mirror of
https://git.datalinker.icu/kijai/ComfyUI-Hunyuan3DWrapper.git
synced 2025-12-09 21:04:32 +08:00
Added BPT
This commit is contained in:
parent
39fe034d36
commit
7700bf7396
10
hy3dgen/shapegen/bpt/README.md
Normal file
10
hy3dgen/shapegen/bpt/README.md
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
# BPT Installation
|
||||||
|
|
||||||
|
Original repo: https://github.com/whaohan/bpt
|
||||||
|
|
||||||
|
|
||||||
|
### Installation
|
||||||
|
pip install -r requirements.txt
|
||||||
|
|
||||||
|
### Download weights (From main Hunyuan3D2 directory)
|
||||||
|
huggingface-cli download whaohan/bpt --local-dir ./weights
|
||||||
BIN
hy3dgen/shapegen/bpt/__pycache__/utils.cpython-312.pyc
Normal file
BIN
hy3dgen/shapegen/bpt/__pycache__/utils.cpython-312.pyc
Normal file
Binary file not shown.
674
hy3dgen/shapegen/bpt/miche/LICENSE
Normal file
674
hy3dgen/shapegen/bpt/miche/LICENSE
Normal file
@ -0,0 +1,674 @@
|
|||||||
|
GNU GENERAL PUBLIC LICENSE
|
||||||
|
Version 3, 29 June 2007
|
||||||
|
|
||||||
|
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
||||||
|
Everyone is permitted to copy and distribute verbatim copies
|
||||||
|
of this license document, but changing it is not allowed.
|
||||||
|
|
||||||
|
Preamble
|
||||||
|
|
||||||
|
The GNU General Public License is a free, copyleft license for
|
||||||
|
software and other kinds of works.
|
||||||
|
|
||||||
|
The licenses for most software and other practical works are designed
|
||||||
|
to take away your freedom to share and change the works. By contrast,
|
||||||
|
the GNU General Public License is intended to guarantee your freedom to
|
||||||
|
share and change all versions of a program--to make sure it remains free
|
||||||
|
software for all its users. We, the Free Software Foundation, use the
|
||||||
|
GNU General Public License for most of our software; it applies also to
|
||||||
|
any other work released this way by its authors. You can apply it to
|
||||||
|
your programs, too.
|
||||||
|
|
||||||
|
When we speak of free software, we are referring to freedom, not
|
||||||
|
price. Our General Public Licenses are designed to make sure that you
|
||||||
|
have the freedom to distribute copies of free software (and charge for
|
||||||
|
them if you wish), that you receive source code or can get it if you
|
||||||
|
want it, that you can change the software or use pieces of it in new
|
||||||
|
free programs, and that you know you can do these things.
|
||||||
|
|
||||||
|
To protect your rights, we need to prevent others from denying you
|
||||||
|
these rights or asking you to surrender the rights. Therefore, you have
|
||||||
|
certain responsibilities if you distribute copies of the software, or if
|
||||||
|
you modify it: responsibilities to respect the freedom of others.
|
||||||
|
|
||||||
|
For example, if you distribute copies of such a program, whether
|
||||||
|
gratis or for a fee, you must pass on to the recipients the same
|
||||||
|
freedoms that you received. You must make sure that they, too, receive
|
||||||
|
or can get the source code. And you must show them these terms so they
|
||||||
|
know their rights.
|
||||||
|
|
||||||
|
Developers that use the GNU GPL protect your rights with two steps:
|
||||||
|
(1) assert copyright on the software, and (2) offer you this License
|
||||||
|
giving you legal permission to copy, distribute and/or modify it.
|
||||||
|
|
||||||
|
For the developers' and authors' protection, the GPL clearly explains
|
||||||
|
that there is no warranty for this free software. For both users' and
|
||||||
|
authors' sake, the GPL requires that modified versions be marked as
|
||||||
|
changed, so that their problems will not be attributed erroneously to
|
||||||
|
authors of previous versions.
|
||||||
|
|
||||||
|
Some devices are designed to deny users access to install or run
|
||||||
|
modified versions of the software inside them, although the manufacturer
|
||||||
|
can do so. This is fundamentally incompatible with the aim of
|
||||||
|
protecting users' freedom to change the software. The systematic
|
||||||
|
pattern of such abuse occurs in the area of products for individuals to
|
||||||
|
use, which is precisely where it is most unacceptable. Therefore, we
|
||||||
|
have designed this version of the GPL to prohibit the practice for those
|
||||||
|
products. If such problems arise substantially in other domains, we
|
||||||
|
stand ready to extend this provision to those domains in future versions
|
||||||
|
of the GPL, as needed to protect the freedom of users.
|
||||||
|
|
||||||
|
Finally, every program is threatened constantly by software patents.
|
||||||
|
States should not allow patents to restrict development and use of
|
||||||
|
software on general-purpose computers, but in those that do, we wish to
|
||||||
|
avoid the special danger that patents applied to a free program could
|
||||||
|
make it effectively proprietary. To prevent this, the GPL assures that
|
||||||
|
patents cannot be used to render the program non-free.
|
||||||
|
|
||||||
|
The precise terms and conditions for copying, distribution and
|
||||||
|
modification follow.
|
||||||
|
|
||||||
|
TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
0. Definitions.
|
||||||
|
|
||||||
|
"This License" refers to version 3 of the GNU General Public License.
|
||||||
|
|
||||||
|
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||||
|
works, such as semiconductor masks.
|
||||||
|
|
||||||
|
"The Program" refers to any copyrightable work licensed under this
|
||||||
|
License. Each licensee is addressed as "you". "Licensees" and
|
||||||
|
"recipients" may be individuals or organizations.
|
||||||
|
|
||||||
|
To "modify" a work means to copy from or adapt all or part of the work
|
||||||
|
in a fashion requiring copyright permission, other than the making of an
|
||||||
|
exact copy. The resulting work is called a "modified version" of the
|
||||||
|
earlier work or a work "based on" the earlier work.
|
||||||
|
|
||||||
|
A "covered work" means either the unmodified Program or a work based
|
||||||
|
on the Program.
|
||||||
|
|
||||||
|
To "propagate" a work means to do anything with it that, without
|
||||||
|
permission, would make you directly or secondarily liable for
|
||||||
|
infringement under applicable copyright law, except executing it on a
|
||||||
|
computer or modifying a private copy. Propagation includes copying,
|
||||||
|
distribution (with or without modification), making available to the
|
||||||
|
public, and in some countries other activities as well.
|
||||||
|
|
||||||
|
To "convey" a work means any kind of propagation that enables other
|
||||||
|
parties to make or receive copies. Mere interaction with a user through
|
||||||
|
a computer network, with no transfer of a copy, is not conveying.
|
||||||
|
|
||||||
|
An interactive user interface displays "Appropriate Legal Notices"
|
||||||
|
to the extent that it includes a convenient and prominently visible
|
||||||
|
feature that (1) displays an appropriate copyright notice, and (2)
|
||||||
|
tells the user that there is no warranty for the work (except to the
|
||||||
|
extent that warranties are provided), that licensees may convey the
|
||||||
|
work under this License, and how to view a copy of this License. If
|
||||||
|
the interface presents a list of user commands or options, such as a
|
||||||
|
menu, a prominent item in the list meets this criterion.
|
||||||
|
|
||||||
|
1. Source Code.
|
||||||
|
|
||||||
|
The "source code" for a work means the preferred form of the work
|
||||||
|
for making modifications to it. "Object code" means any non-source
|
||||||
|
form of a work.
|
||||||
|
|
||||||
|
A "Standard Interface" means an interface that either is an official
|
||||||
|
standard defined by a recognized standards body, or, in the case of
|
||||||
|
interfaces specified for a particular programming language, one that
|
||||||
|
is widely used among developers working in that language.
|
||||||
|
|
||||||
|
The "System Libraries" of an executable work include anything, other
|
||||||
|
than the work as a whole, that (a) is included in the normal form of
|
||||||
|
packaging a Major Component, but which is not part of that Major
|
||||||
|
Component, and (b) serves only to enable use of the work with that
|
||||||
|
Major Component, or to implement a Standard Interface for which an
|
||||||
|
implementation is available to the public in source code form. A
|
||||||
|
"Major Component", in this context, means a major essential component
|
||||||
|
(kernel, window system, and so on) of the specific operating system
|
||||||
|
(if any) on which the executable work runs, or a compiler used to
|
||||||
|
produce the work, or an object code interpreter used to run it.
|
||||||
|
|
||||||
|
The "Corresponding Source" for a work in object code form means all
|
||||||
|
the source code needed to generate, install, and (for an executable
|
||||||
|
work) run the object code and to modify the work, including scripts to
|
||||||
|
control those activities. However, it does not include the work's
|
||||||
|
System Libraries, or general-purpose tools or generally available free
|
||||||
|
programs which are used unmodified in performing those activities but
|
||||||
|
which are not part of the work. For example, Corresponding Source
|
||||||
|
includes interface definition files associated with source files for
|
||||||
|
the work, and the source code for shared libraries and dynamically
|
||||||
|
linked subprograms that the work is specifically designed to require,
|
||||||
|
such as by intimate data communication or control flow between those
|
||||||
|
subprograms and other parts of the work.
|
||||||
|
|
||||||
|
The Corresponding Source need not include anything that users
|
||||||
|
can regenerate automatically from other parts of the Corresponding
|
||||||
|
Source.
|
||||||
|
|
||||||
|
The Corresponding Source for a work in source code form is that
|
||||||
|
same work.
|
||||||
|
|
||||||
|
2. Basic Permissions.
|
||||||
|
|
||||||
|
All rights granted under this License are granted for the term of
|
||||||
|
copyright on the Program, and are irrevocable provided the stated
|
||||||
|
conditions are met. This License explicitly affirms your unlimited
|
||||||
|
permission to run the unmodified Program. The output from running a
|
||||||
|
covered work is covered by this License only if the output, given its
|
||||||
|
content, constitutes a covered work. This License acknowledges your
|
||||||
|
rights of fair use or other equivalent, as provided by copyright law.
|
||||||
|
|
||||||
|
You may make, run and propagate covered works that you do not
|
||||||
|
convey, without conditions so long as your license otherwise remains
|
||||||
|
in force. You may convey covered works to others for the sole purpose
|
||||||
|
of having them make modifications exclusively for you, or provide you
|
||||||
|
with facilities for running those works, provided that you comply with
|
||||||
|
the terms of this License in conveying all material for which you do
|
||||||
|
not control copyright. Those thus making or running the covered works
|
||||||
|
for you must do so exclusively on your behalf, under your direction
|
||||||
|
and control, on terms that prohibit them from making any copies of
|
||||||
|
your copyrighted material outside their relationship with you.
|
||||||
|
|
||||||
|
Conveying under any other circumstances is permitted solely under
|
||||||
|
the conditions stated below. Sublicensing is not allowed; section 10
|
||||||
|
makes it unnecessary.
|
||||||
|
|
||||||
|
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||||
|
|
||||||
|
No covered work shall be deemed part of an effective technological
|
||||||
|
measure under any applicable law fulfilling obligations under article
|
||||||
|
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||||
|
similar laws prohibiting or restricting circumvention of such
|
||||||
|
measures.
|
||||||
|
|
||||||
|
When you convey a covered work, you waive any legal power to forbid
|
||||||
|
circumvention of technological measures to the extent such circumvention
|
||||||
|
is effected by exercising rights under this License with respect to
|
||||||
|
the covered work, and you disclaim any intention to limit operation or
|
||||||
|
modification of the work as a means of enforcing, against the work's
|
||||||
|
users, your or third parties' legal rights to forbid circumvention of
|
||||||
|
technological measures.
|
||||||
|
|
||||||
|
4. Conveying Verbatim Copies.
|
||||||
|
|
||||||
|
You may convey verbatim copies of the Program's source code as you
|
||||||
|
receive it, in any medium, provided that you conspicuously and
|
||||||
|
appropriately publish on each copy an appropriate copyright notice;
|
||||||
|
keep intact all notices stating that this License and any
|
||||||
|
non-permissive terms added in accord with section 7 apply to the code;
|
||||||
|
keep intact all notices of the absence of any warranty; and give all
|
||||||
|
recipients a copy of this License along with the Program.
|
||||||
|
|
||||||
|
You may charge any price or no price for each copy that you convey,
|
||||||
|
and you may offer support or warranty protection for a fee.
|
||||||
|
|
||||||
|
5. Conveying Modified Source Versions.
|
||||||
|
|
||||||
|
You may convey a work based on the Program, or the modifications to
|
||||||
|
produce it from the Program, in the form of source code under the
|
||||||
|
terms of section 4, provided that you also meet all of these conditions:
|
||||||
|
|
||||||
|
a) The work must carry prominent notices stating that you modified
|
||||||
|
it, and giving a relevant date.
|
||||||
|
|
||||||
|
b) The work must carry prominent notices stating that it is
|
||||||
|
released under this License and any conditions added under section
|
||||||
|
7. This requirement modifies the requirement in section 4 to
|
||||||
|
"keep intact all notices".
|
||||||
|
|
||||||
|
c) You must license the entire work, as a whole, under this
|
||||||
|
License to anyone who comes into possession of a copy. This
|
||||||
|
License will therefore apply, along with any applicable section 7
|
||||||
|
additional terms, to the whole of the work, and all its parts,
|
||||||
|
regardless of how they are packaged. This License gives no
|
||||||
|
permission to license the work in any other way, but it does not
|
||||||
|
invalidate such permission if you have separately received it.
|
||||||
|
|
||||||
|
d) If the work has interactive user interfaces, each must display
|
||||||
|
Appropriate Legal Notices; however, if the Program has interactive
|
||||||
|
interfaces that do not display Appropriate Legal Notices, your
|
||||||
|
work need not make them do so.
|
||||||
|
|
||||||
|
A compilation of a covered work with other separate and independent
|
||||||
|
works, which are not by their nature extensions of the covered work,
|
||||||
|
and which are not combined with it such as to form a larger program,
|
||||||
|
in or on a volume of a storage or distribution medium, is called an
|
||||||
|
"aggregate" if the compilation and its resulting copyright are not
|
||||||
|
used to limit the access or legal rights of the compilation's users
|
||||||
|
beyond what the individual works permit. Inclusion of a covered work
|
||||||
|
in an aggregate does not cause this License to apply to the other
|
||||||
|
parts of the aggregate.
|
||||||
|
|
||||||
|
6. Conveying Non-Source Forms.
|
||||||
|
|
||||||
|
You may convey a covered work in object code form under the terms
|
||||||
|
of sections 4 and 5, provided that you also convey the
|
||||||
|
machine-readable Corresponding Source under the terms of this License,
|
||||||
|
in one of these ways:
|
||||||
|
|
||||||
|
a) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by the
|
||||||
|
Corresponding Source fixed on a durable physical medium
|
||||||
|
customarily used for software interchange.
|
||||||
|
|
||||||
|
b) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by a
|
||||||
|
written offer, valid for at least three years and valid for as
|
||||||
|
long as you offer spare parts or customer support for that product
|
||||||
|
model, to give anyone who possesses the object code either (1) a
|
||||||
|
copy of the Corresponding Source for all the software in the
|
||||||
|
product that is covered by this License, on a durable physical
|
||||||
|
medium customarily used for software interchange, for a price no
|
||||||
|
more than your reasonable cost of physically performing this
|
||||||
|
conveying of source, or (2) access to copy the
|
||||||
|
Corresponding Source from a network server at no charge.
|
||||||
|
|
||||||
|
c) Convey individual copies of the object code with a copy of the
|
||||||
|
written offer to provide the Corresponding Source. This
|
||||||
|
alternative is allowed only occasionally and noncommercially, and
|
||||||
|
only if you received the object code with such an offer, in accord
|
||||||
|
with subsection 6b.
|
||||||
|
|
||||||
|
d) Convey the object code by offering access from a designated
|
||||||
|
place (gratis or for a charge), and offer equivalent access to the
|
||||||
|
Corresponding Source in the same way through the same place at no
|
||||||
|
further charge. You need not require recipients to copy the
|
||||||
|
Corresponding Source along with the object code. If the place to
|
||||||
|
copy the object code is a network server, the Corresponding Source
|
||||||
|
may be on a different server (operated by you or a third party)
|
||||||
|
that supports equivalent copying facilities, provided you maintain
|
||||||
|
clear directions next to the object code saying where to find the
|
||||||
|
Corresponding Source. Regardless of what server hosts the
|
||||||
|
Corresponding Source, you remain obligated to ensure that it is
|
||||||
|
available for as long as needed to satisfy these requirements.
