure_optimizers(self) -> Tuple[List, List]:
lr = self.learning_rate
trainable_parameters = list(self.model.parameters())
if self.optimizer_cfg is None:
optimizers = [torch.optim.AdamW(trainable_parameters, lr=lr, betas=(0.9, 0.99), weight_decay=1e-3)]
schedulers = []
else:
optimizer = instantiate_from_config(self.optimizer_cfg.optimizer, params=trainable_parameters)
scheduler_func = instantiate_from_config(
self.optimizer_cfg.scheduler,
max_decay_steps=self.trainer.max_steps,
lr_max=lr
)
scheduler = {
"scheduler": lr_scheduler.LambdaLR(optimizer, lr_lambda=scheduler_func.schedule),
"interval": "step",
"frequency": 1
}
optimizers = [optimizer]
schedulers = [scheduler]
return optimizers, schedulers
def forward(self,
surface: torch.FloatTensor,
image: torch.FloatTensor,
text: torch.FloatTensor,
volume_queries: torch.FloatTensor):
# Args:
# surface (torch.FloatTensor):
# image (torch.FloatTensor):
# text (torch.FloatTensor):
# volume_queries (torch.FloatTensor):
#
# Returns:
embed_outputs, shape_z = self.model(surface, image, text)
shape_zq, posterior = self.model.shape_model.encode_kl_embed(shape_z)
latents = self.model.shape_model.decode(shape_zq)
logits = self.model.shape_model.query_geometry(volume_queries, latents)
return embed_outputs, logits, posterior
def encode(self, surface: torch.FloatTensor, sample_posterior=True):
pc = surface[..., 0:3]
feats = surface[..., 3:6]
shape_embed, shape_zq, posterior = self.model.shape_model.encode(
pc=pc, feats=feats, sample_posterior=sample_posterior
)
return shape_zq
def encode_latents(self, surface: torch.FloatTensor):
pc = surface[..., 0:3]
feats = surface[..., 3:6]
shape_embed, shape_latents = self.model.shape_model.encode_latents(
pc=pc, feats=feats
)
shape_embed = shape_embed.unsqueeze(1)
assert shape_embed.shape[1] == 1 and shape_latents.shape[1] == 256
cat_latents = torch.cat([shape_embed, shape_latents], dim=1)
return cat_latents
def recon(self, surface):
cat_latents = self.encode_latents(surface)
shape_latents = cat_latents[:, 1:]
shape_zq, posterior = self.model.shape_model.encode_kl_embed(shape_latents)
# decoding
latents = self.model.shape_model.decode(shape_zq)
geometric_func = partial(self.model.shape_model.query_geometry, latents=latents)
# reconstruction
mesh_v_f, has_surface = extract_geometry(
geometric_func=geometric_func,
device=surface.device,
batch_size=surface.shape[0],
bounds=(-1.25, -1.25, -1.25, 1.25, 1.25, 1.25),
octree_depth=7,
num_chunks=10000,
)
recon_mesh = trimesh.Trimesh(mesh_v_f[0][0], mesh_v_f[0][1])
return recon_mesh
def to_shape_latents(self, latents):
shape_zq, posterior = self.model.shape_model.encode_kl_embed(latents, sample_posterior = False)
return self.model.shape_model.decode(shape_zq)
def decode(self,
z_q,
bounds: Union[Tuple[float], List[float], float] = 1.1,
octree_depth: int = 7,
num_chunks: int = 10000) -> List[Latent2MeshOutput]:
latents = self.model.shape_model.decode(z_q) # latents: [bs, num_latents, dim]
outputs = self.latent2mesh(latents, bounds=bounds, octree_depth=octree_depth, num_chunks=num_chunks)
return outputs
def training_step(self, batch: Dict[str, torch.FloatTensor],
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
#Args:
# batch (dict): the batch sample, and it contains:
# - surface (torch.FloatTensor): [bs, n_surface, (3 + input_dim)]
# - image (torch.FloatTensor): [bs, 3, 224, 224]
# - text (torch.FloatTensor): [bs, num_templates, 77]
# - geo_points (torch.FloatTensor): [bs, n_pts, (3 + 1)]
#
# batch_idx (int):
#
# optimizer_idx (int):
#
# Returns:
# loss (torch.FloatTensor):
surface = batch["surface"]
image = batch["image"]
text = batch["text"]
volume_queries = batch["geo_points"][..., 0:3]
shape_labels = batch["geo_points"][..., -1]
embed_outputs, shape_logits, posteriors = self(surface, image, text, volume_queries)
aeloss, log_dict_ae = self.loss(
**embed_outputs,
posteriors=posteriors,
shape_logits=shape_logits,
shape_labels=shape_labels,
split="train"
)
self.log_dict(log_dict_ae, prog_bar=True, logger=True, batch_size=shape_logits.shape[0],
sync_dist=False, rank_zero_only=True)
return aeloss
def validation_step(self, batch: Dict[str, torch.FloatTensor], batch_idx: int) -> torch.FloatTensor:
surface = batch["surface"]
image = batch["image"]
text = batch["text"]
volume_queries = batch["geo_points"][..., 0:3]
shape_labels = batch["geo_points"][..., -1]
embed_outputs, shape_logits, posteriors = self(surface, image, text, volume_queries)
aeloss, log_dict_ae = self.loss(
**embed_outputs,
posteriors=posteriors,
shape_logits=shape_logits,
shape_labels=shape_labels,
split="val"
)
self.log_dict(log_dict_ae, prog_bar=True, logger=True, batch_size=shape_logits.shape[0],
sync_dist=False, rank_zero_only=True)
return aeloss
def visual_alignment(self,
surface: torch.FloatTensor,
image: torch.FloatTensor,
text: torch.FloatTensor,
description: Optional[List[str]] = None,
bounds: Union[Tuple[float], List[float]] = (-1.25, -1.25, -1.25, 1.25, 1.25, 1.25),
octree_depth: int = 7,
num_chunks: int = 10000) -> List[AlignedMeshOutput]:
"""
Args:
surface:
image:
text:
description:
bounds:
octree_depth:
num_chunks:
Returns:
mesh_outputs (List[AlignedMeshOutput]): the mesh outputs list.
"""
outputs = []
device = surface.device
bs = surface.shape[0]
embed_outputs, shape_z = self.model(surface, image, text)
# calculate the similarity
image_embed = embed_outputs["image_embed"]
text_embed = embed_outputs["text_embed"]
shape_embed = embed_outputs["shape_embed"]
# normalized features
shape_embed = F.normalize(shape_embed, dim=-1, p=2)
text_embed = F.normalize(text_embed, dim=-1, p=2)
image_embed = F.normalize(image_embed, dim=-1, p=2)
# B x B
shape_text_similarity = (100.0 * shape_embed @ text_embed.T).softmax(dim=-1)
# B x B
shape_image_similarity = (100.0 * shape_embed @ image_embed.T).softmax(dim=-1)
# shape reconstruction
shape_zq, posterior = self.model.shape_model.encode_kl_embed(shape_z)
latents = self.model.shape_model.decode(shape_zq)
geometric_func = partial(self.model.shape_model.query_geometry, latents=latents)
# 2. decode geometry
mesh_v_f, has_surface = extract_geometry(
geometric_func=geometric_func,
device=device,
batch_size=bs,
bounds=bounds,
octree_depth=octree_depth,
num_chunks=num_chunks,
disable=not self.zero_rank
)
# 3. decode texture
for i, ((mesh_v, mesh_f), is_surface) in enumerate(zip(mesh_v_f, has_surface)):
if not is_surface:
outputs.append(None)
continue
out = AlignedMeshOutput()
out.mesh_v = mesh_v
out.mesh_f = mesh_f
out.surface = surface[i].cpu().numpy()
out.image = image[i].cpu().numpy()
if description is not None:
out.text = description[i]
out.shape_text_similarity = shape_text_similarity[i, i]
out.shape_image_similarity = shape_image_similarity[i, i]
outputs.append(out)
return outputs
def latent2mesh(self,
latents: torch.FloatTensor,
bounds: Union[Tuple[float], List[float], float] = 1.1,
octree_depth: int = 7,
num_chunks: int = 10000) -> List[Latent2MeshOutput]:
"""
Args:
latents: [bs, num_latents, dim]
bounds:
octree_depth:
num_chunks:
Returns:
mesh_outputs (List[MeshOutput]): the mesh outputs list.
"""
outputs = []
geometric_func = partial(self.model.shape_model.query_geometry, latents=latents)
# 2. decode geometry
device = latents.device
mesh_v_f, has_surface = extract_geometry(
geometric_func=geometric_func,
device=device,
batch_size=len(latents),
bounds=bounds,
octree_depth=octree_depth,
num_chunks=num_chunks,
disable=not self.zero_rank
)
# 3. decode texture
for i, ((mesh_v, mesh_f), is_surface) in enumerate(zip(mesh_v_f, has_surface)):
if not is_surface:
outputs.append(None)
continue
out = Latent2MeshOutput()
out.mesh_v = mesh_v
out.mesh_f = mesh_f
outputs.append(out)
return outputs