|
||||||
|
|
||||||
|
e) Convey the object code using peer-to-peer transmission, provided
|
||||||
|
you inform other peers where the object code and Corresponding
|
||||||
|
Source of the work are being offered to the general public at no
|
||||||
|
charge under subsection 6d.
|
||||||
|
|
||||||
|
A separable portion of the object code, whose source code is excluded
|
||||||
|
from the Corresponding Source as a System Library, need not be
|
||||||
|
included in conveying the object code work.
|
||||||
|
|
||||||
|
A "User Product" is either (1) a "consumer product", which means any
|
||||||
|
tangible personal property which is normally used for personal, family,
|
||||||
|
or household purposes, or (2) anything designed or sold for incorporation
|
||||||
|
into a dwelling. In determining whether a product is a consumer product,
|
||||||
|
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||||
|
product received by a particular user, "normally used" refers to a
|
||||||
|
typical or common use of that class of product, regardless of the status
|
||||||
|
of the particular user or of the way in which the particular user
|
||||||
|
actually uses, or expects or is expected to use, the product. A product
|
||||||
|
is a consumer product regardless of whether the product has substantial
|
||||||
|
commercial, industrial or non-consumer uses, unless such uses represent
|
||||||
|
the only significant mode of use of the product.
|
||||||
|
|
||||||
|
"Installation Information" for a User Product means any methods,
|
||||||
|
procedures, authorization keys, or other information required to install
|
||||||
|
and execute modified versions of a covered work in that User Product from
|
||||||
|
a modified version of its Corresponding Source. The information must
|
||||||
|
suffice to ensure that the continued functioning of the modified object
|
||||||
|
code is in no case prevented or interfered with solely because
|
||||||
|
modification has been made.
|
||||||
|
|
||||||
|
If you convey an object code work under this section in, or with, or
|
||||||
|
specifically for use in, a User Product, and the conveying occurs as
|
||||||
|
part of a transaction in which the right of possession and use of the
|
||||||
|
User Product is transferred to the recipient in perpetuity or for a
|
||||||
|
fixed term (regardless of how the transaction is characterized), the
|
||||||
|
Corresponding Source conveyed under this section must be accompanied
|
||||||
|
by the Installation Information. But this requirement does not apply
|
||||||
|
if neither you nor any third party retains the ability to install
|
||||||
|
modified object code on the User Product (for example, the work has
|
||||||
|
been installed in ROM).
|
||||||
|
|
||||||
|
The requirement to provide Installation Information does not include a
|
||||||
|
requirement to continue to provide support service, warranty, or updates
|
||||||
|
for a work that has been modified or installed by the recipient, or for
|
||||||
|
the User Product in which it has been modified or installed. Access to a
|
||||||
|
network may be denied when the modification itself materially and
|
||||||
|
adversely affects the operation of the network or violates the rules and
|
||||||
|
protocols for communication across the network.
|
||||||
|
|
||||||
|
Corresponding Source conveyed, and Installation Information provided,
|
||||||
|
in accord with this section must be in a format that is publicly
|
||||||
|
documented (and with an implementation available to the public in
|
||||||
|
source code form), and must require no special password or key for
|
||||||
|
unpacking, reading or copying.
|
||||||
|
|
||||||
|
7. Additional Terms.
|
||||||
|
|
||||||
|
"Additional permissions" are terms that supplement the terms of this
|
||||||
|
License by making exceptions from one or more of its conditions.
|
||||||
|
Additional permissions that are applicable to the entire Program shall
|
||||||
|
be treated as though they were included in this License, to the extent
|
||||||
|
that they are valid under applicable law. If additional permissions
|
||||||
|
apply only to part of the Program, that part may be used separately
|
||||||
|
under those permissions, but the entire Program remains governed by
|
||||||
|
this License without regard to the additional permissions.
|
||||||
|
|
||||||
|
When you convey a copy of a covered work, you may at your option
|
||||||
|
remove any additional permissions from that copy, or from any part of
|
||||||
|
it. (Additional permissions may be written to require their own
|
||||||
|
removal in certain cases when you modify the work.) You may place
|
||||||
|
additional permissions on material, added by you to a covered work,
|
||||||
|
for which you have or can give appropriate copyright permission.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, for material you
|
||||||
|
add to a covered work, you may (if authorized by the copyright holders of
|
||||||
|
that material) supplement the terms of this License with terms:
|
||||||
|
|
||||||
|
a) Disclaiming warranty or limiting liability differently from the
|
||||||
|
terms of sections 15 and 16 of this License; or
|
||||||
|
|
||||||
|
b) Requiring preservation of specified reasonable legal notices or
|
||||||
|
author attributions in that material or in the Appropriate Legal
|
||||||
|
Notices displayed by works containing it; or
|
||||||
|
|
||||||
|
c) Prohibiting misrepresentation of the origin of that material, or
|
||||||
|
requiring that modified versions of such material be marked in
|
||||||
|
reasonable ways as different from the original version; or
|
||||||
|
|
||||||
|
d) Limiting the use for publicity purposes of names of licensors or
|
||||||
|
authors of the material; or
|
||||||
|
|
||||||
|
e) Declining to grant rights under trademark law for use of some
|
||||||
|
trade names, trademarks, or service marks; or
|
||||||
|
|
||||||
|
f) Requiring indemnification of licensors and authors of that
|
||||||
|
material by anyone who conveys the material (or modified versions of
|
||||||
|
it) with contractual assumptions of liability to the recipient, for
|
||||||
|
any liability that these contractual assumptions directly impose on
|
||||||
|
those licensors and authors.
|
||||||
|
|
||||||
|
All other non-permissive additional terms are considered "further
|
||||||
|
restrictions" within the meaning of section 10. If the Program as you
|
||||||
|
received it, or any part of it, contains a notice stating that it is
|
||||||
|
governed by this License along with a term that is a further
|
||||||
|
restriction, you may remove that term. If a license document contains
|
||||||
|
a further restriction but permits relicensing or conveying under this
|
||||||
|
License, you may add to a covered work material governed by the terms
|
||||||
|
of that license document, provided that the further restriction does
|
||||||
|
not survive such relicensing or conveying.
|
||||||
|
|
||||||
|
If you add terms to a covered work in accord with this section, you
|
||||||
|
must place, in the relevant source files, a statement of the
|
||||||
|
additional terms that apply to those files, or a notice indicating
|
||||||
|
where to find the applicable terms.
|
||||||
|
|
||||||
|
Additional terms, permissive or non-permissive, may be stated in the
|
||||||
|
form of a separately written license, or stated as exceptions;
|
||||||
|
the above requirements apply either way.
|
||||||
|
|
||||||
|
8. Termination.
|
||||||
|
|
||||||
|
You may not propagate or modify a covered work except as expressly
|
||||||
|
provided under this License. Any attempt otherwise to propagate or
|
||||||
|
modify it is void, and will automatically terminate your rights under
|
||||||
|
this License (including any patent licenses granted under the third
|
||||||
|
paragraph of section 11).
|
||||||
|
|
||||||
|
However, if you cease all violation of this License, then your
|
||||||
|
license from a particular copyright holder is reinstated (a)
|
||||||
|
provisionally, unless and until the copyright holder explicitly and
|
||||||
|
finally terminates your license, and (b) permanently, if the copyright
|
||||||
|
holder fails to notify you of the violation by some reasonable means
|
||||||
|
prior to 60 days after the cessation.
|
||||||
|
|
||||||
|
Moreover, your license from a particular copyright holder is
|
||||||
|
reinstated permanently if the copyright holder notifies you of the
|
||||||
|
violation by some reasonable means, this is the first time you have
|
||||||
|
received notice of violation of this License (for any work) from that
|
||||||
|
copyright holder, and you cure the violation prior to 30 days after
|
||||||
|
your receipt of the notice.
|
||||||
|
|
||||||
|
Termination of your rights under this section does not terminate the
|
||||||
|
licenses of parties who have received copies or rights from you under
|
||||||
|
this License. If your rights have been terminated and not permanently
|
||||||
|
reinstated, you do not qualify to receive new licenses for the same
|
||||||
|
material under section 10.
|
||||||
|
|
||||||
|
9. Acceptance Not Required for Having Copies.
|
||||||
|
|
||||||
|
You are not required to accept this License in order to receive or
|
||||||
|
run a copy of the Program. Ancillary propagation of a covered work
|
||||||
|
occurring solely as a consequence of using peer-to-peer transmission
|
||||||
|
to receive a copy likewise does not require acceptance. However,
|
||||||
|
nothing other than this License grants you permission to propagate or
|
||||||
|
modify any covered work. These actions infringe copyright if you do
|
||||||
|
not accept this License. Therefore, by modifying or propagating a
|
||||||
|
covered work, you indicate your acceptance of this License to do so.
|
||||||
|
|
||||||
|
10. Automatic Licensing of Downstream Recipients.
|
||||||
|
|
||||||
|
Each time you convey a covered work, the recipient automatically
|
||||||
|
receives a license from the original licensors, to run, modify and
|
||||||
|
propagate that work, subject to this License. You are not responsible
|
||||||
|
for enforcing compliance by third parties with this License.
|
||||||
|
|
||||||
|
An "entity transaction" is a transaction transferring control of an
|
||||||
|
organization, or substantially all assets of one, or subdividing an
|
||||||
|
organization, or merging organizations. If propagation of a covered
|
||||||
|
work results from an entity transaction, each party to that
|
||||||
|
transaction who receives a copy of the work also receives whatever
|
||||||
|
licenses to the work the party's predecessor in interest had or could
|
||||||
|
give under the previous paragraph, plus a right to possession of the
|
||||||
|
Corresponding Source of the work from the predecessor in interest, if
|
||||||
|
the predecessor has it or can get it with reasonable efforts.
|
||||||
|
|
||||||
|
You may not impose any further restrictions on the exercise of the
|
||||||
|
rights granted or affirmed under this License. For example, you may
|
||||||
|
not impose a license fee, royalty, or other charge for exercise of
|
||||||
|
rights granted under this License, and you may not initiate litigation
|
||||||
|
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||||
|
any patent claim is infringed by making, using, selling, offering for
|
||||||
|
sale, or importing the Program or any portion of it.
|
||||||
|
|
||||||
|
11. Patents.
|
||||||
|
|
||||||
|
A "contributor" is a copyright holder who authorizes use under this
|
||||||
|
License of the Program or a work on which the Program is based. The
|
||||||
|
work thus licensed is called the contributor's "contributor version".
|
||||||
|
|
||||||
|
A contributor's "essential patent claims" are all patent claims
|
||||||
|
owned or controlled by the contributor, whether already acquired or
|
||||||
|
hereafter acquired, that would be infringed by some manner, permitted
|
||||||
|
by this License, of making, using, or selling its contributor version,
|
||||||
|
but do not include claims that would be infringed only as a
|
||||||
|
consequence of further modification of the contributor version. For
|
||||||
|
purposes of this definition, "control" includes the right to grant
|
||||||
|
patent sublicenses in a manner consistent with the requirements of
|
||||||
|
this License.
|
||||||
|
|
||||||
|
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||||
|
patent license under the contributor's essential patent claims, to
|
||||||
|
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||||
|
propagate the contents of its contributor version.
|
||||||
|
|
||||||
|
In the following three paragraphs, a "patent license" is any express
|
||||||
|
agreement or commitment, however denominated, not to enforce a patent
|
||||||
|
(such as an express permission to practice a patent or covenant not to
|
||||||
|
sue for patent infringement). To "grant" such a patent license to a
|
||||||
|
party means to make such an agreement or commitment not to enforce a
|
||||||
|
patent against the party.
|
||||||
|
|
||||||
|
If you convey a covered work, knowingly relying on a patent license,
|
||||||
|
and the Corresponding Source of the work is not available for anyone
|
||||||
|
to copy, free of charge and under the terms of this License, through a
|
||||||
|
publicly available network server or other readily accessible means,
|
||||||
|
then you must either (1) cause the Corresponding Source to be so
|
||||||
|
available, or (2) arrange to deprive yourself of the benefit of the
|
||||||
|
patent license for this particular work, or (3) arrange, in a manner
|
||||||
|
consistent with the requirements of this License, to extend the patent
|
||||||
|
license to downstream recipients. "Knowingly relying" means you have
|
||||||
|
actual knowledge that, but for the patent license, your conveying the
|
||||||
|
covered work in a country, or your recipient's use of the covered work
|
||||||
|
in a country, would infringe one or more identifiable patents in that
|
||||||
|
country that you have reason to believe are valid.
|
||||||
|
|
||||||
|
If, pursuant to or in connection with a single transaction or
|
||||||
|
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||||
|
covered work, and grant a patent license to some of the parties
|
||||||
|
receiving the covered work authorizing them to use, propagate, modify
|
||||||
|
or convey a specific copy of the covered work, then the patent license
|
||||||
|
you grant is automatically extended to all recipients of the covered
|
||||||
|
work and works based on it.
|
||||||
|
|
||||||
|
A patent license is "discriminatory" if it does not include within
|
||||||
|
the scope of its coverage, prohibits the exercise of, or is
|
||||||
|
conditioned on the non-exercise of one or more of the rights that are
|
||||||
|
specifically granted under this License. You may not convey a covered
|
||||||
|
work if you are a party to an arrangement with a third party that is
|
||||||
|
in the business of distributing software, under which you make payment
|
||||||
|
to the third party based on the extent of your activity of conveying
|
||||||
|
the work, and under which the third party grants, to any of the
|
||||||
|
parties who would receive the covered work from you, a discriminatory
|
||||||
|
patent license (a) in connection with copies of the covered work
|
||||||
|
conveyed by you (or copies made from those copies), or (b) primarily
|
||||||
|
for and in connection with specific products or compilations that
|
||||||
|
contain the covered work, unless you entered into that arrangement,
|
||||||
|
or that patent license was granted, prior to 28 March 2007.
|
||||||
|
|
||||||
|
Nothing in this License shall be construed as excluding or limiting
|
||||||
|
any implied license or other defenses to infringement that may
|
||||||
|
otherwise be available to you under applicable patent law.
|
||||||
|
|
||||||
|
12. No Surrender of Others' Freedom.
|
||||||
|
|
||||||
|
If conditions are imposed on you (whether by court order, agreement or
|
||||||
|
otherwise) that contradict the conditions of this License, they do not
|
||||||
|
excuse you from the conditions of this License. If you cannot convey a
|
||||||
|
covered work so as to satisfy simultaneously your obligations under this
|
||||||
|
License and any other pertinent obligations, then as a consequence you may
|
||||||
|
not convey it at all. For example, if you agree to terms that obligate you
|
||||||
|
to collect a royalty for further conveying from those to whom you convey
|
||||||
|
the Program, the only way you could satisfy both those terms and this
|
||||||
|
License would be to refrain entirely from conveying the Program.
|
||||||
|
|
||||||
|
13. Use with the GNU Affero General Public License.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, you have
|
||||||
|
permission to link or combine any covered work with a work licensed
|
||||||
|
under version 3 of the GNU Affero General Public License into a single
|
||||||
|
combined work, and to convey the resulting work. The terms of this
|
||||||
|
License will continue to apply to the part which is the covered work,
|
||||||
|
but the special requirements of the GNU Affero General Public License,
|
||||||
|
section 13, concerning interaction through a network will apply to the
|
||||||
|
combination as such.
|
||||||
|
|
||||||
|
14. Revised Versions of this License.
|
||||||
|
|
||||||
|
The Free Software Foundation may publish revised and/or new versions of
|
||||||
|
the GNU General Public License from time to time. Such new versions will
|
||||||
|
be similar in spirit to the present version, but may differ in detail to
|
||||||
|
address new problems or concerns.
|
||||||
|
|
||||||
|
Each version is given a distinguishing version number. If the
|
||||||
|
Program specifies that a certain numbered version of the GNU General
|
||||||
|
Public License "or any later version" applies to it, you have the
|
||||||
|
option of following the terms and conditions either of that numbered
|
||||||
|
version or of any later version published by the Free Software
|
||||||
|
Foundation. If the Program does not specify a version number of the
|
||||||
|
GNU General Public License, you may choose any version ever published
|
||||||
|
by the Free Software Foundation.
|
||||||
|
|
||||||
|
If the Program specifies that a proxy can decide which future
|
||||||
|
versions of the GNU General Public License can be used, that proxy's
|
||||||
|
public statement of acceptance of a version permanently authorizes you
|
||||||
|
to choose that version for the Program.