View File

@ -0,0 +1,118 @@
# -*- coding: utf-8 -*-
import torch
from torch import nn
from einops import rearrange
from transformers import CLIPModel
from hy3dgen.shapegen.bpt.miche.michelangelo.models.tsal.tsal_base import AlignedShapeAsLatentModule
class CLIPAlignedShapeAsLatentModule(AlignedShapeAsLatentModule):
def __init__(self, *,
shape_model,
clip_model_version: str = "openai/clip-vit-large-patch14"):
super().__init__()
# self.clip_model: CLIPModel = CLIPModel.from_pretrained(clip_model_version)
# for params in self.clip_model.parameters():
# params.requires_grad = False
self.clip_model = None
self.shape_model = shape_model
self.shape_projection = nn.Parameter(torch.empty(self.shape_model.width, self.shape_model.width))
# nn.init.normal_(self.shape_projection, std=self.shape_model.width ** -0.5)
def set_shape_model_only(self):
self.clip_model = None
def encode_shape_embed(self, surface, return_latents: bool = False):
"""
Args:
surface (torch.FloatTensor): [bs, n, 3 + c]
return_latents (bool):
Returns:
x (torch.FloatTensor): [bs, projection_dim]
shape_latents (torch.FloatTensor): [bs, m, d]
"""
pc = surface[..., 0:3]
feats = surface[..., 3:]
shape_embed, shape_latents = self.shape_model.encode_latents(pc, feats)
x = shape_embed @ self.shape_projection
if return_latents:
return x, shape_latents
else:
return x
def encode_image_embed(self, image):
"""
Args:
image (torch.FloatTensor): [bs, 3, h, w]
Returns:
x (torch.FloatTensor): [bs, projection_dim]
"""
x = self.clip_model.get_image_features(image)
return x
def encode_text_embed(self, text):
x = self.clip_model.get_text_features(text)
return x
def forward(self, surface, image, text):
"""
Args:
surface (torch.FloatTensor):
image (torch.FloatTensor): [bs, 3, 224, 224]
text (torch.LongTensor): [bs, num_templates, 77]
Returns:
embed_outputs (dict): the embedding outputs, and it contains:
- image_embed (torch.FloatTensor):
- text_embed (torch.FloatTensor):
- shape_embed (torch.FloatTensor):
- logit_scale (float):
"""
# # text embedding
# text_embed_all = []
# for i in range(text.shape[0]):
# text_for_one_sample = text[i]
# text_embed = self.encode_text_embed(text_for_one_sample)
# text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
# text_embed = text_embed.mean(dim=0)
# text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
# text_embed_all.append(text_embed)
# text_embed_all = torch.stack(text_embed_all)
b = text.shape[0]
text_tokens = rearrange(text, "b t l -> (b t) l")
text_embed = self.encode_text_embed(text_tokens)
text_embed = rearrange(text_embed, "(b t) d -> b t d", b=b)
text_embed = text_embed.mean(dim=1)
text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
# image embedding
image_embed = self.encode_image_embed(image)
# shape embedding
shape_embed, shape_latents = self.encode_shape_embed(surface, return_latents=True)
embed_outputs = {
"image_embed": image_embed,
"text_embed": text_embed,
"shape_embed": shape_embed,
# "logit_scale": self.clip_model.logit_scale.exp()
}
return embed_outputs, shape_latents

View File

@ -0,0 +1,76 @@
# -*- coding: utf-8 -*-
import torch
from tqdm import tqdm
from einops import repeat
import numpy as np
from typing import Callable, Tuple, List, Union, Optional
from skimage import measure
from .....miche.michelangelo.graphics.primitives import generate_dense_grid_points
@torch.no_grad()
def extract_geometry(geometric_func: Callable,
device: torch.device,
batch_size: int = 1,
bounds: Union[Tuple[float], List[float], float] = (-1.25, -1.25, -1.25, 1.25, 1.25, 1.25),
octree_depth: int = 7,
num_chunks: int = 10000,
disable: bool = True):
# Args:
# geometric_func:
# device:
# bounds:
# octree_depth:
# batch_size:
# num_chunks:
# disable:
# Returns:
if isinstance(bounds, float):
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
bbox_min = np.array(bounds[0:3])
bbox_max = np.array(bounds[3:6])
bbox_size = bbox_max - bbox_min
xyz_samples, grid_size, length = generate_dense_grid_points(
bbox_min=bbox_min,
bbox_max=bbox_max,
octree_depth=octree_depth,
indexing="ij"
)
xyz_samples = torch.FloatTensor(xyz_samples)
batch_logits = []
for start in tqdm(range(0, xyz_samples.shape[0], num_chunks),
desc="Implicit Function:", disable=disable, leave=False):
queries = xyz_samples[start: start + num_chunks, :].to(device)
batch_queries = repeat(queries, "p c -> b p c", b=batch_size)
logits = geometric_func(batch_queries)
batch_logits.append(logits.cpu())
grid_logits = torch.cat(batch_logits, dim=1).view((batch_size, grid_size[0], grid_size[1], grid_size[2])).numpy()
mesh_v_f = []
has_surface = np.zeros((batch_size,), dtype=np.bool_)
for i in range(batch_size):
try:
vertices, faces, normals, _ = measure.marching_cubes(grid_logits[i], 0, method="lewiner")
vertices = vertices / grid_size * bbox_size + bbox_min
# vertices[:, [0, 1]] = vertices[:, [1, 0]]
mesh_v_f.append((vertices.astype(np.float32), np.ascontiguousarray(faces)))
has_surface[i] = True
except ValueError:
mesh_v_f.append((None, None))
has_surface[i] = False
except RuntimeError:
mesh_v_f.append((None, None))
has_surface[i] = False
return mesh_v_f, has_surface