|
||||||
|
|
||||||
|
Later license versions may give you additional or different
|
||||||
|
permissions. However, no additional obligations are imposed on any
|
||||||
|
author or copyright holder as a result of your choosing to follow a
|
||||||
|
later version.
|
||||||
|
|
||||||
|
15. Disclaimer of Warranty.
|
||||||
|
|
||||||
|
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||||
|
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||||
|
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||||
|
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||||
|
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||||
|
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||||
|
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||||
|
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||||
|
|
||||||
|
16. Limitation of Liability.
|
||||||
|
|
||||||
|
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||||
|
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||||
|
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||||
|
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||||
|
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||||
|
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||||
|
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||||
|
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||||
|
SUCH DAMAGES.
|
||||||
|
|
||||||
|
17. Interpretation of Sections 15 and 16.
|
||||||
|
|
||||||
|
If the disclaimer of warranty and limitation of liability provided
|
||||||
|
above cannot be given local legal effect according to their terms,
|
||||||
|
reviewing courts shall apply local law that most closely approximates
|
||||||
|
an absolute waiver of all civil liability in connection with the
|
||||||
|
Program, unless a warranty or assumption of liability accompanies a
|
||||||
|
copy of the Program in return for a fee.
|
||||||
|
|
||||||
|
END OF TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
How to Apply These Terms to Your New Programs
|
||||||
|
|
||||||
|
If you develop a new program, and you want it to be of the greatest
|
||||||
|
possible use to the public, the best way to achieve this is to make it
|
||||||
|
free software which everyone can redistribute and change under these terms.
|
||||||
|
|
||||||
|
To do so, attach the following notices to the program. It is safest
|
||||||
|
to attach them to the start of each source file to most effectively
|
||||||
|
state the exclusion of warranty; and each file should have at least
|
||||||
|
the "copyright" line and a pointer to where the full notice is found.
|
||||||
|
|
||||||
|
<one line to give the program's name and a brief idea of what it does.>
|
||||||
|
Copyright (C) <year> <name of author>
|
||||||
|
|
||||||
|
This program is free software: you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License
|
||||||
|
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
Also add information on how to contact you by electronic and paper mail.
|
||||||
|
|
||||||
|
If the program does terminal interaction, make it output a short
|
||||||
|
notice like this when it starts in an interactive mode:
|
||||||
|
|
||||||
|
<program> Copyright (C) <year> <name of author>
|
||||||
|
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||||
|
This is free software, and you are welcome to redistribute it
|
||||||
|
under certain conditions; type `show c' for details.
|
||||||
|
|
||||||
|
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||||
|
parts of the General Public License. Of course, your program's commands
|
||||||
|
might be different; for a GUI interface, you would use an "about box".
|
||||||
|
|
||||||
|
You should also get your employer (if you work as a programmer) or school,
|
||||||
|
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||||
|
For more information on this, and how to apply and follow the GNU GPL, see
|
||||||
|
<https://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
The GNU General Public License does not permit incorporating your program
|
||||||
|
into proprietary programs. If your program is a subroutine library, you
|
||||||
|
may consider it more useful to permit linking proprietary applications with
|
||||||
|
the library. If this is what you want to do, use the GNU Lesser General
|
||||||
|
Public License instead of this License. But first, please read
|
||||||
|
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
||||||
0
hy3dgen/shapegen/bpt/miche/__init__.py
Normal file
0
hy3dgen/shapegen/bpt/miche/__init__.py
Normal file
BIN
hy3dgen/shapegen/bpt/miche/__pycache__/__init__.cpython-312.pyc
Normal file
BIN
hy3dgen/shapegen/bpt/miche/__pycache__/__init__.cpython-312.pyc
Normal file
Binary file not shown.
BIN
hy3dgen/shapegen/bpt/miche/__pycache__/encode.cpython-312.pyc
Normal file
BIN
hy3dgen/shapegen/bpt/miche/__pycache__/encode.cpython-312.pyc
Normal file
Binary file not shown.
74
hy3dgen/shapegen/bpt/miche/encode.py
Normal file
74
hy3dgen/shapegen/bpt/miche/encode.py
Normal file
@ -0,0 +1,74 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
import argparse
|
||||||
|
from omegaconf import OmegaConf
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from .michelangelo.utils.misc import instantiate_from_config
|
||||||
|
|
||||||
|
def load_surface(fp):
|
||||||
|
|
||||||
|
with np.load(fp) as input_pc:
|
||||||
|
surface = input_pc['points']
|
||||||
|
normal = input_pc['normals']
|
||||||
|
|
||||||
|
rng = np.random.default_rng()
|
||||||
|
ind = rng.choice(surface.shape[0], 4096, replace=False)
|
||||||
|
surface = torch.FloatTensor(surface[ind])
|
||||||
|
normal = torch.FloatTensor(normal[ind])
|
||||||
|
|
||||||
|
surface = torch.cat([surface, normal], dim=-1).unsqueeze(0).cuda()
|
||||||
|
|
||||||
|
return surface
|
||||||
|
|
||||||
|
def reconstruction(args, model, bounds=(-1.25, -1.25, -1.25, 1.25, 1.25, 1.25), octree_depth=7, num_chunks=10000):
|
||||||
|
|
||||||
|
surface = load_surface(args.pointcloud_path)
|
||||||
|
# old_surface = surface.clone()
|
||||||
|
|
||||||
|
# surface[0,:,0]*=-1
|
||||||
|
# surface[0,:,1]*=-1
|
||||||
|
surface[0,:,2]*=-1
|
||||||
|
|
||||||
|
# encoding
|
||||||
|
shape_embed, shape_latents = model.model.encode_shape_embed(surface, return_latents=True)
|
||||||
|
shape_zq, posterior = model.model.shape_model.encode_kl_embed(shape_latents)
|
||||||
|
|
||||||
|
# decoding
|
||||||
|
latents = model.model.shape_model.decode(shape_zq)
|
||||||
|
# geometric_func = partial(model.model.shape_model.query_geometry, latents=latents)
|
||||||
|
|
||||||
|
return 0
|
||||||
|
|
||||||
|
def load_model(ckpt_path="shapevae-256.ckpt", config_path="shapevae-256.yaml"):
|
||||||
|
model_config = OmegaConf.load(config_path)
|
||||||
|
print(model_config)
|
||||||
|
if hasattr(model_config, "model"):
|
||||||
|
model_config = model_config.model
|
||||||
|
|
||||||
|
model = instantiate_from_config(model_config, ckpt_path=ckpt_path)
|
||||||
|
model = model.eval()
|
||||||
|
|
||||||
|
return model
|
||||||
|
if __name__ == "__main__":
|
||||||
|
'''
|
||||||
|
1. Reconstruct point cloud
|
||||||
|
2. Image-conditioned generation
|
||||||
|
3. Text-conditioned generation
|
||||||
|
'''
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("--config_path", type=str, required=True)
|
||||||
|
parser.add_argument("--ckpt_path", type=str, required=True)
|
||||||
|
parser.add_argument("--pointcloud_path", type=str, default='./example_data/surface.npz',
|
||||||
|
help='Path to the input point cloud')
|
||||||
|
parser.add_argument("--image_path", type=str, help='Path to the input image')
|
||||||
|
parser.add_argument("--text", type=str,
|
||||||
|
help='Input text within a format: A 3D model of motorcar; Porsche 911.')
|
||||||
|
parser.add_argument("--output_dir", type=str, default='./output')
|
||||||
|
parser.add_argument("-s", "--seed", type=int, default=0)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
print(f'-----------------------------------------------------------------------------')
|
||||||
|
print(f'>>> Output directory: {args.output_dir}')
|
||||||
|
print(f'-----------------------------------------------------------------------------')
|
||||||
|
|
||||||
|
reconstruction(args, load_model(args))
|
||||||
1
hy3dgen/shapegen/bpt/miche/michelangelo/__init__.py
Normal file
1
hy3dgen/shapegen/bpt/miche/michelangelo/__init__.py
Normal file
@ -0,0 +1 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
Binary file not shown.
@ -0,0 +1 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
Binary file not shown.
@ -0,0 +1,4 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
from .volume import generate_dense_grid_points
|
||||||
|
|
||||||
Binary file not shown.
Binary file not shown.
@ -0,0 +1,21 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# produce dense points
|
||||||
|
def generate_dense_grid_points(bbox_min: np.ndarray,
|
||||||
|
bbox_max: np.ndarray,
|
||||||
|
octree_depth: int,
|
||||||
|
indexing: str = "ij"):
|
||||||
|
length = bbox_max - bbox_min
|
||||||
|
num_cells = np.exp2(octree_depth)
|
||||||
|
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
|
||||||
|
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
|
||||||
|
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
|
||||||
|
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
|
||||||
|
xyz = np.stack((xs, ys, zs), axis=-1)
|
||||||
|
xyz = xyz.reshape(-1, 3)
|
||||||
|
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]
|
||||||
|
|
||||||
|
return xyz, grid_size, length
|
||||||
|
|
||||||
@ -0,0 +1 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
Binary file not shown.
@ -0,0 +1,3 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
from .checkpoint import checkpoint
|
||||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,64 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from typing import Callable, Iterable, Sequence, Union
|
||||||
|
|
||||||
|
|
||||||
|
def checkpoint(
|
||||||
|
func: Callable[..., Union[torch.Tensor, Sequence[torch.Tensor]]],
|
||||||
|
inputs: Sequence[torch.Tensor],
|
||||||
|
params: Iterable[torch.Tensor],
|
||||||
|
flag: bool,
|
||||||
|
use_deepspeed: bool = False
|
||||||
|
):
|
||||||
|
# Evaluate a function without caching intermediate activations, allowing for
|
||||||
|
# reduced memory at the expense of extra compute in the backward pass.
|
||||||
|
# :param func: the function to evaluate.
|
||||||
|
# :param inputs: the argument sequence to pass to `func`.
|
||||||
|
# :param params: a sequence of parameters `func` depends on but does not
|
||||||
|
# explicitly take as arguments.
|
||||||
|
# :param flag: if False, disable gradient checkpointing.
|
||||||
|
# :param use_deepspeed: if True, use deepspeed
|
||||||
|
if flag:
|
||||||
|
if use_deepspeed:
|
||||||
|
import deepspeed
|
||||||
|
return deepspeed.checkpointing.checkpoint(func, *inputs)
|
||||||
|
|
||||||
|
args = tuple(inputs) + tuple(params)
|
||||||
|
return CheckpointFunction.apply(func, len(inputs), *args)
|
||||||
|
else:
|
||||||
|
return func(*inputs)
|
||||||
|
|
||||||
|
|
||||||
|
class CheckpointFunction(torch.autograd.Function):
|
||||||
|
@staticmethod
|
||||||
|
@torch.amp.custom_fwd(device_type="cuda")
|
||||||
|
def forward(ctx, run_function, length, *args):
|
||||||
|
ctx.run_function = run_function
|
||||||
|
ctx.input_tensors = list(args[:length])
|
||||||
|
ctx.input_params = list(args[length:])
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
output_tensors = ctx.run_function(*ctx.input_tensors)
|
||||||
|
return output_tensors
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
@torch.amp.custom_bwd(device_type="cuda")
|
||||||
|
def backward(ctx, *output_grads):
|
||||||
|
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
||||||
|
with torch.enable_grad():
|
||||||
|
# Fixes a bug where the first op in run_function modifies the
|
||||||
|
# Tensor storage in place, which is not allowed for detach()'d
|
||||||
|
# Tensors.
|
||||||
|
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
||||||
|
output_tensors = ctx.run_function(*shallow_copies)
|
||||||
|
input_grads = torch.autograd.grad(
|
||||||
|
output_tensors,
|
||||||
|
ctx.input_tensors + ctx.input_params,
|
||||||
|
output_grads,
|
||||||
|
allow_unused=True,
|
||||||
|
)
|
||||||
|
del ctx.input_tensors
|
||||||
|
del ctx.input_params
|
||||||
|
del output_tensors
|
||||||
|
return (None, None) + input_grads
|
||||||
@ -0,0 +1,83 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
from typing import Union, List
|
||||||
|
|
||||||
|
|
||||||
|
class DiagonalGaussianDistribution(object):
|
||||||
|
# Gaussian distribution
|
||||||
|
def __init__(self, parameters: Union[torch.Tensor, List[torch.Tensor]], deterministic=False, feat_dim=1):
|
||||||
|
self.feat_dim = feat_dim
|
||||||
|
self.parameters = parameters
|
||||||
|
|
||||||
|
if isinstance(parameters, list):
|
||||||
|
self.mean = parameters[0]
|
||||||
|
self.logvar = parameters[1]
|
||||||
|
else:
|
||||||
|
self.mean, self.logvar = torch.chunk(parameters, 2, dim=feat_dim)
|
||||||
|
|
||||||
|
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
||||||
|
self.deterministic = deterministic
|
||||||
|
self.std = torch.exp(0.5 * self.logvar)
|
||||||
|
self.var = torch.exp(self.logvar)
|
||||||
|
if self.deterministic:
|
||||||
|
self.var = self.std = torch.zeros_like(self.mean)
|
||||||
|
|
||||||
|
# sample from the guassian distribution
|
||||||
|
def sample(self):
|
||||||
|
x = self.mean + self.std * torch.randn_like(self.mean)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def kl(self, other=None, dims=(1, 2, 3)):
|
||||||
|
if self.deterministic:
|
||||||
|
return torch.Tensor([0.])
|
||||||
|
else:
|
||||||
|
if other is None:
|
||||||
|
return 0.5 * torch.mean(torch.pow(self.mean, 2)
|
||||||
|
+ self.var - 1.0 - self.logvar,
|
||||||
|
dim=dims)
|
||||||
|
else:
|
||||||
|
return 0.5 * torch.mean(
|
||||||
|
torch.pow(self.mean - other.mean, 2) / other.var
|
||||||
|
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
||||||
|
dim=dims)
|
||||||
|
|
||||||
|
def nll(self, sample, dims=(1, 2, 3)):
|
||||||
|
if self.deterministic:
|
||||||
|
return torch.Tensor([0.])
|
||||||
|
logtwopi = np.log(2.0 * np.pi)
|
||||||
|
return 0.5 * torch.sum(
|
||||||
|
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
||||||
|
dim=dims)
|
||||||
|
|
||||||
|
def mode(self):
|
||||||
|
return self.mean
|
||||||
|
|
||||||
|
|
||||||
|
def normal_kl(mean1, logvar1, mean2, logvar2):
|
||||||
|
# Compute the KL divergence between two gaussians.
|
||||||
|
# Shapes are automatically broadcasted, so batches can be compared to
|
||||||
|
# scalars, among other use cases.
|
||||||
|
|
||||||
|
tensor = None
|
||||||
|
for obj in (mean1, logvar1, mean2, logvar2):
|
||||||
|
if isinstance(obj, torch.Tensor):
|
||||||
|
tensor = obj
|
||||||
|
break
|
||||||
|
assert tensor is not None, "at least one argument must be a Tensor"
|
||||||
|
|
||||||
|
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
||||||
|
# Tensors, but it does not work for torch.exp().
|
||||||
|
logvar1, logvar2 = [
|
||||||
|
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
||||||
|
for x in (logvar1, logvar2)
|
||||||
|
]
|
||||||
|
|
||||||
|
return 0.5 * (
|
||||||
|
-1.0
|
||||||
|
+ logvar2
|
||||||
|
- logvar1
|
||||||
|
+ torch.exp(logvar1 - logvar2)
|
||||||
|
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
||||||
|
)
|
||||||
@ -0,0 +1,213 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import math
|
||||||
|
|
||||||
|
VALID_EMBED_TYPES = ["identity", "fourier", "hashgrid", "sphere_harmonic", "triplane_fourier"]
|
||||||
|
|
||||||
|
|
||||||
|
class FourierEmbedder(nn.Module):
|
||||||
|
"""The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts
|
||||||
|
each feature dimension of `x[..., i]` into:
|
||||||
|
[
|
||||||
|
sin(x[..., i]),
|
||||||
|
sin(f_1*x[..., i]),
|
||||||
|
sin(f_2*x[..., i]),
|
||||||
|
...
|
||||||
|
sin(f_N * x[..., i]),
|
||||||
|
cos(x[..., i]),
|
||||||
|
cos(f_1*x[..., i]),
|
||||||
|
cos(f_2*x[..., i]),
|
||||||
|
...
|
||||||
|
cos(f_N * x[..., i]),
|
||||||
|
x[..., i] # only present if include_input is True.
|
||||||
|
], here f_i is the frequency.