View File

@ -0,0 +1,130 @@
# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional
from hy3dgen.shapegen.bpt.miche.michelangelo.models.modules.distributions import DiagonalGaussianDistribution
from hy3dgen.shapegen.bpt.miche.michelangelo.utils import misc
class ContrastKLNearFar(nn.Module):
def __init__(self,
contrast_weight: float = 1.0,
near_weight: float = 0.1,
kl_weight: float = 1.0,
num_near_samples: Optional[int] = None):
super().__init__()
self.labels = None
self.last_local_batch_size = None
self.contrast_weight = contrast_weight
self.near_weight = near_weight
self.kl_weight = kl_weight
self.num_near_samples = num_near_samples
self.geo_criterion = nn.BCEWithLogitsLoss()
def forward(self,
shape_embed: torch.FloatTensor,
text_embed: torch.FloatTensor,
image_embed: torch.FloatTensor,
logit_scale: torch.FloatTensor,
posteriors: Optional[DiagonalGaussianDistribution],
shape_logits: torch.FloatTensor,
shape_labels: torch.FloatTensor,
split: Optional[str] = "train", **kwargs):
# shape_embed: torch.FloatTensor
# text_embed: torch.FloatTensor
# image_embed: torch.FloatTensor
# logit_scale: torch.FloatTensor
# posteriors: Optional[DiagonalGaussianDistribution]
# shape_logits: torch.FloatTensor
# shape_labels: torch.FloatTensor
local_batch_size = shape_embed.size(0)
if local_batch_size != self.last_local_batch_size:
self.labels = local_batch_size * misc.get_rank() + torch.arange(
local_batch_size, device=shape_embed.device
).long()
self.last_local_batch_size = local_batch_size
# normalized features
shape_embed = F.normalize(shape_embed, dim=-1, p=2)
text_embed = F.normalize(text_embed, dim=-1, p=2)
image_embed = F.normalize(image_embed, dim=-1, p=2)
# gather features from all GPUs
shape_embed_all, text_embed_all, image_embed_all = misc.all_gather_batch(
[shape_embed, text_embed, image_embed]
)
# cosine similarity as logits
logits_per_shape_text = logit_scale * shape_embed @ text_embed_all.t()
logits_per_text_shape = logit_scale * text_embed @ shape_embed_all.t()
logits_per_shape_image = logit_scale * shape_embed @ image_embed_all.t()
logits_per_image_shape = logit_scale * image_embed @ shape_embed_all.t()
contrast_loss = (F.cross_entropy(logits_per_shape_text, self.labels) +
F.cross_entropy(logits_per_text_shape, self.labels)) / 2 + \
(F.cross_entropy(logits_per_shape_image, self.labels) +
F.cross_entropy(logits_per_image_shape, self.labels)) / 2
# shape reconstruction
if self.num_near_samples is None:
num_vol = shape_logits.shape[1] // 2
else:
num_vol = shape_logits.shape[1] - self.num_near_samples
vol_logits = shape_logits[:, 0:num_vol]
vol_labels = shape_labels[:, 0:num_vol]
near_logits = shape_logits[:, num_vol:]
near_labels = shape_labels[:, num_vol:]
# occupancy loss
vol_bce = self.geo_criterion(vol_logits.float(), vol_labels.float())
near_bce = self.geo_criterion(near_logits.float(), near_labels.float())
if posteriors is None:
kl_loss = torch.tensor(0.0, dtype=vol_logits.dtype, device=vol_logits.device)
else:
kl_loss = posteriors.kl(dims=(1, 2))
kl_loss = torch.mean(kl_loss)
loss = vol_bce + near_bce * self.near_weight + kl_loss * self.kl_weight + contrast_loss * self.contrast_weight
# compute accuracy
with torch.no_grad():
pred = torch.argmax(logits_per_shape_text, dim=-1)
correct = pred.eq(self.labels).sum()
shape_text_acc = 100 * correct / local_batch_size
pred = torch.argmax(logits_per_shape_image, dim=-1)
correct = pred.eq(self.labels).sum()
shape_image_acc = 100 * correct / local_batch_size
preds = shape_logits >= 0
accuracy = (preds == shape_labels).float()
accuracy = accuracy.mean()
log = {
"{}/contrast".format(split): contrast_loss.clone().detach(),
"{}/near".format(split): near_bce.detach(),
"{}/far".format(split): vol_bce.detach(),
"{}/kl".format(split): kl_loss.detach(),
"{}/shape_text_acc".format(split): shape_text_acc,
"{}/shape_image_acc".format(split): shape_image_acc,
"{}/total_loss".format(split): loss.clone().detach(),
"{}/accuracy".format(split): accuracy,
}
if posteriors is not None:
log[f"{split}/mean"] = posteriors.mean.mean().detach()
log[f"{split}/std_mean"] = posteriors.std.mean().detach()
log[f"{split}/std_max"] = posteriors.std.max().detach()
return loss, log

View File

@ -0,0 +1,410 @@
# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
from typing import Optional
from einops import repeat
import math
from hy3dgen.shapegen.bpt.miche.michelangelo.models.modules import checkpoint
from hy3dgen.shapegen.bpt.miche.michelangelo.models.modules.embedder import FourierEmbedder
from hy3dgen.shapegen.bpt.miche.michelangelo.models.modules.distributions import DiagonalGaussianDistribution
from hy3dgen.shapegen.bpt.miche.michelangelo.models.modules.transformer_blocks import (
ResidualCrossAttentionBlock,
Transformer
)
from .tsal_base import ShapeAsLatentModule
class CrossAttentionEncoder(nn.Module):
def __init__(self, *,
device: Optional[torch.device],
dtype: Optional[torch.dtype],
num_latents: int,
fourier_embedder: FourierEmbedder,
point_feats: int,
width: int,
heads: int,
layers: int,
init_scale: float = 0.25,
qkv_bias: bool = True,
flash: bool = False,
use_ln_post: bool = False,
use_checkpoint: bool = False):
super().__init__()
self.use_checkpoint = use_checkpoint
self.num_latents = num_latents
self.query = nn.Parameter(torch.randn((num_latents, width), device=device, dtype=dtype) * 0.02)
self.fourier_embedder = fourier_embedder
self.input_proj = nn.Linear(self.fourier_embedder.out_dim + point_feats, width, device=device, dtype=dtype)
self.cross_attn = ResidualCrossAttentionBlock(
device=device,
dtype=dtype,
width=width,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
flash=flash,
)
self.self_attn = Transformer(
device=device,
dtype=dtype,
n_ctx=num_latents,
width=width,
layers=layers,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
flash=flash,
use_checkpoint=False
)
if use_ln_post:
self.ln_post = nn.LayerNorm(width, dtype=dtype, device=device)
else:
self.ln_post = None
def _forward(self, pc, feats):
# Args:
# pc (torch.FloatTensor): [B, N, 3]
# feats (torch.FloatTensor or None): [B, N, C]
bs = pc.shape[0]
data = self.fourier_embedder(pc)
if feats is not None:
data = torch.cat([data, feats], dim=-1)
data = self.input_proj(data)
query = repeat(self.query, "m c -> b m c", b=bs)
latents = self.cross_attn(query, data)
latents = self.self_attn(latents)
if self.ln_post is not None:
latents = self.ln_post(latents)
return latents, pc
def forward(self, pc: torch.FloatTensor, feats: Optional[torch.FloatTensor] = None):
# Args:
# pc (torch.FloatTensor): [B, N, 3]
# feats (torch.FloatTensor or None): [B, N, C]
return checkpoint(self._forward, (pc, feats), self.parameters(), self.use_checkpoint)
class CrossAttentionDecoder(nn.Module):
def __init__(self, *,
device: Optional[torch.device],
dtype: Optional[torch.dtype],
num_latents: int,
out_channels: int,
fourier_embedder: FourierEmbedder,
width: int,
heads: int,
init_scale: float = 0.25,
qkv_bias: bool = True,
flash: bool = False,
use_checkpoint: bool = False):
super().__init__()
self.use_checkpoint = use_checkpoint
self.fourier_embedder = fourier_embedder
self.query_proj = nn.Linear(self.fourier_embedder.out_dim, width, device=device, dtype=dtype)
self.cross_attn_decoder = ResidualCrossAttentionBlock(
device=device,
dtype=dtype,
n_data=num_latents,
width=width,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
flash=flash
)
self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
self.output_proj = nn.Linear(width, out_channels, device=device, dtype=dtype)
def _forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
queries = self.query_proj(self.fourier_embedder(queries))
x = self.cross_attn_decoder(queries, latents)
x = self.ln_post(x)
x = self.output_proj(x)
return x
def forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
return checkpoint(self._forward, (queries, latents), self.parameters(), self.use_checkpoint)
class ShapeAsLatentPerceiver(ShapeAsLatentModule):
def __init__(self, *,
device: Optional[torch.device],
dtype: Optional[torch.dtype],
num_latents: int,
point_feats: int = 0,
embed_dim: int = 0,
num_freqs: int = 8,
include_pi: bool = True,
width: int,
heads: int,
num_encoder_layers: int,
num_decoder_layers: int,
init_scale: float = 0.25,
qkv_bias: bool = True,
flash: bool = False,
use_ln_post: bool = False,
use_checkpoint: bool = False):
super().__init__()
self.use_checkpoint = use_checkpoint
self.num_latents = num_latents
self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)
init_scale = init_scale * math.sqrt(1.0 / width)
self.encoder = CrossAttentionEncoder(
device=device,
dtype=dtype,
fourier_embedder=self.fourier_embedder,
num_latents=num_latents,
point_feats=point_feats,
width=width,
heads=heads,
layers=num_encoder_layers,
init_scale=init_scale,
qkv_bias=qkv_bias,
flash=flash,
use_ln_post=use_ln_post,
use_checkpoint=use_checkpoint
)
self.embed_dim = embed_dim
if embed_dim > 0:
# VAE embed
self.pre_kl = nn.Linear(width, embed_dim * 2, device=device, dtype=dtype)
self.post_kl = nn.Linear(embed_dim, width, device=device, dtype=dtype)
self.latent_shape = (num_latents, embed_dim)
else:
self.latent_shape = (num_latents, width)
self.transformer = Transformer(
device=device,
dtype=dtype,
n_ctx=num_latents,
width=width,
layers=num_decoder_layers,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
flash=flash,
use_checkpoint=use_checkpoint
)
# geometry decoder
self.geo_decoder = CrossAttentionDecoder(
device=device,
dtype=dtype,
fourier_embedder=self.fourier_embedder,
out_channels=1,
num_latents=num_latents,
width=width,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
flash=flash,
use_checkpoint=use_checkpoint
)
def encode(self,
pc: torch.FloatTensor,
feats: Optional[torch.FloatTensor] = None,
sample_posterior: bool = True):
# Args:
# pc (torch.FloatTensor): [B, N, 3]
# feats (torch.FloatTensor or None): [B, N, C]
# sample_posterior (bool):
# Returns:
# latents (torch.FloatTensor)
# center_pos (torch.FloatTensor or None):
# posterior (DiagonalGaussianDistribution or None):
latents, center_pos = self.encoder(pc, feats)
posterior = None
if self.embed_dim > 0:
moments = self.pre_kl(latents)
posterior = DiagonalGaussianDistribution(moments, feat_dim=-1)
if sample_posterior:
latents = posterior.sample()
else:
latents = posterior.mode()
return latents, center_pos, posterior
def decode(self, latents: torch.FloatTensor):
latents = self.post_kl(latents)
return self.transformer(latents)
def query_geometry(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
logits = self.geo_decoder(queries, latents).squeeze(-1)
return logits
def forward(self,
pc: torch.FloatTensor,
feats: torch.FloatTensor,
volume_queries: torch.FloatTensor,
sample_posterior: bool = True):