|
||||||
|
|
||||||
|
Denote the space is [0 / num_freqs, 1 / num_freqs, 2 / num_freqs, 3 / num_freqs, ..., (num_freqs - 1) / num_freqs].
|
||||||
|
If logspace is True, then the frequency f_i is [2^(0 / num_freqs), ..., 2^(i / num_freqs), ...];
|
||||||
|
Otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)].
|
||||||
|
|
||||||
|
Args:
|
||||||
|
num_freqs (int): the number of frequencies, default is 6;
|
||||||
|
logspace (bool): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
|
||||||
|
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)];
|
||||||
|
input_dim (int): the input dimension, default is 3;
|
||||||
|
include_input (bool): include the input tensor or not, default is True.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
frequencies (torch.Tensor): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
|
||||||
|
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1);
|
||||||
|
|
||||||
|
out_dim (int): the embedding size, if include_input is True, it is input_dim * (num_freqs * 2 + 1),
|
||||||
|
otherwise, it is input_dim * num_freqs * 2.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
num_freqs: int = 6,
|
||||||
|
logspace: bool = True,
|
||||||
|
input_dim: int = 3,
|
||||||
|
include_input: bool = True,
|
||||||
|
include_pi: bool = True) -> None:
|
||||||
|
|
||||||
|
"""The initialization"""
|
||||||
|
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
if logspace:
|
||||||
|
frequencies = 2.0 ** torch.arange(
|
||||||
|
num_freqs,
|
||||||
|
dtype=torch.float32
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
frequencies = torch.linspace(
|
||||||
|
1.0,
|
||||||
|
2.0 ** (num_freqs - 1),
|
||||||
|
num_freqs,
|
||||||
|
dtype=torch.float32
|
||||||
|
)
|
||||||
|
|
||||||
|
if include_pi:
|
||||||
|
frequencies *= torch.pi
|
||||||
|
|
||||||
|
self.register_buffer("frequencies", frequencies, persistent=False)
|
||||||
|
self.include_input = include_input
|
||||||
|
self.num_freqs = num_freqs
|
||||||
|
|
||||||
|
self.out_dim = self.get_dims(input_dim)
|
||||||
|
|
||||||
|
def get_dims(self, input_dim):
|
||||||
|
temp = 1 if self.include_input or self.num_freqs == 0 else 0
|
||||||
|
out_dim = input_dim * (self.num_freqs * 2 + temp)
|
||||||
|
|
||||||
|
return out_dim
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
""" Forward process.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x: tensor of shape [..., dim]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
embedding: an embedding of `x` of shape [..., dim * (num_freqs * 2 + temp)]
|
||||||
|
where temp is 1 if include_input is True and 0 otherwise.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if self.num_freqs > 0:
|
||||||
|
embed = (x[..., None].contiguous() * self.frequencies).view(*x.shape[:-1], -1)
|
||||||
|
if self.include_input:
|
||||||
|
return torch.cat((x, embed.sin(), embed.cos()), dim=-1)
|
||||||
|
else:
|
||||||
|
return torch.cat((embed.sin(), embed.cos()), dim=-1)
|
||||||
|
else:
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class LearnedFourierEmbedder(nn.Module):
|
||||||
|
""" following @crowsonkb "s lead with learned sinusoidal pos emb """
|
||||||
|
""" https://github.com/crowsonkb/v-diffusion-jax/blob/master/diffusion/models/danbooru_128.py#L8 """
|
||||||
|
|
||||||
|
def __init__(self, in_channels, dim):
|
||||||
|
super().__init__()
|
||||||
|
assert (dim % 2) == 0
|
||||||
|
half_dim = dim // 2
|
||||||
|
per_channel_dim = half_dim // in_channels
|
||||||
|
self.weights = nn.Parameter(torch.randn(per_channel_dim))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
"""
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (torch.FloatTensor): [..., c]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
x (torch.FloatTensor): [..., d]
|
||||||
|
"""
|
||||||
|
|
||||||
|
# [b, t, c, 1] * [1, d] = [b, t, c, d] -> [b, t, c * d]
|
||||||
|
freqs = (x[..., None] * self.weights[None] * 2 * np.pi).view(*x.shape[:-1], -1)
|
||||||
|
fouriered = torch.cat((x, freqs.sin(), freqs.cos()), dim=-1)
|
||||||
|
return fouriered
|
||||||
|
|
||||||
|
|
||||||
|
class TriplaneLearnedFourierEmbedder(nn.Module):
|
||||||
|
def __init__(self, in_channels, dim):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.yz_plane_embedder = LearnedFourierEmbedder(in_channels, dim)
|
||||||
|
self.xz_plane_embedder = LearnedFourierEmbedder(in_channels, dim)
|
||||||
|
self.xy_plane_embedder = LearnedFourierEmbedder(in_channels, dim)
|
||||||
|
|
||||||
|
self.out_dim = in_channels + dim
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
|
||||||
|
yz_embed = self.yz_plane_embedder(x)
|
||||||
|
xz_embed = self.xz_plane_embedder(x)
|
||||||
|
xy_embed = self.xy_plane_embedder(x)
|
||||||
|
|
||||||
|
embed = yz_embed + xz_embed + xy_embed
|
||||||
|
|
||||||
|
return embed
|
||||||
|
|
||||||
|
|
||||||
|
def sequential_pos_embed(num_len, embed_dim):
|
||||||
|
assert embed_dim % 2 == 0
|
||||||
|
|
||||||
|
pos = torch.arange(num_len, dtype=torch.float32)
|
||||||
|
omega = torch.arange(embed_dim // 2, dtype=torch.float32)
|
||||||
|
omega /= embed_dim / 2.
|
||||||
|
omega = 1. / 10000 ** omega # (D/2,)
|
||||||
|
|
||||||
|
pos = pos.reshape(-1) # (M,)
|
||||||
|
out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
||||||
|
|
||||||
|
emb_sin = torch.sin(out) # (M, D/2)
|
||||||
|
emb_cos = torch.cos(out) # (M, D/2)
|
||||||
|
|
||||||
|
embeddings = torch.cat([emb_sin, emb_cos], dim=1) # (M, D)
|
||||||
|
|
||||||
|
return embeddings
|
||||||
|
|
||||||
|
|
||||||
|
def timestep_embedding(timesteps, dim, max_period=10000):
|
||||||
|
"""
|
||||||
|
Create sinusoidal timestep embeddings.
|
||||||
|
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
||||||
|
These may be fractional.
|
||||||
|
:param dim: the dimension of the output.
|
||||||
|
:param max_period: controls the minimum frequency of the embeddings.
|
||||||
|
:return: an [N x dim] Tensor of positional embeddings.
|
||||||
|
"""
|
||||||
|
half = dim // 2
|
||||||
|
freqs = torch.exp(
|
||||||
|
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
||||||
|
).to(device=timesteps.device)
|
||||||
|
args = timesteps[:, None].to(timesteps.dtype) * freqs[None]
|
||||||
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||||
|
if dim % 2:
|
||||||
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
||||||
|
return embedding
|
||||||
|
|
||||||
|
|
||||||
|
def get_embedder(embed_type="fourier", num_freqs=-1, input_dim=3, degree=4,
|
||||||
|
num_levels=16, level_dim=2, per_level_scale=2, base_resolution=16,
|
||||||
|
log2_hashmap_size=19, desired_resolution=None):
|
||||||
|
if embed_type == "identity" or (embed_type == "fourier" and num_freqs == -1):
|
||||||
|
return nn.Identity(), input_dim
|
||||||
|
|
||||||
|
elif embed_type == "fourier":
|
||||||
|
embedder_obj = FourierEmbedder(num_freqs=num_freqs, input_dim=input_dim,
|
||||||
|
logspace=True, include_input=True)
|
||||||
|
return embedder_obj, embedder_obj.out_dim
|
||||||
|
|
||||||
|
elif embed_type == "hashgrid":
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
elif embed_type == "sphere_harmonic":
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
else:
|
||||||
|
raise ValueError(f"{embed_type} is not valid. Currently only supprts {VALID_EMBED_TYPES}")
|
||||||
@ -0,0 +1,286 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
import math
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
from hy3dgen.shapegen.bpt.miche.michelangelo.models.modules.checkpoint import checkpoint
|
||||||
|
|
||||||
|
# Initialize linear layers with normal distribution weights and zero biases
|
||||||
|
def init_linear(l, stddev):
|
||||||
|
nn.init.normal_(l.weight, std=stddev)
|
||||||
|
if l.bias is not None:
|
||||||
|
nn.init.constant_(l.bias, 0.0)
|
||||||
|
|
||||||
|
# Multihead attention module
|
||||||
|
class MultiheadAttention(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
device: torch.device,
|
||||||
|
dtype: torch.dtype,
|
||||||
|
n_ctx: int, # Context size
|
||||||
|
width: int, # Width of the input tensor
|
||||||
|
heads: int, # Number of attention heads
|
||||||
|
init_scale: float, # Initialization scale for weights
|
||||||
|
qkv_bias: bool, # Whether to use bias in QKV layers
|
||||||
|
flash: bool = False # Whether to use flash attention
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.n_ctx = n_ctx
|
||||||
|
self.width = width
|
||||||
|
self.heads = heads
|
||||||
|
self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias, device=device, dtype=dtype)
|
||||||
|
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
|
||||||
|
self.attention = QKVMultiheadAttention(device=device, dtype=dtype, heads=heads, n_ctx=n_ctx, flash=flash)
|
||||||
|
init_linear(self.c_qkv, init_scale)
|
||||||
|
init_linear(self.c_proj, init_scale)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.c_qkv(x)
|
||||||
|
x = checkpoint(self.attention, (x,), (), True)
|
||||||
|
x = self.c_proj(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
# QKV multihead attention module
|
||||||
|
class QKVMultiheadAttention(nn.Module):
|
||||||
|
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_ctx: int, flash: bool = False):
|
||||||
|
super().__init__()
|
||||||
|
self.device = device
|
||||||
|
self.dtype = dtype
|
||||||
|
self.heads = heads
|
||||||
|
self.n_ctx = n_ctx
|
||||||
|
self.flash = flash
|
||||||
|
|
||||||
|
def forward(self, qkv):
|
||||||
|
bs, n_ctx, width = qkv.shape
|
||||||
|
attn_ch = width // self.heads // 3
|
||||||
|
scale = 1 / math.sqrt(math.sqrt(attn_ch))
|
||||||
|
qkv = qkv.view(bs, n_ctx, self.heads, -1)
|
||||||
|
q, k, v = torch.split(qkv, attn_ch, dim=-1)
|
||||||
|
|
||||||
|
if self.flash:
|
||||||
|
out = F.scaled_dot_product_attention(q, k, v)
|
||||||
|
else:
|
||||||
|
weight = torch.einsum(
|
||||||
|
"bthc,bshc->bhts", q * scale, k * scale
|
||||||
|
) # More stable with f16 than dividing afterwards
|
||||||
|
wdtype = weight.dtype
|
||||||
|
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
|
||||||
|
out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
|
# Residual attention block module
|
||||||
|
class ResidualAttentionBlock(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
device: torch.device,
|
||||||
|
dtype: torch.dtype,
|
||||||
|
use_checkpoint: bool = False,
|
||||||
|
n_ctx: int, # Context size
|
||||||
|
width: int, # Width of the input tensor
|
||||||
|
heads: int, # Number of attention heads
|
||||||
|
init_scale: float, # Initialization scale for weights
|
||||||
|
qkv_bias: bool, # Whether to use bias in QKV layers
|
||||||
|
flash: bool = False # Whether to use flash attention
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.use_checkpoint = use_checkpoint
|
||||||
|
|
||||||
|
self.attn = MultiheadAttention(
|
||||||
|
device=device,
|
||||||
|
dtype=dtype,
|
||||||
|
n_ctx=n_ctx,
|
||||||
|
width=width,
|
||||||
|
heads=heads,
|
||||||
|
init_scale=init_scale,
|
||||||
|
qkv_bias=qkv_bias,
|
||||||
|
flash=flash
|
||||||
|
)
|
||||||
|
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
|
||||||
|
self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale)
|
||||||
|
self.ln_2 = nn.LayerNorm(width, device=device, dtype=dtype)
|
||||||
|
|
||||||
|
def _forward(self, x: torch.Tensor):
|
||||||
|
x = x + self.attn(self.ln_1(x))
|
||||||
|
x = x + self.mlp(self.ln_2(x))
|
||||||
|
return x
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor):
|
||||||
|
return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint)
|
||||||
|
|
||||||
|
# Multihead cross attention module
|
||||||
|
class MultiheadCrossAttention(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
device: torch.device,
|
||||||
|
dtype: torch.dtype,
|
||||||
|
n_data: Optional[int] = None,
|
||||||
|
data_width: Optional[int] = None,
|
||||||
|
width: int, # Width of the input tensor
|
||||||
|
heads: int, # Number of attention heads
|
||||||
|
init_scale: float, # Initialization scale for weights
|
||||||
|
qkv_bias: bool, # Whether to use bias in QKV layers
|
||||||
|
flash: bool = False # Whether to use flash attention
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.n_data = n_data
|
||||||
|
self.width = width
|
||||||
|
self.heads = heads
|
||||||
|
self.data_width = width if data_width is None else data_width
|
||||||
|
self.c_q = nn.Linear(width, width, bias=qkv_bias, device=device, dtype=dtype)
|
||||||
|
self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias, device=device, dtype=dtype)
|
||||||
|
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
|
||||||
|
self.attention = QKVMultiheadCrossAttention(
|
||||||
|
device=device, dtype=dtype, heads=heads, n_data=n_data, flash=flash
|
||||||
|
)
|
||||||
|
init_linear(self.c_q, init_scale)
|
||||||
|
init_linear(self.c_kv, init_scale)
|
||||||
|
init_linear(self.c_proj, init_scale)
|
||||||
|
|
||||||
|
def forward(self, x, data):
|
||||||
|
x = self.c_q(x)
|
||||||
|
data = self.c_kv(data)
|
||||||
|
x = checkpoint(self.attention, (x, data), (), True)
|
||||||
|
x = self.c_proj(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
# QKV multihead cross attention module
|
||||||
|
class QKVMultiheadCrossAttention(nn.Module):
|
||||||
|
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int,
|
||||||
|
flash: bool = False, n_data: Optional[int] = None):
|
||||||
|
|
||||||
|
super().__init__()
|
||||||
|
self.device = device
|
||||||
|
self.dtype = dtype
|
||||||
|
self.heads = heads
|
||||||
|