# Args:
# pc (torch.FloatTensor): [B, N, 3]
# feats (torch.FloatTensor or None): [B, N, C]
# volume_queries (torch.FloatTensor): [B, P, 3]
# sample_posterior (bool):
# Returns:
# logits (torch.FloatTensor): [B, P]
# center_pos (torch.FloatTensor): [B, M, 3]
# posterior (DiagonalGaussianDistribution or None).
latents, center_pos, posterior = self.encode(pc, feats, sample_posterior=sample_posterior)
latents = self.decode(latents)
logits = self.query_geometry(volume_queries, latents)
return logits, center_pos, posterior
class AlignedShapeLatentPerceiver(ShapeAsLatentPerceiver):
def __init__(self, *,
device: Optional[torch.device],
dtype: Optional[torch.dtype],
num_latents: int,
point_feats: int = 0,
embed_dim: int = 0,
num_freqs: int = 8,
include_pi: bool = True,
width: int,
heads: int,
num_encoder_layers: int,
num_decoder_layers: int,
init_scale: float = 0.25,
qkv_bias: bool = True,
flash: bool = False,
use_ln_post: bool = False,
use_checkpoint: bool = False):
super().__init__(
device=device,
dtype=dtype,
num_latents=1 + num_latents,
point_feats=point_feats,
embed_dim=embed_dim,
num_freqs=num_freqs,
include_pi=include_pi,
width=width,
heads=heads,
num_encoder_layers=num_encoder_layers,
num_decoder_layers=num_decoder_layers,
init_scale=init_scale,
qkv_bias=qkv_bias,
flash=flash,
use_ln_post=use_ln_post,
use_checkpoint=use_checkpoint
)
self.width = width
def encode(self,
pc: torch.FloatTensor,
feats: Optional[torch.FloatTensor] = None,
sample_posterior: bool = True):
# Args:
# pc (torch.FloatTensor): [B, N, 3]
# feats (torch.FloatTensor or None): [B, N, c]
# sample_posterior (bool):
# Returns:
# shape_embed (torch.FloatTensor)
# kl_embed (torch.FloatTensor):
# posterior (DiagonalGaussianDistribution or None):
shape_embed, latents = self.encode_latents(pc, feats)
kl_embed, posterior = self.encode_kl_embed(latents, sample_posterior)
return shape_embed, kl_embed, posterior
def encode_latents(self,
pc: torch.FloatTensor,
feats: Optional[torch.FloatTensor] = None):
x, _ = self.encoder(pc, feats)
shape_embed = x[:, 0]
latents = x[:, 1:]
return shape_embed, latents
def encode_kl_embed(self, latents: torch.FloatTensor, sample_posterior: bool = True):
posterior = None
if self.embed_dim > 0:
moments = self.pre_kl(latents)
posterior = DiagonalGaussianDistribution(moments, feat_dim=-1)
if sample_posterior:
kl_embed = posterior.sample()
else:
kl_embed = posterior.mode()
else:
kl_embed = latents
return kl_embed, posterior
def forward(self,
pc: torch.FloatTensor,
feats: torch.FloatTensor,
volume_queries: torch.FloatTensor,
sample_posterior: bool = True):
# Args:
# pc (torch.FloatTensor): [B, N, 3]
# feats (torch.FloatTensor or None): [B, N, C]
# volume_queries (torch.FloatTensor): [B, P, 3]
# sample_posterior (bool):
# Returns:
# shape_embed (torch.FloatTensor): [B, projection_dim]
# logits (torch.FloatTensor): [B, M]
# posterior (DiagonalGaussianDistribution or None).
shape_embed, kl_embed, posterior = self.encode(pc, feats, sample_posterior=sample_posterior)
latents = self.decode(kl_embed)
logits = self.query_geometry(volume_queries, latents)
return shape_embed, logits, posterior

View File

@ -0,0 +1,125 @@
# -*- coding: utf-8 -*-
import torch.nn as nn
from typing import Tuple, List, Optional
# Base class for output of Point to Mesh transformation
class Point2MeshOutput(object):
def __init__(self):
self.mesh_v = None # Vertices of the mesh
self.mesh_f = None # Faces of the mesh
self.center = None # Center of the mesh
self.pc = None # Point cloud data
# Base class for output of Latent to Mesh transformation
class Latent2MeshOutput(object):
def __init__(self):
self.mesh_v = None # Vertices of the mesh
self.mesh_f = None # Faces of the mesh
# Base class for output of Aligned Mesh transformation
class AlignedMeshOutput(object):
def __init__(self):
self.mesh_v = None # Vertices of the mesh
self.mesh_f = None # Faces of the mesh
self.surface = None # Surface data
self.image = None # Aligned image data
self.text: Optional[str] = None # Aligned text data
self.shape_text_similarity: Optional[float] = None # Similarity between shape and text
self.shape_image_similarity: Optional[float] = None # Similarity between shape and image
# Base class for Shape as Latent with Point to Mesh transformation module
class ShapeAsLatentPLModule(nn.Module):
latent_shape: Tuple[int] # Shape of the latent space
def encode(self, surface, *args, **kwargs):
raise NotImplementedError
def decode(self, z_q, *args, **kwargs):
raise NotImplementedError
def latent2mesh(self, latents, *args, **kwargs) -> List[Latent2MeshOutput]:
raise NotImplementedError
def point2mesh(self, *args, **kwargs) -> List[Point2MeshOutput]:
raise NotImplementedError
# Base class for Shape as Latent module
class ShapeAsLatentModule(nn.Module):
latent_shape: Tuple[int, int] # Shape of the latent space
def __init__(self, *args, **kwargs):
super().__init__()
def encode(self, *args, **kwargs):
raise NotImplementedError
def decode(self, *args, **kwargs):
raise NotImplementedError
def query_geometry(self, *args, **kwargs):
raise NotImplementedError
# Base class for Aligned Shape as Latent with Point to Mesh transformation module
class AlignedShapeAsLatentPLModule(nn.Module):
latent_shape: Tuple[int] # Shape of the latent space
def set_shape_model_only(self):
raise NotImplementedError
def encode(self, surface, *args, **kwargs):
raise NotImplementedError
def decode(self, z_q, *args, **kwargs):
raise NotImplementedError
def latent2mesh(self, latents, *args, **kwargs) -> List[Latent2MeshOutput]:
raise NotImplementedError
def point2mesh(self, *args, **kwargs) -> List[Point2MeshOutput]:
raise NotImplementedError
# Base class for Aligned Shape as Latent module
class AlignedShapeAsLatentModule(nn.Module):
shape_model: ShapeAsLatentModule # Shape model module
latent_shape: Tuple[int, int] # Shape of the latent space
def __init__(self, *args, **kwargs):
super().__init__()
def set_shape_model_only(self):
raise NotImplementedError
def encode_image_embed(self, *args, **kwargs):
raise NotImplementedError
def encode_text_embed(self, *args, **kwargs):
raise NotImplementedError
def encode_shape_embed(self, *args, **kwargs):
raise NotImplementedError
# Base class for Textured Shape as Latent module
class TexturedShapeAsLatentModule(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
def encode(self, *args, **kwargs):
raise NotImplementedError
def decode(self, *args, **kwargs):
raise NotImplementedError
def query_geometry(self, *args, **kwargs):
raise NotImplementedError
def query_color(self, *args, **kwargs):
raise NotImplementedError

View File

@ -0,0 +1,3 @@
# -*- coding: utf-8 -*-
from .misc import instantiate_from_config

View File

@ -0,0 +1,86 @@
# -*- coding: utf-8 -*-
import importlib
import torch
import torch.distributed as dist
import sys
sys.path.append(r"C:\Remade\ComfyUI_windows_portable\ComfyUI\custom_nodes\ComfyUI-Hunyuan3DWrapper-main")
from hy3dgen.shapegen.bpt.miche.michelangelo.models.tsal import asl_pl_module
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def get_obj_from_config(config):
if "target" not in config:
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])
def instantiate_from_config(config, **kwargs):
if "target" not in config:
raise KeyError("Expected key `target` to instantiate.")
cls = get_obj_from_str(config["target"])
params = config.get("params", dict())
# params.update(kwargs)
# instance = cls(**params)
kwargs.update(params)
instance = cls(**kwargs)
return instance
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def all_gather_batch(tensors):
"""
Performs all_gather operation on the provided tensors.
"""
# Queue the gathered tensors
world_size = get_world_size()
# There is no need for reduction in the single-proc case
if world_size == 1:
return tensors
tensor_list = []
output_tensor = []
for tensor in tensors:
tensor_all = [torch.ones_like(tensor) for _ in range(world_size)]
dist.all_gather(
tensor_all,
tensor,
async_op=False # performance opt
)
tensor_list.append(tensor_all)
for tensor_all in tensor_list:
output_tensor.append(torch.cat(tensor_all, dim=0))
return output_tensor

View File

View File

@ -0,0 +1,194 @@
"""Mesh data utilities."""
import random
import networkx as nx
import numpy as np
# import pyrr
from six.moves import range
import trimesh
from scipy.spatial.transform import Rotation
def to_mesh(vertices, faces, transpose=True, post_process=False):
if transpose:
vertices = vertices[:, [1, 2, 0]]
if faces.min() == 1:
faces = (np.array(faces) - 1).tolist()
mesh = trimesh.Trimesh(vertices=vertices, faces=faces, process=False)
if post_process:
mesh.merge_vertices()
mesh.update_faces(mesh.unique_faces())
mesh.fix_normals()
return mesh
def center_vertices(vertices):
"""Translate the vertices so that bounding box is centered at zero."""
vert_min = vertices.min(axis=0)
vert_max = vertices.max(axis=0)
vert_center = 0.5 * (vert_min + vert_max)
# vert_center = np.mean(vertices, axis=0)
return vertices - vert_center
def face_to_cycles(face):
"""Find cycles in face."""
g = nx.Graph()
for v in range(len(face) - 1):
g.add_edge(face[v], face[v + 1])
g.add_edge(face[-1], face[0])
return list(nx.cycle_basis(g))
def block_index(vertex, block_size=32):
return (vertex[2] // block_size, vertex[1] // block_size, vertex[0] // block_size)
def block_id(block_index, num_blocks=4):
return block_index[0] * num_blocks**2 + block_index[1] * num_blocks + block_index[2]
def normalize_vertices_scale(vertices, scale=0.95):
"""Scale the vertices so that the long axis of the bounding box is one."""
vert_min = vertices.min(axis=0)
vert_max = vertices.max(axis=0)
extents = (vert_max - vert_min).max()
return 2.0 * scale * vertices / (extents + 1e-6)
def quantize_process_mesh(vertices, faces, quantization_bits=8, block_first_order=True, block_size=32, num_blocks=4):
"""Quantize vertices, remove resulting duplicates and reindex faces."""
vertices = discretize(vertices, num_discrete=2**quantization_bits)
vertices, inv = np.unique(vertices, axis=0, return_inverse=True)
if block_first_order:
block_indices = np.array([block_index(v, block_size) for v in vertices])
block_ids = np.array([block_id(b, num_blocks) for b in block_indices])
sort_inds = np.lexsort((vertices[:, 0], vertices[:, 1], vertices[:, 2], block_ids))
else:
# Sort vertices by z then y then x.
sort_inds = np.lexsort(vertices.T)
vertices = vertices[sort_inds]
faces = [np.argsort(sort_inds)[inv[f]] for f in faces]
sub_faces = []
for f in faces:
cliques = face_to_cycles(f)
for c in cliques:
c_length = len(c)
if c_length > 2:
d = np.argmin(f)
sub_faces.append([f[(d + i) % c_length] for i in range(c_length)])
faces = sub_faces
# Sort faces by lowest vertex indices. If two faces have the same lowest
# index then sort by next lowest and so on.
faces.sort(key=lambda f: tuple(sorted(f)))
num_verts = vertices.shape[0]
vert_connected = np.equal(
np.arange(num_verts)[:, None], np.hstack(faces)[None]
).any(axis=-1)
vertices = vertices[vert_connected]
# Re-index faces to re-ordered vertices.
vert_indices = np.arange(num_verts) - np.cumsum(1 - vert_connected.astype("int"))
faces = [vert_indices[f].tolist() for f in faces]
return vertices, faces
def process_mesh(vertices, faces, quantization_bits=8, augment=True, augment_dict=None):
"""Process mesh vertices and faces."""
# Transpose so that z-axis is vertical.
vertices = vertices[:, [2, 0, 1]]
# Translate the vertices so that bounding box is centered at zero.
vertices = center_vertices(vertices)
if augment:
vertices = augment_mesh(vertices, **augment_dict)
# Scale the vertices so that the long diagonal of the bounding box is equal
# to one.
vertices = normalize_vertices_scale(vertices)
# Quantize and sort vertices, remove resulting duplicates, sort and reindex
# faces.
vertices, faces = quantize_process_mesh(
vertices, faces, quantization_bits=quantization_bits
)
vertices = undiscretize(vertices, num_discrete=2**quantization_bits)
# Discard degenerate meshes without faces.
return {
"vertices": vertices,
"faces": faces,
}
def load_process_mesh(mesh_obj_path, quantization_bits=8, augment=False, augment_dict=None):
"""Load obj file and process."""
# Load mesh
mesh = trimesh.load(mesh_obj_path, force='mesh', process=False)
return process_mesh(mesh.vertices, mesh.faces, quantization_bits, augment=augment, augment_dict=augment_dict)
def augment_mesh(vertices, scale_min=0.95, scale_max=1.05, rotation=0., jitter_strength=0.):
'''scale vertices by a factor in [0.75, 1.25]'''
# vertices [nv, 3]
for i in range(3):
# Generate a random scale factor
scale = random.uniform(scale_min, scale_max)
# independently applied scaling across each axis of vertices
vertices[:, i] *= scale
if rotation != 0.:
axis = [random.uniform(-1, 1), random.uniform(-1, 1), random.uniform(-1, 1)]
radian = np.pi / 180 * rotation
rotation = Rotation.from_rotvec(radian * np.array(axis))
vertices =rotation.apply(vertices)
if jitter_strength != 0.:
jitter_amount = np.random.uniform(-jitter_strength, jitter_strength)
vertices += jitter_amount
return vertices
def discretize(
t,
continuous_range = (-1, 1),
num_discrete: int = 128
):
lo, hi = continuous_range
assert hi > lo
t = (t - lo) / (hi - lo)
t *= num_discrete
t -= 0.5
return t.round().astype(np.int32).clip(min = 0, max = num_discrete - 1)
def undiscretize(
t,
continuous_range = (-1, 1),
num_discrete: int = 128
):
lo, hi = continuous_range
assert hi > lo
t = t.astype(np.float32)
t += 0.5
t /= num_discrete
return t * (hi - lo) + lo