self.n_data = n_data
|
||||||
|
self.flash = flash
|
||||||
|
|
||||||
|
def forward(self, q, kv):
|
||||||
|
_, n_ctx, _ = q.shape
|
||||||
|
bs, n_data, width = kv.shape
|
||||||
|
attn_ch = width // self.heads // 2
|
||||||
|
scale = 1 / math.sqrt(math.sqrt(attn_ch))
|
||||||
|
q = q.view(bs, n_ctx, self.heads, -1)
|
||||||
|
kv = kv.view(bs, n_data, self.heads, -1)
|
||||||
|
k, v = torch.split(kv, attn_ch, dim=-1)
|
||||||
|
|
||||||
|
if self.flash:
|
||||||
|
out = F.scaled_dot_product_attention(q, k, v)
|
||||||
|
else:
|
||||||
|
weight = torch.einsum(
|
||||||
|
"bthc,bshc->bhts", q * scale, k * scale
|
||||||
|
) # More stable with f16 than dividing afterwards
|
||||||
|
wdtype = weight.dtype
|
||||||
|
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
|
||||||
|
out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
|
# Residual cross attention block module
|
||||||
|
class ResidualCrossAttentionBlock(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
device: Optional[torch.device],
|
||||||
|
dtype: Optional[torch.dtype],
|
||||||
|
n_data: Optional[int] = None,
|
||||||
|
data_width: Optional[int] = None,
|
||||||
|
width: int, # Width of the input tensor
|
||||||
|
heads: int, # Number of attention heads
|
||||||
|
init_scale: float, # Initialization scale for weights
|
||||||
|
qkv_bias: bool, # Whether to use bias in QKV layers
|
||||||
|
flash: bool = False # Whether to use flash attention
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
if data_width is None:
|
||||||
|
data_width = width
|
||||||
|
|
||||||
|
self.attn = MultiheadCrossAttention(
|
||||||
|
device=device,
|
||||||
|
dtype=dtype,
|
||||||
|
n_data=n_data,
|
||||||
|
width=width,
|
||||||
|
heads=heads,
|
||||||
|
data_width=data_width,
|
||||||
|
init_scale=init_scale,
|
||||||
|
qkv_bias=qkv_bias,
|
||||||
|
flash=flash,
|
||||||
|
)
|
||||||
|
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
|
||||||
|
self.ln_2 = nn.LayerNorm(data_width, device=device, dtype=dtype)
|
||||||
|
self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale)
|
||||||
|
self.ln_3 = nn.LayerNorm(width, device=device, dtype=dtype)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor, data: torch.Tensor):
|
||||||
|
x = x + self.attn(self.ln_1(x), self.ln_2(data))
|
||||||
|
x = x + self.mlp(self.ln_3(x))
|
||||||
|
return x
|
||||||
|
|
||||||
|
# MLP Module
|
||||||
|
class MLP(nn.Module):
|
||||||
|
def __init__(self, *,
|
||||||
|
device: Optional[torch.device],
|
||||||
|
dtype: Optional[torch.dtype],
|
||||||
|
width: int,
|
||||||
|
init_scale: float):
|
||||||
|
super().__init__()
|
||||||
|
self.width = width
|
||||||
|
self.c_fc = nn.Linear(width, width * 4, device=device, dtype=dtype)
|
||||||
|
self.c_proj = nn.Linear(width * 4, width, device=device, dtype=dtype)
|
||||||
|
self.gelu = nn.GELU()
|
||||||
|
init_linear(self.c_fc, init_scale)
|
||||||
|
init_linear(self.c_proj, init_scale)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.c_proj(self.gelu(self.c_fc(x)))
|
||||||
|
|
||||||
|
# Transformer Module
|
||||||
|
class Transformer(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
device: Optional[torch.device],
|
||||||
|
dtype: Optional[torch.dtype],
|
||||||
|
layers: int,
|
||||||
|
use_checkpoint: bool = False,
|
||||||
|
n_ctx: int, # Context size
|
||||||
|
width: int, # Width of the input tensor
|
||||||
|
heads: int, # Number of attention heads
|
||||||
|
init_scale: float, # Initialization scale for weights
|
||||||
|
qkv_bias: bool, # Whether to use bias in QKV layers
|
||||||
|
flash: bool = False # Whether to use flash attention
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.n_ctx = n_ctx
|
||||||
|
self.width = width
|
||||||
|
self.layers = layers
|
||||||
|
self.resblocks = nn.ModuleList(
|
||||||
|
[
|
||||||
|
ResidualAttentionBlock(
|
||||||
|
device=device,
|
||||||
|
dtype=dtype,
|
||||||
|
n_ctx=n_ctx,
|
||||||
|
width=width,
|
||||||
|
heads=heads,
|
||||||
|
init_scale=init_scale,
|
||||||
|
qkv_bias=qkv_bias,
|
||||||
|
flash=flash,
|
||||||
|
use_checkpoint=use_checkpoint
|
||||||
|
)
|
||||||
|
for _ in range(layers)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor):
|
||||||
|
for block in self.resblocks:
|
||||||
|
x = block(x)
|
||||||
|
return x
|
||||||
@ -0,0 +1 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,383 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
from typing import List, Tuple, Dict, Optional
|
||||||
|
from omegaconf import DictConfig
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torch import nn
|
||||||
|
from torch.optim import lr_scheduler
|
||||||
|
from typing import Union
|
||||||
|
from functools import partial
|
||||||
|
|
||||||
|
from .....miche.michelangelo.utils import instantiate_from_config
|
||||||
|
|
||||||
|
from .tsal_base import (
|
||||||
|
AlignedShapeAsLatentModule,
|
||||||
|
ShapeAsLatentModule,
|
||||||
|
Latent2MeshOutput,
|
||||||
|
AlignedMeshOutput
|
||||||
|
)
|
||||||
|
from .....miche.michelangelo.models.tsal.inference_utils import extract_geometry
|
||||||
|
import trimesh
|
||||||
|
|
||||||
|
class AlignedShapeAsLatentPLModule(nn.Module):
|
||||||
|
def __init__(self, *,
|
||||||
|
shape_module_cfg,
|
||||||
|
aligned_module_cfg,
|
||||||
|
loss_cfg,
|
||||||
|
optimizer_cfg: Optional[DictConfig] = None,
|
||||||
|
ckpt_path: Optional[str] = None,
|
||||||
|
ignore_keys: Union[Tuple[str], List[str]] = ()):
|
||||||
|
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
shape_model: ShapeAsLatentModule = instantiate_from_config(
|
||||||
|
shape_module_cfg, device=None, dtype=None
|
||||||
|
)
|
||||||
|
self.model: AlignedShapeAsLatentModule = instantiate_from_config(
|
||||||
|
aligned_module_cfg, shape_model=shape_model
|
||||||
|
)
|
||||||
|
|
||||||
|
self.loss = instantiate_from_config(loss_cfg)
|
||||||
|
|
||||||
|
self.optimizer_cfg = optimizer_cfg
|
||||||
|
|
||||||
|
if ckpt_path is not None:
|
||||||
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
||||||
|
|
||||||
|
def set_shape_model_only(self):
|
||||||
|
self.model.set_shape_model_only()
|
||||||
|
|
||||||
|
@property
|
||||||
|
def latent_shape(self):
|
||||||
|
return self.model.shape_model.latent_shape
|
||||||
|
|
||||||
|
@property
|
||||||
|
def zero_rank(self):
|
||||||
|
if self._trainer:
|
||||||
|
zero_rank = self.trainer.local_rank == 0
|
||||||
|
else:
|
||||||
|
zero_rank = True
|
||||||
|
|
||||||
|
return zero_rank
|
||||||
|
|
||||||
|
def init_from_ckpt(self, path, ignore_keys=()):
|
||||||
|
state_dict = torch.load(path, map_location="cpu")["state_dict"]
|
||||||
|
|
||||||
|
keys = list(state_dict.keys())
|
||||||
|
for k in keys:
|
||||||
|
for ik in ignore_keys:
|
||||||
|
if k.startswith(ik):
|
||||||
|
print("Deleting key {} from state_dict.".format(k))
|
||||||
|
del state_dict[k]
|
||||||
|
|
||||||
|
missing, unexpected = self.load_state_dict(state_dict, strict=False)
|
||||||
|
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
||||||
|
if len(missing) > 0:
|
||||||
|
print(f"Missing Keys: {missing}")
|
||||||
|
print(f"Unexpected Keys: {unexpected}")
|
||||||
|
|
||||||
|
def configure_optimizers(self) -> Tuple[List, List]:
|
||||||
|
lr = self.learning_rate
|
||||||
|
|
||||||
|
trainable_parameters = list(self.model.parameters())
|
||||||
|
|
||||||
|
if self.optimizer_cfg is None:
|
||||||
|
optimizers = [torch.optim.AdamW(trainable_parameters, lr=lr, betas=(0.9, 0.99), weight_decay=1e-3)]
|
||||||
|
schedulers = []
|
||||||
|
else:
|
||||||
|
optimizer = instantiate_from_config(self.optimizer_cfg.optimizer, params=trainable_parameters)
|
||||||
|
scheduler_func = instantiate_from_config(
|
||||||
|
self.optimizer_cfg.scheduler,
|
||||||
|
max_decay_steps=self.trainer.max_steps,
|
||||||
|
lr_max=lr
|
||||||
|
)
|
||||||
|
scheduler = {
|
||||||
|
"scheduler": lr_scheduler.LambdaLR(optimizer, lr_lambda=scheduler_func.schedule),
|
||||||
|
"interval": "step",
|
||||||
|
"frequency": 1
|
||||||
|
}
|
||||||
|
optimizers = [optimizer]
|
||||||
|
schedulers = [scheduler]
|
||||||
|
|
||||||
|
return optimizers, schedulers
|
||||||
|
|
||||||
|
def forward(self,
|
||||||
|
surface: torch.FloatTensor,
|
||||||
|
image: torch.FloatTensor,
|
||||||
|
text: torch.FloatTensor,
|
||||||
|
volume_queries: torch.FloatTensor):
|
||||||
|
# Args:
|
||||||
|
# surface (torch.FloatTensor):
|
||||||
|
# image (torch.FloatTensor):
|
||||||
|
# text (torch.FloatTensor):
|
||||||
|
# volume_queries (torch.FloatTensor):
|
||||||
|
#
|
||||||
|
# Returns:
|
||||||
|
|
||||||
|
embed_outputs, shape_z = self.model(surface, image, text)
|
||||||
|
|
||||||
|
shape_zq, posterior = self.model.shape_model.encode_kl_embed(shape_z)
|
||||||
|
latents = self.model.shape_model.decode(shape_zq)
|
||||||
|
logits = self.model.shape_model.query_geometry(volume_queries, latents)
|
||||||
|
|
||||||
|
return embed_outputs, logits, posterior
|
||||||
|
|
||||||
|
def encode(self, surface: torch.FloatTensor, sample_posterior=True):
|
||||||
|
|
||||||
|
pc = surface[..., 0:3]
|
||||||
|
feats = surface[..., 3:6]
|
||||||
|
|
||||||
|
shape_embed, shape_zq, posterior = self.model.shape_model.encode(
|
||||||
|
pc=pc, feats=feats, sample_posterior=sample_posterior
|
||||||
|
)
|
||||||
|
|
||||||
|
return shape_zq
|
||||||
|
|
||||||
|
def encode_latents(self, surface: torch.FloatTensor):
|
||||||
|
|
||||||
|
pc = surface[..., 0:3]
|
||||||
|
feats = surface[..., 3:6]
|
||||||
|
|
||||||
|
shape_embed, shape_latents = self.model.shape_model.encode_latents(
|
||||||
|
pc=pc, feats=feats
|
||||||
|
)
|
||||||
|
shape_embed = shape_embed.unsqueeze(1)
|
||||||
|
assert shape_embed.shape[1] == 1 and shape_latents.shape[1] == 256
|
||||||
|
cat_latents = torch.cat([shape_embed, shape_latents], dim=1)
|
||||||
|
|
||||||
|
return cat_latents
|
||||||
|
|
||||||
|
def recon(self, surface):
|
||||||
|
cat_latents = self.encode_latents(surface)
|
||||||
|
shape_latents = cat_latents[:, 1:]
|
||||||
|
shape_zq, posterior = self.model.shape_model.encode_kl_embed(shape_latents)
|
||||||
|
|
||||||
|
# decoding
|
||||||
|
latents = self.model.shape_model.decode(shape_zq)
|
||||||
|
geometric_func = partial(self.model.shape_model.query_geometry, latents=latents)
|
||||||
|
|
||||||
|
# reconstruction
|
||||||
|
mesh_v_f, has_surface = extract_geometry(
|
||||||
|
geometric_func=geometric_func,
|
||||||
|
device=surface.device,
|
||||||
|
batch_size=surface.shape[0],
|
||||||
|
bounds=(-1.25, -1.25, -1.25, 1.25, 1.25, 1.25),
|
||||||
|
octree_depth=7,
|
||||||
|
num_chunks=10000,
|
||||||
|
)
|
||||||
|
recon_mesh = trimesh.Trimesh(mesh_v_f[0][0], mesh_v_f[0][1])
|
||||||
|
|
||||||
|
return recon_mesh
|
||||||
|
|
||||||
|
|
||||||
|
def to_shape_latents(self, latents):
|
||||||
|
|
||||||
|
shape_zq, posterior = self.model.shape_model.encode_kl_embed(latents, sample_posterior = False)
|
||||||
|
return self.model.shape_model.decode(shape_zq)
|
||||||
|
|
||||||
|
def decode(self,
|
||||||
|
z_q,
|
||||||
|
bounds: Union[Tuple[float], List[float], float] = 1.1,
|
||||||
|
octree_depth: int = 7,
|
||||||
|
num_chunks: int = 10000) -> List[Latent2MeshOutput]:
|
||||||
|
|
||||||
|
latents = self.model.shape_model.decode(z_q) # latents: [bs, num_latents, dim]
|
||||||
|
outputs = self.latent2mesh(latents, bounds=bounds, octree_depth=octree_depth, num_chunks=num_chunks)
|
||||||
|
|
||||||
|
return outputs
|
||||||
|
|
||||||
|
def training_step(self, batch: Dict[str, torch.FloatTensor],
|
||||||
|
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
|
||||||
|
#Args:
|
||||||
|
# batch (dict): the batch sample, and it contains:
|
||||||
|
# - surface (torch.FloatTensor): [bs, n_surface, (3 + input_dim)]
|
||||||
|
# - image (torch.FloatTensor): [bs, 3, 224, 224]
|
||||||
|
# - text (torch.FloatTensor): [bs, num_templates, 77]
|
||||||
|
# - geo_points (torch.FloatTensor): [bs, n_pts, (3 + 1)]
|
||||||
|
#
|
||||||
|
# batch_idx (int):
|
||||||
|
#
|
||||||
|
# optimizer_idx (int):
|
||||||
|
#
|
||||||
|
# Returns:
|
||||||
|
# loss (torch.FloatTensor):
|
||||||
|
|
||||||
|
surface = batch["surface"]
|
||||||
|
image = batch["image"]
|
||||||
|
text = batch["text"]
|
||||||
|
|
||||||
|
volume_queries = batch["geo_points"][..., 0:3]
|
||||||
|
shape_labels = batch["geo_points"][..., -1]
|
||||||
|
|
||||||
|
embed_outputs, shape_logits, posteriors = self(surface, image, text, volume_queries)
|
||||||
|
|
||||||
|
aeloss, log_dict_ae = self.loss(
|
||||||
|
**embed_outputs,
|
||||||
|
posteriors=posteriors,
|
||||||
|
shape_logits=shape_logits,
|
||||||
|
shape_labels=shape_labels,
|
||||||
|
split="train"
|
||||||
|
)
|
||||||
|
|
||||||
|
self.log_dict(log_dict_ae, prog_bar=True, logger=True, batch_size=shape_logits.shape[0],
|
||||||
|
sync_dist=False, rank_zero_only=True)
|
||||||
|
|
||||||
|
return aeloss
|
||||||
|
|
||||||
|
def validation_step(self, batch: Dict[str, torch.FloatTensor], batch_idx: int) -> torch.FloatTensor:
|
||||||
|
|
||||||
|
surface = batch["surface"]
|
||||||
|
image = batch["image"]
|
||||||
|
text = batch["text"]
|
||||||
|
|
||||||
|
volume_queries = batch["geo_points"][..., 0:3]
|
||||||
|
shape_labels = batch["geo_points"][..., -1]
|
||||||
|
|
||||||
|
embed_outputs, shape_logits, posteriors = self(surface, image, text, volume_queries)
|
||||||
|
|
||||||
|
aeloss, log_dict_ae = self.loss(
|
||||||
|
**embed_outputs,
|
||||||
|
posteriors=posteriors,
|
||||||
|
shape_logits=shape_logits,
|
||||||
|
shape_labels=shape_labels,
|
||||||
|
split="val"
|
||||||
|
)
|
||||||
|
self.log_dict(log_dict_ae, prog_bar=True, logger=True, batch_size=shape_logits.shape[0],
|
||||||
|
sync_dist=False, rank_zero_only=True)
|
||||||
|
|
||||||
|
return aeloss
|
||||||
|
|
||||||
|
def visual_alignment(self,
|
||||||
|
surface: torch.FloatTensor,
|
||||||
|
image: torch.FloatTensor,
|
||||||
|
text: torch.FloatTensor,
|
||||||
|
description: Optional[List[str]] = None,
|
||||||
|
bounds: Union[Tuple[float], List[float]] = (-1.25, -1.25, -1.25, 1.25, 1.25, 1.25),
|
||||||
|
octree_depth: int = 7,
|
||||||
|
num_chunks: int = 10000) -> List[AlignedMeshOutput]:
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
Args:
|
||||||
|
surface:
|
||||||
|
image:
|
||||||
|
text:
|
||||||
|
description:
|
||||||
|
bounds:
|
||||||
|
octree_depth:
|
||||||
|
num_chunks:
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
mesh_outputs (List[AlignedMeshOutput]): the mesh outputs list.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
outputs = []
|
||||||
|
|
||||||
|
device = surface.device
|
||||||
|
bs = surface.shape[0]
|
||||||
|
|
||||||
|
embed_outputs, shape_z = self.model(surface, image, text)
|
||||||
|
|
||||||
|
# calculate the similarity
|
||||||
|
image_embed = embed_outputs["image_embed"]
|
||||||
|
text_embed = embed_outputs["text_embed"]
|
||||||
|
shape_embed = embed_outputs["shape_embed"]
|
||||||
|
|
||||||
|
# normalized features
|
||||||
|
shape_embed = F.normalize(shape_embed, dim=-1, p=2)
|
||||||
|
text_embed = F.normalize(text_embed, dim=-1, p=2)
|
||||||
|
image_embed = F.normalize(image_embed, dim=-1, p=2)
|
||||||
|
|
||||||
|
# B x B
|
||||||
|
shape_text_similarity = (100.0 * shape_embed @ text_embed.T).softmax(dim=-1)
|
||||||
|
|
||||||
|
# B x B
|
||||||
|
shape_image_similarity = (100.0 * shape_embed @ image_embed.T).softmax(dim=-1)
|
||||||
|
|
||||||
|
# shape reconstruction
|
||||||
|
shape_zq, posterior = self.model.shape_model.encode_kl_embed(shape_z)
|
||||||
|
latents = self.model.shape_model.decode(shape_zq)
|
||||||
|
geometric_func = partial(self.model.shape_model.query_geometry, latents=latents)
|
||||||
|
|
||||||
|
# 2. decode geometry
|
||||||
|
mesh_v_f, has_surface = extract_geometry(
|
||||||
|
geometric_func=geometric_func,
|
||||||
|
device=device,
|
||||||
|
batch_size=bs,
|
||||||
|
bounds=bounds,
|
||||||
|
octree_depth=octree_depth,
|
||||||
|
num_chunks=num_chunks,
|
||||||
|
disable=not self.zero_rank
|
||||||
|
)
|
||||||
|
|
||||||
|
# 3. decode texture
|
||||||
|
for i, ((mesh_v, mesh_f), is_surface) in enumerate(zip(mesh_v_f, has_surface)):
|
||||||
|
if not is_surface:
|
||||||
|
outputs.append(None)
|
||||||
|
continue
|
||||||
|
|
||||||
|
out = AlignedMeshOutput()
|
||||||
|
out.mesh_v = mesh_v
|
||||||
|
out.mesh_f = mesh_f
|
||||||
|
out.surface = surface[i].cpu().numpy()
|
||||||
|
out.image = image[i].cpu().numpy()
|
||||||
|
if description is not None:
|
||||||
|
out.text = description[i]
|
||||||
|
out.shape_text_similarity = shape_text_similarity[i, i]
|
||||||
|
out.shape_image_similarity = shape_image_similarity[i, i]
|
||||||
|
|
||||||
|
outputs.append(out)
|
||||||
|
|
||||||
|
return outputs
|
||||||
|
|
||||||
|
def latent2mesh(self,
|
||||||
|
latents: torch.FloatTensor,
|
||||||
|
bounds: Union[Tuple[float], List[float], float] = 1.1,
|
||||||
|
octree_depth: int = 7,
|
||||||
|
num_chunks: int = 10000) -> List[Latent2MeshOutput]:
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
Args:
|
||||||
|
latents: [bs, num_latents, dim]
|
||||||
|
bounds:
|
||||||
|
octree_depth:
|
||||||
|
num_chunks:
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
mesh_outputs (List[MeshOutput]): the mesh outputs list.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
outputs = []
|
||||||
|
|
||||||
|
geometric_func = partial(self.model.shape_model.query_geometry, latents=latents)
|
||||||
|
|
||||||
|
# 2. decode geometry
|
||||||
|
device = latents.device
|
||||||
|
mesh_v_f, has_surface = extract_geometry(
|
||||||
|
geometric_func=geometric_func,
|
||||||
|
device=device,
|
||||||
|
batch_size=len(latents),
|
||||||
|
bounds=bounds,
|
||||||
|
octree_depth=octree_depth,
|
||||||
|
num_chunks=num_chunks,
|
||||||
|
disable=not self.zero_rank
|
||||||
|
)
|
||||||
|
|
||||||
|
# 3. decode texture
|
||||||
|
for i, ((mesh_v, mesh_f), is_surface) in enumerate(zip(mesh_v_f, has_surface)):
|
||||||
|
if not is_surface:
|
||||||
|
outputs.append(None)
|
||||||
|
continue
|
||||||
|
|
||||||
|
out = Latent2MeshOutput()
|
||||||
|
out.mesh_v = mesh_v
|
||||||
|
out.mesh_f = mesh_f
|
||||||
|
|
||||||
|
outputs.append(out)
|
||||||
|
|
||||||
|
return outputs
|
||||||
@ -0,0 +1,118 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from einops import rearrange
|
||||||
|
from transformers import CLIPModel
|
||||||
|
|
||||||
|
from hy3dgen.shapegen.bpt.miche.michelangelo.models.tsal.tsal_base import AlignedShapeAsLatentModule
|
||||||
|
|
||||||
|
|
||||||
|
class CLIPAlignedShapeAsLatentModule(AlignedShapeAsLatentModule):
|
||||||
|
|
||||||
|
def __init__(self, *,
|
||||||
|
shape_model,
|
||||||
|
clip_model_version: str = "openai/clip-vit-large-patch14"):
|
||||||
|
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
# self.clip_model: CLIPModel = CLIPModel.from_pretrained(clip_model_version)
|
||||||
|
# for params in self.clip_model.parameters():
|
||||||
|
# params.requires_grad = False
|
||||||
|
self.clip_model = None
|
||||||
|
self.shape_model = shape_model
|
||||||
|
self.shape_projection = nn.Parameter(torch.empty(self.shape_model.width, self.shape_model.width))
|
||||||
|
# nn.init.normal_(self.shape_projection, std=self.shape_model.width ** -0.5)
|
||||||
|
|
||||||
|
def set_shape_model_only(self):
|
||||||
|
self.clip_model = None
|
||||||
|
|
||||||
|
def encode_shape_embed(self, surface, return_latents: bool = False):
|
||||||
|
"""
|
||||||
|
|
||||||
|
Args:
|
||||||
|
surface (torch.FloatTensor): [bs, n, 3 + c]
|
||||||
|
return_latents (bool):
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
x (torch.FloatTensor): [bs, projection_dim]
|
||||||
|
shape_latents (torch.FloatTensor): [bs, m, d]
|
||||||
|
"""
|
||||||
|
|
||||||
|
pc = surface[..., 0:3]
|
||||||
|
feats = surface[..., 3:]
|
||||||
|
|
||||||
|
shape_embed, shape_latents = self.shape_model.encode_latents(pc, feats)
|
||||||
|
x = shape_embed @ self.shape_projection
|
||||||
|
|
||||||
|
if return_latents:
|
||||||
|
return x, shape_latents
|
||||||
|
else:
|
||||||
|
return x
|
||||||
|
|
||||||
|
def encode_image_embed(self, image):
|
||||||
|
"""
|
||||||
|
|
||||||
|
Args:
|
||||||
|
image (torch.FloatTensor): [bs, 3, h, w]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
x (torch.FloatTensor): [bs, projection_dim]
|
||||||
|
"""
|
||||||
|
|
||||||
|
x = self.clip_model.get_image_features(image)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
def encode_text_embed(self, text):
|
||||||
|
x = self.clip_model.get_text_features(text)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def forward(self, surface, image, text):
|
||||||
|
"""
|
||||||
|
|
||||||
|
Args:
|
||||||
|
surface (torch.FloatTensor):
|
||||||
|
image (torch.FloatTensor): [bs, 3, 224, 224]
|
||||||
|
text (torch.LongTensor): [bs, num_templates, 77]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
embed_outputs (dict): the embedding outputs, and it contains:
|
||||||
|
- image_embed (torch.FloatTensor):
|
||||||
|
- text_embed (torch.FloatTensor):
|
||||||
|
- shape_embed (torch.FloatTensor):
|
||||||
|
- logit_scale (float):
|
||||||
|
"""
|
||||||
|
|
||||||
|
# # text embedding
|
||||||
|
# text_embed_all = []
|
||||||
|
# for i in range(text.shape[0]):
|
||||||
|
# text_for_one_sample = text[i]
|
||||||
|
# text_embed = self.encode_text_embed(text_for_one_sample)
|
||||||
|
# text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
|
||||||
|
# text_embed = text_embed.mean(dim=0)
|
||||||
|
# text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
|
||||||
|
# text_embed_all.append(text_embed)
|
||||||
|
# text_embed_all = torch.stack(text_embed_all)
|
||||||
|
|
||||||
|
b = text.shape[0]
|
||||||
|
text_tokens = rearrange(text, "b t l -> (b t) l")
|
||||||
|
text_embed = self.encode_text_embed(text_tokens)
|
||||||
|
text_embed = rearrange(text_embed, "(b t) d -> b t d", b=b)
|
||||||
|
text_embed = text_embed.mean(dim=1)
|
||||||
|
text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
|
||||||
|
|
||||||
|
# image embedding
|
||||||
|
image_embed = self.encode_image_embed(image)
|
||||||
|
|
||||||
|
# shape embedding
|
||||||
|
shape_embed, shape_latents = self.encode_shape_embed(surface, return_latents=True)
|
||||||
|
|
||||||
|
embed_outputs = {
|
||||||
|
"image_embed": image_embed,
|
||||||
|
"text_embed": text_embed,
|
||||||
|
"shape_embed": shape_embed,
|
||||||
|
# "logit_scale": self.clip_model.logit_scale.exp()
|
||||||
|
}
|
||||||
|
|
||||||
|
return embed_outputs, shape_latents
|
||||||
@ -0,0 +1,76 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from tqdm import tqdm
|
||||||
|
from einops import repeat
|
||||||
|
import numpy as np
|
||||||
|
from typing import Callable, Tuple, List, Union, Optional
|
||||||
|
from skimage import measure
|
||||||
|
|
||||||
|
from .....miche.michelangelo.graphics.primitives import generate_dense_grid_points
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def extract_geometry(geometric_func: Callable,
|
||||||
|
device: torch.device,
|
||||||
|
batch_size: int = 1,
|
||||||
|
bounds: Union[Tuple[float], List[float], float] = (-1.25, -1.25, -1.25, 1.25, 1.25, 1.25),
|
||||||
|
octree_depth: int = 7,
|
||||||
|
num_chunks: int = 10000,
|
||||||
|
disable: bool = True):
|
||||||
|
|
||||||
|
# Args:
|
||||||
|
# geometric_func:
|
||||||
|
# device:
|
||||||
|
# bounds:
|
||||||
|
# octree_depth:
|
||||||
|
# batch_size:
|
||||||
|
# num_chunks:
|
||||||
|
# disable:
|
||||||
|
# Returns:
|
||||||
|
|
||||||
|
if isinstance(bounds, float):
|
||||||
|
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
|
||||||
|
|
||||||
|
bbox_min = np.array(bounds[0:3])
|
||||||
|
bbox_max = np.array(bounds[3:6])
|
||||||
|
bbox_size = bbox_max - bbox_min
|
||||||
|
|
||||||
|
xyz_samples, grid_size, length = generate_dense_grid_points(
|
||||||
|
bbox_min=bbox_min,
|
||||||
|
bbox_max=bbox_max,
|
||||||
|
octree_depth=octree_depth,
|
||||||
|
indexing="ij"
|
||||||
|
)
|
||||||
|
xyz_samples = torch.FloatTensor(xyz_samples)
|
||||||
|
|
||||||
|
batch_logits = []
|
||||||
|
for start in tqdm(range(0, xyz_samples.shape[0], num_chunks),
|
||||||
|
desc="Implicit Function:", disable=disable, leave=False):
|
||||||
|
queries = xyz_samples[start: start + num_chunks, :].to(device)
|
||||||
|
batch_queries = repeat(queries, "p c -> b p c", b=batch_size)
|
||||||
|
|
||||||
|
logits = geometric_func(batch_queries)
|
||||||
|
batch_logits.append(logits.cpu())
|
||||||
|
|
||||||
|
grid_logits = torch.cat(batch_logits, dim=1).view((batch_size, grid_size[0], grid_size[1], grid_size[2])).numpy()
|
||||||
|
|
||||||
|
mesh_v_f = []
|
||||||
|
has_surface = np.zeros((batch_size,), dtype=np.bool_)
|
||||||
|
for i in range(batch_size):
|
||||||
|
try:
|
||||||
|
vertices, faces, normals, _ = measure.marching_cubes(grid_logits[i], 0, method="lewiner")
|
||||||
|
vertices = vertices / grid_size * bbox_size + bbox_min
|
||||||
|
# vertices[:, [0, 1]] = vertices[:, [1, 0]]
|
||||||
|
mesh_v_f.append((vertices.astype(np.float32), np.ascontiguousarray(faces)))
|
||||||
|
has_surface[i] = True
|
||||||
|
|
||||||
|
except ValueError:
|
||||||
|
mesh_v_f.append((None, None))
|
||||||
|
has_surface[i] = False
|
||||||
|
|
||||||
|
except RuntimeError:
|
||||||
|
mesh_v_f.append((None, None))
|
||||||
|
has_surface[i] = False
|
||||||
|
|
||||||
|
return mesh_v_f, has_surface
|
||||||
130
hy3dgen/shapegen/bpt/miche/michelangelo/models/tsal/loss.py
Normal file
130
hy3dgen/shapegen/bpt/miche/michelangelo/models/tsal/loss.py
Normal file
@ -0,0 +1,130 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
from hy3dgen.shapegen.bpt.miche.michelangelo.models.modules.distributions import DiagonalGaussianDistribution
|
||||||
|
from hy3dgen.shapegen.bpt.miche.michelangelo.utils import misc
|
||||||
|
|
||||||
|
|
||||||
|
class ContrastKLNearFar(nn.Module):
|
||||||
|
def __init__(self,
|
||||||
|
contrast_weight: float = 1.0,
|
||||||
|
near_weight: float = 0.1,
|
||||||
|
kl_weight: float = 1.0,
|
||||||
|
num_near_samples: Optional[int] = None):
|
||||||
|
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.labels = None
|
||||||
|
self.last_local_batch_size = None
|
||||||
|
|
||||||
|
self.contrast_weight = contrast_weight
|
||||||
|
self.near_weight = near_weight
|
||||||
|
self.kl_weight = kl_weight
|
||||||
|
self.num_near_samples = num_near_samples
|
||||||
|
self.geo_criterion = nn.BCEWithLogitsLoss()
|
||||||
|
|
||||||
|
def forward(self,
|
||||||
|
shape_embed: torch.FloatTensor,
|
||||||
|
text_embed: torch.FloatTensor,
|
||||||
|
image_embed: torch.FloatTensor,
|
||||||
|
logit_scale: torch.FloatTensor,
|
||||||
|
posteriors: Optional[DiagonalGaussianDistribution],
|
||||||
|
shape_logits: torch.FloatTensor,
|
||||||
|
shape_labels: torch.FloatTensor,
|
||||||
|
split: Optional[str] = "train", **kwargs):
|
||||||
|
|
||||||
|
# shape_embed: torch.FloatTensor
|
||||||
|
# text_embed: torch.FloatTensor
|
||||||
|
# image_embed: torch.FloatTensor
|
||||||