View File

@ -0,0 +1,90 @@
import torch
import os
from torch import nn
from beartype import beartype
from ..miche.encode import load_model
from ..miche.michelangelo.models.tsal import asl_pl_module
# helper functions
def exists(val):
return val is not None
def default(*values):
for value in values:
if exists(value):
return value
return None
# point-cloud encoder from Michelangelo
@beartype
class PointConditioner(torch.nn.Module):
def __init__(
self,
*,
dim_latent = None,
model_name = 'miche-256-feature',
cond_dim = 768,
freeze = True,
):
super().__init__()
# open-source version of miche
if model_name == 'miche-256-feature':
ckpt_path = None
dir = os.path.dirname(os.path.abspath(__file__))
model_path = os.path.join(dir, '..\shapevae-256.yaml')
config_path = model_path
self.feature_dim = 1024 # embedding dimension
self.cond_length = 257 # length of embedding
self.point_encoder = load_model(ckpt_path=ckpt_path, config_path=config_path)
# additional layers to connect miche and GPT
self.cond_head_proj = nn.Linear(cond_dim, self.feature_dim)
self.cond_proj = nn.Linear(cond_dim, self.feature_dim)
else:
raise NotImplementedError
# whether to finetuen point-cloud encoder
if freeze:
for parameter in self.point_encoder.parameters():
parameter.requires_grad = False
self.freeze = freeze
self.model_name = model_name
self.dim_latent = default(dim_latent, self.feature_dim)
self.register_buffer('_device_param', torch.tensor(0.), persistent = False)
@property
def device(self):
return next(self.buffers()).device
def embed_pc(self, pc_normal):
# encode point cloud to embeddings
if self.model_name == 'miche-256-feature':
point_feature = self.point_encoder.encode_latents(pc_normal)
pc_embed_head = self.cond_head_proj(point_feature[:, 0:1])
pc_embed = self.cond_proj(point_feature[:, 1:])
pc_embed = torch.cat([pc_embed_head, pc_embed], dim=1)
return pc_embed
def forward(
self,
pc = None,
pc_embeds = None,
):
if pc_embeds is None:
pc_embeds = self.embed_pc(pc.to(next(self.buffers()).dtype))
assert not torch.any(torch.isnan(pc_embeds)), 'NAN values in pc embedings'
return pc_embeds

View File

@ -0,0 +1,382 @@
import math
import torch
from torch import nn, Tensor
from torch.nn import Module
import torch.nn.functional as F
from einops import rearrange, repeat, pack
from pytorch_custom_utils import save_load
from beartype import beartype
from beartype.typing import Union, Tuple, Callable, Optional, Any
from einops import rearrange, repeat, pack
from x_transformers import Decoder
from x_transformers.x_transformers import LayerIntermediates
from x_transformers.autoregressive_wrapper import (
eval_decorator,
top_k,
)
from .miche_conditioner import PointConditioner
from functools import partial
from tqdm import tqdm
from .data_utils import discretize
# helper functions
def exists(v):
return v is not None
def default(v, d):
return v if exists(v) else d
def first(it):
return it[0]
def divisible_by(num, den):
return (num % den) == 0
def pad_at_dim(t, padding, dim = -1, value = 0):
ndim = t.ndim
right_dims = (ndim - dim - 1) if dim >= 0 else (-dim - 1)
zeros = (0, 0) * right_dims
return F.pad(t, (*zeros, *padding), value = value)
# main class of auto-regressive Transformer
@save_load()
class MeshTransformer(Module):
@beartype
def __init__(
self,
*,
dim: Union[int, Tuple[int, int]] = 1024, # hidden size of Transformer
max_seq_len = 10000, # max sequence length
flash_attn = True, # wether to use flash attention
attn_depth = 24, # number of layers
attn_dim_head = 64, # dim for each head
attn_heads = 16, # number of heads
attn_kwargs: dict = dict(
ff_glu = True,
num_mem_kv = 4,
attn_qk_norm = True,
),
dropout = 0.0,
pad_id = -1,
coor_continuous_range = (-1., 1.),
num_discrete_coors = 2**int(7),
block_size = 8,
offset_size = 16,
mode = 'vertices',
special_token = -2,
use_special_block = True,
conditioned_on_pc = True,
encoder_name = 'miche-256-feature',
encoder_freeze = False,
):
super().__init__()
if use_special_block:
# block_ids, offset_ids, special_block_ids
vocab_size = block_size**3 + offset_size**3 + block_size**3
self.sp_block_embed = nn.Parameter(torch.randn(1, dim))
else:
# block_ids, offset_ids, special_token
vocab_size = block_size**3 + offset_size**3 + 1
self.special_token = special_token
self.special_token_cb = block_size**3 + offset_size**3
self.use_special_block = use_special_block
self.sos_token = nn.Parameter(torch.randn(dim))
self.eos_token_id = vocab_size
self.mode = mode
self.token_embed = nn.Embedding(vocab_size + 1, dim)
self.num_discrete_coors = num_discrete_coors
self.coor_continuous_range = coor_continuous_range
self.block_size = block_size
self.offset_size = offset_size
self.abs_pos_emb = nn.Embedding(max_seq_len, dim)
self.max_seq_len = max_seq_len
self.conditioner = None
self.conditioned_on_pc = conditioned_on_pc
cross_attn_dim_context = None
self.block_embed = nn.Parameter(torch.randn(1, dim))
self.offset_embed = nn.Parameter(torch.randn(1, dim))
assert self.block_size * self.offset_size == self.num_discrete_coors
# load point_cloud encoder
if conditioned_on_pc:
print(f'Point cloud encoder: {encoder_name} | freeze: {encoder_freeze}')
self.conditioner = PointConditioner(model_name=encoder_name, freeze=encoder_freeze)
cross_attn_dim_context = self.conditioner.dim_latent
else:
raise NotImplementedError
# main autoregressive attention network
self.decoder = Decoder(
dim = dim,
depth = attn_depth,
dim_head = attn_dim_head,
heads = attn_heads,
attn_flash = flash_attn,
attn_dropout = dropout,
ff_dropout = dropout,
cross_attend = conditioned_on_pc,
cross_attn_dim_context = cross_attn_dim_context,
cross_attn_num_mem_kv = 4, # needed for preventing nan when dropping out text condition
**attn_kwargs
)
self.to_logits = nn.Linear(dim, vocab_size + 1)
self.pad_id = pad_id
self.discretize_face_coords = partial(
discretize,
num_discrete = num_discrete_coors,
continuous_range = coor_continuous_range
)
@property
def device(self):
return next(self.parameters()).device
@eval_decorator
@torch.no_grad()
@beartype
def generate(
self,
prompt: Optional[Tensor] = None,
pc: Optional[Tensor] = None,
cond_embeds: Optional[Tensor] = None,
batch_size: Optional[int] = 1,
filter_logits_fn: Callable = top_k,
filter_kwargs: dict = dict(),
temperature = 0.5,
return_codes = False,
cache_kv = True,
max_seq_len = None,
face_coords_to_file: Optional[Callable[[Tensor], Any]] = None,
tqdm_position = 0,
):
max_seq_len = default(max_seq_len, self.max_seq_len)
if exists(prompt):
assert not exists(batch_size)
prompt = rearrange(prompt, 'b ... -> b (...)')
assert prompt.shape[-1] <= self.max_seq_len
batch_size = prompt.shape[0]
# encode point cloud
if cond_embeds is None:
if self.conditioned_on_pc:
cond_embeds = self.conditioner(pc = pc)
batch_size = default(batch_size, 1)
codes = default(prompt, torch.empty((batch_size, 0), dtype = torch.long, device = self.device))
curr_length = codes.shape[-1]
cache = None
eos_iter = None
# predict tokens auto-regressively
for i in tqdm(range(curr_length, max_seq_len), position=tqdm_position,
desc=f'Process: {tqdm_position}', dynamic_ncols=True, leave=False):
output = self.forward_on_codes(
codes,
return_loss = False,
return_cache = cache_kv,
append_eos = False,
cond_embeds = cond_embeds,
cache = cache
)
if cache_kv:
logits, cache = output
else:
logits = output
# sample code from logits
logits = logits[:, -1]
filtered_logits = filter_logits_fn(logits, **filter_kwargs)
probs = F.softmax(filtered_logits / temperature, dim=-1)
sample = torch.multinomial(probs, 1)
codes, _ = pack([codes, sample], 'b *')
# Check if all sequences have encountered EOS at least once
is_eos_codes = (codes == self.eos_token_id)
if is_eos_codes.any(dim=-1).all():
# Record the iteration (i.e. current sequence length) when EOS is first detected in all sequences
if eos_iter is None:
eos_iter = codes.shape[-1]
# Once we've generated 20% more tokens than eos_iter, break out of the loop
if codes.shape[-1] >= int(eos_iter * 1.2):
break
# mask out to padding anything after the first eos
mask = is_eos_codes.float().cumsum(dim = -1) >= 1
codes = codes.masked_fill(mask, self.pad_id)
# early return of raw residual quantizer codes
if return_codes:
# codes = rearrange(codes, 'b (n q) -> b n q', q = 2)
if not self.use_special_block:
codes[codes == self.special_token_cb] = self.special_token
return codes
face_coords, face_mask = self.decode_codes(codes)
if not exists(face_coords_to_file):
return face_coords, face_mask
files = [face_coords_to_file(coords[mask]) for coords, mask in zip(face_coords, face_mask)]
return files
def forward(
self,
*,
codes: Optional[Tensor] = None,
cache: Optional[LayerIntermediates] = None,
**kwargs
):
# convert special tokens
if not self.use_special_block:
codes[codes == self.special_token] = self.special_token_cb
return self.forward_on_codes(codes, cache = cache, **kwargs)
def forward_on_codes(
self,
codes = None,
return_loss = True,
return_cache = False,
append_eos = True,
cache = None,
pc = None,
cond_embeds = None,
):
# handle conditions
attn_context_kwargs = dict()
if self.conditioned_on_pc:
assert exists(pc) ^ exists(cond_embeds), 'point cloud should be given'
# preprocess faces and vertices
if not exists(cond_embeds):
cond_embeds = self.conditioner(
pc = pc,
pc_embeds = cond_embeds,
)
attn_context_kwargs = dict(
context = cond_embeds,
context_mask = None,
)
# take care of codes that may be flattened
if codes.ndim > 2:
codes = rearrange(codes, 'b ... -> b (...)')
# prepare mask for position embedding of block and offset tokens
block_mask = (0 <= codes) & (codes < self.block_size**3)
offset_mask = (self.block_size**3 <= codes) & (codes < self.block_size**3 + self.offset_size**3)
if self.use_special_block:
sp_block_mask = (
self.block_size**3 + self.offset_size**3 <= codes
) & (
codes < self.block_size**3 + self.offset_size**3 + self.block_size**3
)
# get some variable
batch, seq_len, device = *codes.shape, codes.device
assert seq_len <= self.max_seq_len, \
f'received codes of length {seq_len} but needs to be less than {self.max_seq_len}'
# auto append eos token
if append_eos:
assert exists(codes)
code_lens = ((codes == self.pad_id).cumsum(dim = -1) == 0).sum(dim = -1)
codes = F.pad(codes, (0, 1), value = 0) # value=-1
batch_arange = torch.arange(batch, device = device)
batch_arange = rearrange(batch_arange, '... -> ... 1')
code_lens = rearrange(code_lens, '... -> ... 1')
codes[batch_arange, code_lens] = self.eos_token_id
# if returning loss, save the labels for cross entropy
if return_loss:
assert seq_len > 0
codes, labels = codes[:, :-1], codes
# token embed
codes = codes.masked_fill(codes == self.pad_id, 0)
codes = self.token_embed(codes)
# codebook embed + absolute positions
seq_arange = torch.arange(codes.shape[-2], device = device)
codes = codes + self.abs_pos_emb(seq_arange)
# add positional embedding for block and offset token
block_embed = repeat(self.block_embed, '1 d -> b n d', n = seq_len, b = batch)
offset_embed = repeat(self.offset_embed, '1 d -> b n d', n = seq_len, b = batch)
codes[block_mask] += block_embed[block_mask]
codes[offset_mask] += offset_embed[offset_mask]
if self.use_special_block:
sp_block_embed = repeat(self.sp_block_embed, '1 d -> b n d', n = seq_len, b = batch)
codes[sp_block_mask] += sp_block_embed[sp_block_mask]
# auto prepend sos token
sos = repeat(self.sos_token, 'd -> b d', b = batch)
codes, _ = pack([sos, codes], 'b * d')
# attention
attended, intermediates_with_cache = self.decoder(
codes,
cache = cache,
return_hiddens = True,
**attn_context_kwargs
)
# logits
logits = self.to_logits(attended)
if not return_loss:
if not return_cache:
return logits
return logits, intermediates_with_cache
# loss
ce_loss = F.cross_entropy(
rearrange(logits, 'b n c -> b c n'),
labels,
ignore_index = self.pad_id
)
return ce_loss