|
# logit_scale: torch.FloatTensor
|
||||||
|
# posteriors: Optional[DiagonalGaussianDistribution]
|
||||||
|
# shape_logits: torch.FloatTensor
|
||||||
|
# shape_labels: torch.FloatTensor
|
||||||
|
|
||||||
|
local_batch_size = shape_embed.size(0)
|
||||||
|
|
||||||
|
if local_batch_size != self.last_local_batch_size:
|
||||||
|
self.labels = local_batch_size * misc.get_rank() + torch.arange(
|
||||||
|
local_batch_size, device=shape_embed.device
|
||||||
|
).long()
|
||||||
|
self.last_local_batch_size = local_batch_size
|
||||||
|
|
||||||
|
# normalized features
|
||||||
|
shape_embed = F.normalize(shape_embed, dim=-1, p=2)
|
||||||
|
text_embed = F.normalize(text_embed, dim=-1, p=2)
|
||||||
|
image_embed = F.normalize(image_embed, dim=-1, p=2)
|
||||||
|
|
||||||
|
# gather features from all GPUs
|
||||||
|
shape_embed_all, text_embed_all, image_embed_all = misc.all_gather_batch(
|
||||||
|
[shape_embed, text_embed, image_embed]
|
||||||
|
)
|
||||||
|
|
||||||
|
# cosine similarity as logits
|
||||||
|
logits_per_shape_text = logit_scale * shape_embed @ text_embed_all.t()
|
||||||
|
logits_per_text_shape = logit_scale * text_embed @ shape_embed_all.t()
|
||||||
|
logits_per_shape_image = logit_scale * shape_embed @ image_embed_all.t()
|
||||||
|
logits_per_image_shape = logit_scale * image_embed @ shape_embed_all.t()
|
||||||
|
contrast_loss = (F.cross_entropy(logits_per_shape_text, self.labels) +
|
||||||
|
F.cross_entropy(logits_per_text_shape, self.labels)) / 2 + \
|
||||||
|
(F.cross_entropy(logits_per_shape_image, self.labels) +
|
||||||
|
F.cross_entropy(logits_per_image_shape, self.labels)) / 2
|
||||||
|
|
||||||
|
# shape reconstruction
|
||||||
|
if self.num_near_samples is None:
|
||||||
|
num_vol = shape_logits.shape[1] // 2
|
||||||
|
else:
|
||||||
|
num_vol = shape_logits.shape[1] - self.num_near_samples
|
||||||
|
|
||||||
|
vol_logits = shape_logits[:, 0:num_vol]
|
||||||
|
vol_labels = shape_labels[:, 0:num_vol]
|
||||||
|
|
||||||
|
near_logits = shape_logits[:, num_vol:]
|
||||||
|
near_labels = shape_labels[:, num_vol:]
|
||||||
|
|
||||||
|
# occupancy loss
|
||||||
|
vol_bce = self.geo_criterion(vol_logits.float(), vol_labels.float())
|
||||||
|
near_bce = self.geo_criterion(near_logits.float(), near_labels.float())
|
||||||
|
|
||||||
|
if posteriors is None:
|
||||||
|
kl_loss = torch.tensor(0.0, dtype=vol_logits.dtype, device=vol_logits.device)
|
||||||
|
else:
|
||||||
|
kl_loss = posteriors.kl(dims=(1, 2))
|
||||||
|
kl_loss = torch.mean(kl_loss)
|
||||||
|
|
||||||
|
loss = vol_bce + near_bce * self.near_weight + kl_loss * self.kl_weight + contrast_loss * self.contrast_weight
|
||||||
|
|
||||||
|
# compute accuracy
|
||||||
|
with torch.no_grad():
|
||||||
|
pred = torch.argmax(logits_per_shape_text, dim=-1)
|
||||||
|
correct = pred.eq(self.labels).sum()
|
||||||
|
shape_text_acc = 100 * correct / local_batch_size
|
||||||
|
|
||||||
|
pred = torch.argmax(logits_per_shape_image, dim=-1)
|
||||||
|
correct = pred.eq(self.labels).sum()
|
||||||
|
shape_image_acc = 100 * correct / local_batch_size
|
||||||
|
|
||||||
|
preds = shape_logits >= 0
|
||||||
|
accuracy = (preds == shape_labels).float()
|
||||||
|
accuracy = accuracy.mean()
|
||||||
|
|
||||||
|
log = {
|
||||||
|
"{}/contrast".format(split): contrast_loss.clone().detach(),
|
||||||
|
"{}/near".format(split): near_bce.detach(),
|
||||||
|
"{}/far".format(split): vol_bce.detach(),
|
||||||
|
"{}/kl".format(split): kl_loss.detach(),
|
||||||
|
"{}/shape_text_acc".format(split): shape_text_acc,
|
||||||
|
"{}/shape_image_acc".format(split): shape_image_acc,
|
||||||
|
"{}/total_loss".format(split): loss.clone().detach(),
|
||||||
|
"{}/accuracy".format(split): accuracy,
|
||||||
|
}
|
||||||
|
|
||||||
|
if posteriors is not None:
|
||||||
|
log[f"{split}/mean"] = posteriors.mean.mean().detach()
|
||||||
|
log[f"{split}/std_mean"] = posteriors.std.mean().detach()
|
||||||
|
log[f"{split}/std_max"] = posteriors.std.max().detach()
|
||||||
|
|
||||||
|
return loss, log
|
||||||
@ -0,0 +1,410 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from typing import Optional
|
||||||
|
from einops import repeat
|
||||||
|
import math
|
||||||
|
|
||||||
|
from hy3dgen.shapegen.bpt.miche.michelangelo.models.modules import checkpoint
|
||||||
|
from hy3dgen.shapegen.bpt.miche.michelangelo.models.modules.embedder import FourierEmbedder
|
||||||
|
from hy3dgen.shapegen.bpt.miche.michelangelo.models.modules.distributions import DiagonalGaussianDistribution
|
||||||
|
from hy3dgen.shapegen.bpt.miche.michelangelo.models.modules.transformer_blocks import (
|
||||||
|
ResidualCrossAttentionBlock,
|
||||||
|
Transformer
|
||||||
|
)
|
||||||
|
|
||||||
|
from .tsal_base import ShapeAsLatentModule
|
||||||
|
|
||||||
|
|
||||||
|
class CrossAttentionEncoder(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, *,
|
||||||
|
device: Optional[torch.device],
|
||||||
|
dtype: Optional[torch.dtype],
|
||||||
|
num_latents: int,
|
||||||
|
fourier_embedder: FourierEmbedder,
|
||||||
|
point_feats: int,
|
||||||
|
width: int,
|
||||||
|
heads: int,
|
||||||
|
layers: int,
|
||||||
|
init_scale: float = 0.25,
|
||||||
|
qkv_bias: bool = True,
|
||||||
|
flash: bool = False,
|
||||||
|
use_ln_post: bool = False,
|
||||||
|
use_checkpoint: bool = False):
|
||||||
|
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.use_checkpoint = use_checkpoint
|
||||||
|
self.num_latents = num_latents
|
||||||
|
|
||||||
|
self.query = nn.Parameter(torch.randn((num_latents, width), device=device, dtype=dtype) * 0.02)
|
||||||
|
|
||||||
|
self.fourier_embedder = fourier_embedder
|
||||||
|
self.input_proj = nn.Linear(self.fourier_embedder.out_dim + point_feats, width, device=device, dtype=dtype)
|
||||||
|
self.cross_attn = ResidualCrossAttentionBlock(
|
||||||
|
device=device,
|
||||||
|
dtype=dtype,
|
||||||
|
width=width,
|
||||||
|
heads=heads,
|
||||||
|
init_scale=init_scale,
|
||||||
|
qkv_bias=qkv_bias,
|
||||||
|
flash=flash,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.self_attn = Transformer(
|
||||||
|
device=device,
|
||||||
|
dtype=dtype,
|
||||||
|
n_ctx=num_latents,
|
||||||
|
width=width,
|
||||||
|
layers=layers,
|
||||||
|
heads=heads,
|
||||||
|
init_scale=init_scale,
|
||||||
|
qkv_bias=qkv_bias,
|
||||||
|
flash=flash,
|
||||||
|
use_checkpoint=False
|
||||||
|
)
|
||||||
|
|
||||||
|
if use_ln_post:
|
||||||
|
self.ln_post = nn.LayerNorm(width, dtype=dtype, device=device)
|
||||||
|
else:
|
||||||
|
self.ln_post = None
|
||||||
|
|
||||||
|
def _forward(self, pc, feats):
|
||||||
|
|
||||||
|
# Args:
|
||||||
|
# pc (torch.FloatTensor): [B, N, 3]
|
||||||
|
# feats (torch.FloatTensor or None): [B, N, C]
|
||||||
|
|
||||||
|
bs = pc.shape[0]
|
||||||
|
|
||||||
|
data = self.fourier_embedder(pc)
|
||||||
|
if feats is not None:
|
||||||
|
data = torch.cat([data, feats], dim=-1)
|
||||||
|
data = self.input_proj(data)
|
||||||
|
|
||||||
|
query = repeat(self.query, "m c -> b m c", b=bs)
|
||||||
|
latents = self.cross_attn(query, data)
|
||||||
|
latents = self.self_attn(latents)
|
||||||
|
|
||||||
|
if self.ln_post is not None:
|
||||||
|
latents = self.ln_post(latents)
|
||||||
|
|
||||||
|
return latents, pc
|
||||||
|
|
||||||
|
def forward(self, pc: torch.FloatTensor, feats: Optional[torch.FloatTensor] = None):
|
||||||
|
|
||||||
|
# Args:
|
||||||
|
# pc (torch.FloatTensor): [B, N, 3]
|
||||||
|
# feats (torch.FloatTensor or None): [B, N, C]
|
||||||
|
|
||||||
|
|
||||||
|
return checkpoint(self._forward, (pc, feats), self.parameters(), self.use_checkpoint)
|
||||||
|
|
||||||
|
|
||||||
|
class CrossAttentionDecoder(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, *,
|
||||||
|
device: Optional[torch.device],
|
||||||
|
dtype: Optional[torch.dtype],
|
||||||
|
num_latents: int,
|
||||||
|
out_channels: int,
|
||||||
|
fourier_embedder: FourierEmbedder,
|
||||||
|
width: int,
|
||||||
|
heads: int,
|
||||||
|
init_scale: float = 0.25,
|
||||||
|
qkv_bias: bool = True,
|
||||||
|
flash: bool = False,
|
||||||
|
use_checkpoint: bool = False):
|
||||||
|
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.use_checkpoint = use_checkpoint
|
||||||
|
self.fourier_embedder = fourier_embedder
|
||||||
|
|
||||||
|
self.query_proj = nn.Linear(self.fourier_embedder.out_dim, width, device=device, dtype=dtype)
|
||||||
|
|
||||||
|
self.cross_attn_decoder = ResidualCrossAttentionBlock(
|
||||||
|
device=device,
|
||||||
|
dtype=dtype,
|
||||||
|
n_data=num_latents,
|
||||||
|
width=width,
|
||||||
|
heads=heads,
|
||||||
|
init_scale=init_scale,
|
||||||
|
qkv_bias=qkv_bias,
|
||||||
|
flash=flash
|
||||||
|
)
|
||||||
|
|
||||||
|
self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
|
||||||
|
self.output_proj = nn.Linear(width, out_channels, device=device, dtype=dtype)
|
||||||
|
|
||||||
|
def _forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
|
||||||
|
queries = self.query_proj(self.fourier_embedder(queries))
|
||||||
|
x = self.cross_attn_decoder(queries, latents)
|
||||||
|
x = self.ln_post(x)
|
||||||
|
x = self.output_proj(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
|
||||||
|
return checkpoint(self._forward, (queries, latents), self.parameters(), self.use_checkpoint)
|
||||||
|
|
||||||
|
|
||||||
|
class ShapeAsLatentPerceiver(ShapeAsLatentModule):
|
||||||
|
def __init__(self, *,
|
||||||
|
device: Optional[torch.device],
|
||||||
|
dtype: Optional[torch.dtype],
|
||||||
|
num_latents: int,
|
||||||
|
point_feats: int = 0,
|
||||||
|
embed_dim: int = 0,
|
||||||
|
num_freqs: int = 8,
|
||||||
|
include_pi: bool = True,
|
||||||
|
width: int,
|
||||||
|
heads: int,
|
||||||
|
num_encoder_layers: int,
|
||||||
|
num_decoder_layers: int,
|
||||||
|
init_scale: float = 0.25,
|
||||||
|
qkv_bias: bool = True,
|
||||||
|
flash: bool = False,
|
||||||
|
use_ln_post: bool = False,
|
||||||
|
use_checkpoint: bool = False):
|
||||||
|
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.use_checkpoint = use_checkpoint
|
||||||
|
|
||||||
|
self.num_latents = num_latents
|
||||||
|
self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)
|
||||||
|
|
||||||
|
init_scale = init_scale * math.sqrt(1.0 / width)
|
||||||
|
self.encoder = CrossAttentionEncoder(
|
||||||
|
device=device,
|
||||||
|
dtype=dtype,
|
||||||
|
fourier_embedder=self.fourier_embedder,
|
||||||
|
num_latents=num_latents,
|
||||||
|
point_feats=point_feats,
|
||||||
|
width=width,
|
||||||
|
heads=heads,
|
||||||
|
layers=num_encoder_layers,
|
||||||
|
init_scale=init_scale,
|
||||||
|
qkv_bias=qkv_bias,
|
||||||
|
flash=flash,
|
||||||
|
use_ln_post=use_ln_post,
|
||||||
|
use_checkpoint=use_checkpoint
|
||||||
|
)
|
||||||
|
|
||||||
|
self.embed_dim = embed_dim
|
||||||
|
if embed_dim > 0:
|
||||||
|
# VAE embed
|
||||||
|
self.pre_kl = nn.Linear(width, embed_dim * 2, device=device, dtype=dtype)
|
||||||
|
self.post_kl = nn.Linear(embed_dim, width, device=device, dtype=dtype)
|
||||||
|
self.latent_shape = (num_latents, embed_dim)
|
||||||
|
else:
|
||||||
|
self.latent_shape = (num_latents, width)
|
||||||
|
|
||||||
|
self.transformer = Transformer(
|
||||||
|
device=device,
|
||||||
|
dtype=dtype,
|
||||||
|
n_ctx=num_latents,
|
||||||
|
width=width,
|
||||||
|
layers=num_decoder_layers,
|
||||||
|
heads=heads,
|
||||||
|
init_scale=init_scale,
|
||||||
|
qkv_bias=qkv_bias,
|
||||||
|
flash=flash,
|
||||||
|
use_checkpoint=use_checkpoint
|
||||||
|
)
|
||||||
|
|
||||||
|
# geometry decoder
|
||||||
|
self.geo_decoder = CrossAttentionDecoder(
|
||||||
|
device=device,
|
||||||
|
dtype=dtype,
|
||||||
|
fourier_embedder=self.fourier_embedder,
|
||||||
|
out_channels=1,
|
||||||
|
num_latents=num_latents,
|
||||||
|
width=width,
|
||||||
|
heads=heads,
|
||||||
|
init_scale=init_scale,
|
||||||
|
qkv_bias=qkv_bias,
|
||||||
|
flash=flash,
|
||||||
|
use_checkpoint=use_checkpoint
|
||||||
|
)
|
||||||
|
|
||||||
|
def encode(self,
|
||||||
|
pc: torch.FloatTensor,
|
||||||
|
feats: Optional[torch.FloatTensor] = None,
|
||||||
|
sample_posterior: bool = True):
|
||||||
|
|
||||||
|
|
||||||
|
# Args:
|
||||||
|
# pc (torch.FloatTensor): [B, N, 3]
|
||||||
|
# feats (torch.FloatTensor or None): [B, N, C]
|
||||||
|
# sample_posterior (bool):
|
||||||
|
|
||||||
|
# Returns:
|
||||||
|
# latents (torch.FloatTensor)
|
||||||
|
# center_pos (torch.FloatTensor or None):
|
||||||
|
# posterior (DiagonalGaussianDistribution or None):
|
||||||
|
|
||||||
|
|
||||||
|
latents, center_pos = self.encoder(pc, feats)
|
||||||
|
|
||||||
|
posterior = None
|
||||||
|
if self.embed_dim > 0:
|
||||||
|
moments = self.pre_kl(latents)
|
||||||
|
posterior = DiagonalGaussianDistribution(moments, feat_dim=-1)
|
||||||
|
|
||||||
|
if sample_posterior:
|
||||||
|
latents = posterior.sample()
|
||||||
|
else:
|
||||||
|
latents = posterior.mode()
|
||||||
|
|
||||||
|
return latents, center_pos, posterior
|
||||||
|
|
||||||
|
def decode(self, latents: torch.FloatTensor):
|
||||||
|
latents = self.post_kl(latents)
|
||||||
|
return self.transformer(latents)
|
||||||
|
|
||||||
|
def query_geometry(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
|
||||||
|
logits = self.geo_decoder(queries, latents).squeeze(-1)
|
||||||
|
return logits
|
||||||
|
|
||||||
|
def forward(self,
|
||||||
|
pc: torch.FloatTensor,
|
||||||
|
feats: torch.FloatTensor,
|
||||||
|
volume_queries: torch.FloatTensor,
|
||||||
|
sample_posterior: bool = True):