View File

@ -0,0 +1,241 @@
import trimesh
import numpy as np
from .data_utils import discretize, undiscretize
def patchified_mesh(mesh: trimesh.Trimesh, special_token = -2, fix_orient=True):
sequence = []
unvisited = np.full(len(mesh.faces), True)
degrees = mesh.vertex_degree.copy()
# with fix_orient=True, the normal would be correct.
# but this may increase the difficulty for learning.
if fix_orient:
face_orient = {}
for ind, face in enumerate(mesh.faces):
v0, v1, v2 = face[0], face[1], face[2]
face_orient['{}-{}-{}'.format(v0, v1, v2)] = True
face_orient['{}-{}-{}'.format(v1, v2, v0)] = True
face_orient['{}-{}-{}'.format(v2, v0, v1)] = True
face_orient['{}-{}-{}'.format(v2, v1, v0)] = False
face_orient['{}-{}-{}'.format(v1, v0, v2)] = False
face_orient['{}-{}-{}'.format(v0, v2, v1)] = False
while sum(unvisited):
unvisited_faces = mesh.faces[unvisited]
# select the patch center
cur_face = unvisited_faces[0]
max_deg_vertex_id = np.argmax(degrees[cur_face])
max_deg_vertex = cur_face[max_deg_vertex_id]
# find all connected faces
selected_faces = []
for face_idx in mesh.vertex_faces[max_deg_vertex]:
if face_idx != -1 and unvisited[face_idx]:
face = mesh.faces[face_idx]
u, v = sorted([vertex for vertex in face if vertex != max_deg_vertex])
selected_faces.append([u, v, face_idx])
face_patch = set()
selected_faces = sorted(selected_faces)
# select the start vertex, select it if it only appears once (the start or end),
# else select the lowest index
cnt = {}
for u, v, _ in selected_faces:
cnt[u] = cnt.get(u, 0) + 1
cnt[v] = cnt.get(v, 0) + 1
starts = []
for vertex, num in cnt.items():
if num == 1:
starts.append(vertex)
start_idx = min(starts) if len(starts) else selected_faces[0][0]
res = [start_idx]
while len(res) <= len(selected_faces):
vertex = res[-1]
for u_i, v_i, face_idx_i in selected_faces:
if face_idx_i not in face_patch and vertex in (u_i, v_i):
u_i, v_i = (u_i, v_i) if vertex == u_i else (v_i, u_i)
res.append(v_i)
face_patch.add(face_idx_i)
break
if res[-1] == vertex:
break
if fix_orient and len(res) >= 2 and not face_orient['{}-{}-{}'.format(max_deg_vertex, res[0], res[1])]:
res = res[::-1]
# reduce the degree of related vertices and mark the visited faces
degrees[max_deg_vertex] = len(selected_faces) - len(res) + 1
for pos_idx, vertex in enumerate(res):
if pos_idx in [0, len(res) - 1]:
degrees[vertex] -= 1
else:
degrees[vertex] -= 2
for face_idx in face_patch:
unvisited[face_idx] = False
sequence.extend(
[mesh.vertices[max_deg_vertex]] +
[mesh.vertices[vertex_idx] for vertex_idx in res] +
[[special_token] * 3]
)
assert sum(degrees) == 0, 'All degrees should be zero'
return np.array(sequence)
def get_block_representation(
sequence,
block_size=8,
offset_size=16,
block_compressed=True,
special_token=-2,
use_special_block=True
):
'''
convert coordinates from Cartesian system to block indexes.
'''
special_block_base = block_size**3 + offset_size**3
# prepare coordinates
sp_mask = sequence != special_token
sp_mask = np.all(sp_mask, axis=1)
coords = sequence[sp_mask].reshape(-1, 3)
coords = discretize(coords)
# convert [x, y, z] to [block_id, offset_id]
block_id = coords // offset_size
block_id = block_id[:, 0] * block_size**2 + block_id[:, 1] * block_size + block_id[:, 2]
offset_id = coords % offset_size
offset_id = offset_id[:, 0] * offset_size**2 + offset_id[:, 1] * offset_size + offset_id[:, 2]
offset_id += block_size**3
block_coords = np.concatenate([block_id[..., None], offset_id[..., None]], axis=-1).astype(np.int64)
sequence[:, :2][sp_mask] = block_coords
sequence = sequence[:, :2]
# convert to codes
codes = []
cur_block_id = sequence[0, 0]
codes.append(cur_block_id)
for i in range(len(sequence)):
if sequence[i, 0] == special_token:
if not use_special_block:
codes.append(special_token)
cur_block_id = special_token
elif sequence[i, 0] == cur_block_id:
if block_compressed:
codes.append(sequence[i, 1])
else:
codes.extend([sequence[i, 0], sequence[i, 1]])
else:
if use_special_block and cur_block_id == special_token:
block_id = sequence[i, 0] + special_block_base
else:
block_id = sequence[i, 0]
codes.extend([block_id, sequence[i, 1]])
cur_block_id = block_id
codes = np.array(codes).astype(np.int64)
sequence = codes
return sequence.flatten()
def BPT_serialize(mesh: trimesh.Trimesh):
# serialize mesh with BPT
# 1. patchify faces into patches
sequence = patchified_mesh(mesh, special_token=-2)
# 2. convert coordinates to block-wise indexes
codes = get_block_representation(
sequence, block_size=8, offset_size=16,
block_compressed=True, special_token=-2, use_special_block=True
)
return codes
def decode_block(sequence, compressed=True, block_size=8, offset_size=16):
# decode from compressed representation
if compressed:
res = []
res_block = 0
for token_id in range(len(sequence)):
if block_size**3 + offset_size**3 > sequence[token_id] >= block_size**3:
res.append([res_block, sequence[token_id]])
elif block_size**3 > sequence[token_id] >= 0:
res_block = sequence[token_id]
else:
print('[Warning] too large offset idx!', token_id, sequence[token_id])
sequence = np.array(res)
block_id, offset_id = np.array_split(sequence, 2, axis=-1)
# from hash representation to xyz
coords = []
offset_id -= block_size**3
for i in [2, 1, 0]:
axis = (block_id // block_size**i) * offset_size + (offset_id // offset_size**i)
block_id %= block_size**i
offset_id %= offset_size**i
coords.append(axis)
coords = np.concatenate(coords, axis=-1) # (nf 3)
# back to continuous space
coords = undiscretize(coords)
return coords
def BPT_deserialize(sequence, block_size=8, offset_size=16, compressed=True, special_token=-2, use_special_block=True):
# decode codes back to coordinates
special_block_base = block_size**3 + offset_size**3
start_idx = 0
vertices = []
for i in range(len(sequence)):
sub_seq = []
if not use_special_block and (sequence[i] == special_token or i == len(sequence) - 1):
sub_seq = sequence[start_idx:i]
sub_seq = decode_block(sub_seq, compressed=compressed, block_size=block_size, offset_size=offset_size)
start_idx = i + 1
elif use_special_block and \
(special_block_base <= sequence[i] < special_block_base + block_size**3 or i == len(sequence)-1):
if i != 0:
sub_seq = sequence[start_idx:i] if i != len(sequence) - 1 else sequence[start_idx: i+1]
if special_block_base <= sub_seq[0] < special_block_base + block_size**3:
sub_seq[0] -= special_block_base
sub_seq = decode_block(sub_seq, compressed=compressed, block_size=block_size, offset_size=offset_size)
start_idx = i
if len(sub_seq):
center, sub_seq = sub_seq[0], sub_seq[1:]
for j in range(len(sub_seq) - 1):
vertices.extend([center.reshape(1, 3), sub_seq[j].reshape(1, 3), sub_seq[j+1].reshape(1, 3)])
# (nf, 3)
return np.concatenate(vertices, axis=0)
if __name__ == '__main__':
# a simple demo for serialize and deserialize mesh with bpt
from data_utils import load_process_mesh, to_mesh
import torch
mesh = load_process_mesh('/path/to/your/mesh', quantization_bits=7)
mesh['faces'] = np.array(mesh['faces'])
mesh = to_mesh(mesh['vertices'], mesh['faces'], transpose=True)
mesh.export('gt.obj')
codes = BPT_serialize(mesh)
coordinates = BPT_deserialize(codes)
faces = torch.arange(1, len(coordinates) + 1).view(-1, 3)
mesh = to_mesh(coordinates, faces, transpose=False, post_process=False)
mesh.export('reconstructed.obj')

View File

@ -0,0 +1,30 @@
meshgpt_pytorch==0.6.7
pytorch-custom-utils==0.0.21
accelerate>=0.25.0
beartype
classifier-free-guidance-pytorch==0.5.1
einops>=0.7.0
ema-pytorch
pytorch-warmup
torch_geometric
torchtyping
vector-quantize-pytorch==1.12.8
x-transformers==1.26.6
tqdm
matplotlib
wandb
pyrr
trimesh
opencv-python
pyrender
open3d-python
easydict
chardet
deepspeed
omegaconf
scikit-image
setuptools
pytorch_lightning
mesh2sdf
numpy
point-cloud-utils

View File

@ -0,0 +1,86 @@
import trimesh
import numpy as np
from x_transformers.autoregressive_wrapper import top_p, top_k
class Dataset:
'''
A toy dataset for inference
'''
def __init__(self, input_type, input_list):
super().__init__()
self.data = []
if input_type == 'pc_normal':
for input_path in input_list:
# load npy
cur_data = np.load(input_path)
# sample 4096
assert cur_data.shape[0] >= 4096, "input pc_normal should have at least 4096 points"
idx = np.random.choice(cur_data.shape[0], 4096, replace=False)
cur_data = cur_data[idx]
self.data.append({'pc_normal': cur_data, 'uid': input_path.split('/')[-1].split('.')[0]})
elif input_type == 'mesh':
mesh_list, pc_list = [], []
for input_path in input_list:
# sample point cloud and normal from mesh
cur_data = trimesh.load(input_path, force='mesh')
cur_data = apply_normalize(cur_data)
mesh_list.append(cur_data)
pc_list.append(sample_pc(cur_data, pc_num=4096, with_normal=True))
for input_path, cur_data in zip(input_list, pc_list):
self.data.append({'pc_normal': cur_data, 'uid': input_path.split('/')[-1].split('.')[0]})
print(f"dataset total data samples: {len(self.data)}")
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
data_dict = {}
data_dict['pc_normal'] = self.data[idx]['pc_normal']
data_dict['uid'] = self.data[idx]['uid']
return data_dict
def joint_filter(logits, k = 50, p=0.95):
logits = top_k(logits, k = k)
logits = top_p(logits, thres = p)
return logits
def apply_normalize(mesh):
'''
normalize mesh to [-1, 1]
'''
bbox = mesh.bounds
center = (bbox[1] + bbox[0]) / 2
scale = (bbox[1] - bbox[0]).max()
mesh.apply_translation(-center)
mesh.apply_scale(1 / scale * 2 * 0.95)
return mesh
def sample_pc(trimesh, pc_num, with_normal=False):
mesh = apply_normalize(trimesh)
if not with_normal:
points, _ = mesh.sample(pc_num, return_index=True)
return points
points, face_idx = mesh.sample(50000, return_index=True)
normals = mesh.face_normals[face_idx]
pc_normal = np.concatenate([points, normals], axis=-1, dtype=np.float16)
# random sample point cloud
ind = np.random.choice(pc_normal.shape[0], pc_num, replace=False)
pc_normal = pc_normal[ind]
return pc_normal