|
||||||
|
|
||||||
|
# Args:
|
||||||
|
# pc (torch.FloatTensor): [B, N, 3]
|
||||||
|
# feats (torch.FloatTensor or None): [B, N, C]
|
||||||
|
# volume_queries (torch.FloatTensor): [B, P, 3]
|
||||||
|
# sample_posterior (bool):
|
||||||
|
|
||||||
|
# Returns:
|
||||||
|
# logits (torch.FloatTensor): [B, P]
|
||||||
|
# center_pos (torch.FloatTensor): [B, M, 3]
|
||||||
|
# posterior (DiagonalGaussianDistribution or None).
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
latents, center_pos, posterior = self.encode(pc, feats, sample_posterior=sample_posterior)
|
||||||
|
|
||||||
|
latents = self.decode(latents)
|
||||||
|
logits = self.query_geometry(volume_queries, latents)
|
||||||
|
|
||||||
|
return logits, center_pos, posterior
|
||||||
|
|
||||||
|
|
||||||
|
class AlignedShapeLatentPerceiver(ShapeAsLatentPerceiver):
|
||||||
|
|
||||||
|
def __init__(self, *,
|
||||||
|
device: Optional[torch.device],
|
||||||
|
dtype: Optional[torch.dtype],
|
||||||
|
num_latents: int,
|
||||||
|
point_feats: int = 0,
|
||||||
|
embed_dim: int = 0,
|
||||||
|
num_freqs: int = 8,
|
||||||
|
include_pi: bool = True,
|
||||||
|
width: int,
|
||||||
|
heads: int,
|
||||||
|
num_encoder_layers: int,
|
||||||
|
num_decoder_layers: int,
|
||||||
|
init_scale: float = 0.25,
|
||||||
|
qkv_bias: bool = True,
|
||||||
|
flash: bool = False,
|
||||||
|
use_ln_post: bool = False,
|
||||||
|
use_checkpoint: bool = False):
|
||||||
|
|
||||||
|
super().__init__(
|
||||||
|
device=device,
|
||||||
|
dtype=dtype,
|
||||||
|
num_latents=1 + num_latents,
|
||||||
|
point_feats=point_feats,
|
||||||
|
embed_dim=embed_dim,
|
||||||
|
num_freqs=num_freqs,
|
||||||
|
include_pi=include_pi,
|
||||||
|
width=width,
|
||||||
|
heads=heads,
|
||||||
|
num_encoder_layers=num_encoder_layers,
|
||||||
|
num_decoder_layers=num_decoder_layers,
|
||||||
|
init_scale=init_scale,
|
||||||
|
qkv_bias=qkv_bias,
|
||||||
|
flash=flash,
|
||||||
|
use_ln_post=use_ln_post,
|
||||||
|
use_checkpoint=use_checkpoint
|
||||||
|
)
|
||||||
|
|
||||||
|
self.width = width
|
||||||
|
|
||||||
|
def encode(self,
|
||||||
|
pc: torch.FloatTensor,
|
||||||
|
feats: Optional[torch.FloatTensor] = None,
|
||||||
|
sample_posterior: bool = True):
|
||||||
|
|
||||||
|
# Args:
|
||||||
|
# pc (torch.FloatTensor): [B, N, 3]
|
||||||
|
# feats (torch.FloatTensor or None): [B, N, c]
|
||||||
|
# sample_posterior (bool):
|
||||||
|
|
||||||
|
# Returns:
|
||||||
|
# shape_embed (torch.FloatTensor)
|
||||||
|
# kl_embed (torch.FloatTensor):
|
||||||
|
# posterior (DiagonalGaussianDistribution or None):
|
||||||
|
|
||||||
|
|
||||||
|
shape_embed, latents = self.encode_latents(pc, feats)
|
||||||
|
kl_embed, posterior = self.encode_kl_embed(latents, sample_posterior)
|
||||||
|
|
||||||
|
return shape_embed, kl_embed, posterior
|
||||||
|
|
||||||
|
def encode_latents(self,
|
||||||
|
pc: torch.FloatTensor,
|
||||||
|
feats: Optional[torch.FloatTensor] = None):
|
||||||
|
|
||||||
|
x, _ = self.encoder(pc, feats)
|
||||||
|
|
||||||
|
shape_embed = x[:, 0]
|
||||||
|
latents = x[:, 1:]
|
||||||
|
|
||||||
|
return shape_embed, latents
|
||||||
|
|
||||||
|
def encode_kl_embed(self, latents: torch.FloatTensor, sample_posterior: bool = True):
|
||||||
|
posterior = None
|
||||||
|
if self.embed_dim > 0:
|
||||||
|
moments = self.pre_kl(latents)
|
||||||
|
posterior = DiagonalGaussianDistribution(moments, feat_dim=-1)
|
||||||
|
|
||||||
|
if sample_posterior:
|
||||||
|
kl_embed = posterior.sample()
|
||||||
|
else:
|
||||||
|
kl_embed = posterior.mode()
|
||||||
|
else:
|
||||||
|
kl_embed = latents
|
||||||
|
|
||||||
|
return kl_embed, posterior
|
||||||
|
|
||||||
|
def forward(self,
|
||||||
|
pc: torch.FloatTensor,
|
||||||
|
feats: torch.FloatTensor,
|
||||||
|
volume_queries: torch.FloatTensor,
|
||||||
|
sample_posterior: bool = True):
|
||||||
|
|
||||||
|
# Args:
|
||||||
|
# pc (torch.FloatTensor): [B, N, 3]
|
||||||
|
# feats (torch.FloatTensor or None): [B, N, C]
|
||||||
|
# volume_queries (torch.FloatTensor): [B, P, 3]
|
||||||
|
# sample_posterior (bool):
|
||||||
|
|
||||||
|
# Returns:
|
||||||
|
# shape_embed (torch.FloatTensor): [B, projection_dim]
|
||||||
|
# logits (torch.FloatTensor): [B, M]
|
||||||
|
# posterior (DiagonalGaussianDistribution or None).
|
||||||
|
|
||||||
|
|
||||||
|
shape_embed, kl_embed, posterior = self.encode(pc, feats, sample_posterior=sample_posterior)
|
||||||
|
|
||||||
|
latents = self.decode(kl_embed)
|
||||||
|
logits = self.query_geometry(volume_queries, latents)
|
||||||
|
|
||||||
|
return shape_embed, logits, posterior
|
||||||
125
hy3dgen/shapegen/bpt/miche/michelangelo/models/tsal/tsal_base.py
Normal file
125
hy3dgen/shapegen/bpt/miche/michelangelo/models/tsal/tsal_base.py
Normal file
@ -0,0 +1,125 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
import torch.nn as nn
|
||||||
|
from typing import Tuple, List, Optional
|
||||||
|
|
||||||
|
# Base class for output of Point to Mesh transformation
|
||||||
|
class Point2MeshOutput(object):
|
||||||
|
def __init__(self):
|
||||||
|
self.mesh_v = None # Vertices of the mesh
|
||||||
|
self.mesh_f = None # Faces of the mesh
|
||||||
|
self.center = None # Center of the mesh
|
||||||
|
self.pc = None # Point cloud data
|
||||||
|
|
||||||
|
|
||||||
|
# Base class for output of Latent to Mesh transformation
|
||||||
|
class Latent2MeshOutput(object):
|
||||||
|
def __init__(self):
|
||||||
|
self.mesh_v = None # Vertices of the mesh
|
||||||
|
self.mesh_f = None # Faces of the mesh
|
||||||
|
|
||||||
|
|
||||||
|
# Base class for output of Aligned Mesh transformation
|
||||||
|
class AlignedMeshOutput(object):
|
||||||
|
def __init__(self):
|
||||||
|
self.mesh_v = None # Vertices of the mesh
|
||||||
|
self.mesh_f = None # Faces of the mesh
|
||||||
|
self.surface = None # Surface data
|
||||||
|
self.image = None # Aligned image data
|
||||||
|
self.text: Optional[str] = None # Aligned text data
|
||||||
|
self.shape_text_similarity: Optional[float] = None # Similarity between shape and text
|
||||||
|
self.shape_image_similarity: Optional[float] = None # Similarity between shape and image
|
||||||
|
|
||||||
|
|
||||||
|
# Base class for Shape as Latent with Point to Mesh transformation module
|
||||||
|
class ShapeAsLatentPLModule(nn.Module):
|
||||||
|
latent_shape: Tuple[int] # Shape of the latent space
|
||||||
|
|
||||||
|
def encode(self, surface, *args, **kwargs):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def decode(self, z_q, *args, **kwargs):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def latent2mesh(self, latents, *args, **kwargs) -> List[Latent2MeshOutput]:
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def point2mesh(self, *args, **kwargs) -> List[Point2MeshOutput]:
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|
||||||
|
# Base class for Shape as Latent module
|
||||||
|
class ShapeAsLatentModule(nn.Module):
|
||||||
|
latent_shape: Tuple[int, int] # Shape of the latent space
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
def encode(self, *args, **kwargs):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def decode(self, *args, **kwargs):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def query_geometry(self, *args, **kwargs):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|
||||||
|
# Base class for Aligned Shape as Latent with Point to Mesh transformation module
|
||||||
|
class AlignedShapeAsLatentPLModule(nn.Module):
|
||||||
|
latent_shape: Tuple[int] # Shape of the latent space
|
||||||
|
|
||||||
|
def set_shape_model_only(self):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def encode(self, surface, *args, **kwargs):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def decode(self, z_q, *args, **kwargs):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def latent2mesh(self, latents, *args, **kwargs) -> List[Latent2MeshOutput]:
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def point2mesh(self, *args, **kwargs) -> List[Point2MeshOutput]:
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|
||||||
|
# Base class for Aligned Shape as Latent module
|
||||||
|
class AlignedShapeAsLatentModule(nn.Module):
|
||||||
|
shape_model: ShapeAsLatentModule # Shape model module
|
||||||
|
latent_shape: Tuple[int, int] # Shape of the latent space
|
||||||
|
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
def set_shape_model_only(self):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def encode_image_embed(self, *args, **kwargs):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def encode_text_embed(self, *args, **kwargs):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def encode_shape_embed(self, *args, **kwargs):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
# Base class for Textured Shape as Latent module
|
||||||
|
class TexturedShapeAsLatentModule(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
def encode(self, *args, **kwargs):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def decode(self, *args, **kwargs):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def query_geometry(self, *args, **kwargs):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def query_color(self, *args, **kwargs):
|
||||||
|
raise NotImplementedError
|
||||||
@ -0,0 +1,3 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
from .misc import instantiate_from_config
|
||||||
Binary file not shown.
Binary file not shown.
86
hy3dgen/shapegen/bpt/miche/michelangelo/utils/misc.py
Normal file
86
hy3dgen/shapegen/bpt/miche/michelangelo/utils/misc.py
Normal file
@ -0,0 +1,86 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
import importlib
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
|
||||||
|
import sys
|
||||||
|
sys.path.append(r"C:\Remade\ComfyUI_windows_portable\ComfyUI\custom_nodes\ComfyUI-Hunyuan3DWrapper-main")
|
||||||
|
|
||||||
|
from hy3dgen.shapegen.bpt.miche.michelangelo.models.tsal import asl_pl_module
|
||||||
|
|
||||||
|
def get_obj_from_str(string, reload=False):
|
||||||
|
module, cls = string.rsplit(".", 1)
|
||||||
|
if reload:
|
||||||
|
module_imp = importlib.import_module(module)
|
||||||
|
importlib.reload(module_imp)
|
||||||
|
return getattr(importlib.import_module(module, package=None), cls)
|
||||||
|
|
||||||
|
|
||||||
|
def get_obj_from_config(config):
|
||||||
|
if "target" not in config:
|
||||||
|
raise KeyError("Expected key `target` to instantiate.")
|
||||||
|
|
||||||
|
return get_obj_from_str(config["target"])
|
||||||
|
|
||||||
|
|
||||||
|
def instantiate_from_config(config, **kwargs):
|
||||||
|
if "target" not in config:
|
||||||
|
raise KeyError("Expected key `target` to instantiate.")
|
||||||
|
|
||||||
|
cls = get_obj_from_str(config["target"])
|
||||||
|
|
||||||
|
params = config.get("params", dict())
|
||||||
|
# params.update(kwargs)
|
||||||
|
# instance = cls(**params)
|
||||||
|
kwargs.update(params)
|
||||||
|
instance = cls(**kwargs)
|
||||||
|
|
||||||
|
return instance
|
||||||
|
|
||||||
|
|
||||||
|
def is_dist_avail_and_initialized():
|
||||||
|
if not dist.is_available():
|
||||||
|
return False
|
||||||
|
if not dist.is_initialized():
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
def get_rank():
|
||||||
|
if not is_dist_avail_and_initialized():
|
||||||
|
return 0
|
||||||
|
return dist.get_rank()
|
||||||
|
|
||||||
|
|
||||||
|
def get_world_size():
|
||||||
|
if not is_dist_avail_and_initialized():
|
||||||
|
return 1
|
||||||
|
return dist.get_world_size()
|
||||||
|
|
||||||
|
|
||||||
|
def all_gather_batch(tensors):
|
||||||
|
"""
|
||||||
|
Performs all_gather operation on the provided tensors.
|
||||||
|
"""
|
||||||
|
# Queue the gathered tensors
|
||||||
|
world_size = get_world_size()
|
||||||
|
# There is no need for reduction in the single-proc case
|
||||||
|
if world_size == 1:
|
||||||
|
return tensors
|
||||||
|
tensor_list = []
|
||||||
|
output_tensor = []
|
||||||
|
for tensor in tensors:
|
||||||
|
tensor_all = [torch.ones_like(tensor) for _ in range(world_size)]
|
||||||
|
dist.all_gather(
|
||||||
|
tensor_all,
|
||||||
|
tensor,
|
||||||
|
async_op=False # performance opt
|
||||||
|
)
|
||||||
|
|
||||||
|
tensor_list.append(tensor_all)
|
||||||
|
|
||||||
|
for tensor_all in tensor_list:
|
||||||
|
output_tensor.append(torch.cat(tensor_all, dim=0))
|
||||||
|
return output_tensor
|
||||||
0
hy3dgen/shapegen/bpt/model/__init__.py
Normal file
0
hy3dgen/shapegen/bpt/model/__init__.py
Normal file
BIN
hy3dgen/shapegen/bpt/model/__pycache__/__init__.cpython-312.pyc
Normal file
BIN
hy3dgen/shapegen/bpt/model/__pycache__/__init__.cpython-312.pyc
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
hy3dgen/shapegen/bpt/model/__pycache__/model.cpython-312.pyc
Normal file
BIN
hy3dgen/shapegen/bpt/model/__pycache__/model.cpython-312.pyc
Normal file
Binary file not shown.
Binary file not shown.
194
hy3dgen/shapegen/bpt/model/data_utils.py
Normal file
194
hy3dgen/shapegen/bpt/model/data_utils.py
Normal file
@ -0,0 +1,194 @@
|
|||||||
|
"""Mesh data utilities."""
|
||||||
|
import random
|
||||||
|
import networkx as nx
|
||||||
|
import numpy as np
|
||||||
|
# import pyrr
|
||||||
|
from six.moves import range
|
||||||
|
import trimesh
|
||||||
|
from scipy.spatial.transform import Rotation
|
||||||
|
|
||||||
|
|
||||||
|
def to_mesh(vertices, faces, transpose=True, post_process=False):
|
||||||
|
if transpose:
|
||||||
|
vertices = vertices[:, [1, 2, 0]]
|
||||||
|
|
||||||
|
if faces.min() == 1:
|
||||||
|
faces = (np.array(faces) - 1).tolist()
|
||||||
|
mesh = trimesh.Trimesh(vertices=vertices, faces=faces, process=False)
|
||||||
|
|
||||||
|
if post_process:
|
||||||
|
mesh.merge_vertices()
|
||||||
|
mesh.update_faces(mesh.unique_faces())
|
||||||
|
mesh.fix_normals()
|
||||||
|
return mesh
|
||||||
|
|
||||||
|
|
||||||
|
def center_vertices(vertices):
|
||||||
|
"""Translate the vertices so that bounding box is centered at zero."""
|
||||||
|
vert_min = vertices.min(axis=0)
|
||||||
|
vert_max = vertices.max(axis=0)
|
||||||
|
vert_center = 0.5 * (vert_min + vert_max)
|
||||||
|
# vert_center = np.mean(vertices, axis=0)
|
||||||
|
return vertices - vert_center
|
||||||
|
|
||||||
|
|
||||||
|
def face_to_cycles(face):
|
||||||
|
"""Find cycles in face."""
|
||||||
|
g = nx.Graph()
|
||||||
|
for v in range(len(face) - 1):
|
||||||
|
g.add_edge(face[v], face[v + 1])
|
||||||
|
g.add_edge(face[-1], face[0])
|
||||||
|
return list(nx.cycle_basis(g))
|
||||||
|
|
||||||
|
|
||||||
|
def block_index(vertex, block_size=32):
|
||||||
|
return (vertex[2] // block_size, vertex[1] // block_size, vertex[0] // block_size)
|
||||||
|
|
||||||
|
def block_id(block_index, num_blocks=4):
|
||||||
|
return block_index[0] * num_blocks**2 + block_index[1] * num_blocks + block_index[2]
|
||||||
|
|
||||||
|
|
||||||
|
def normalize_vertices_scale(vertices, scale=0.95):
|
||||||
|
"""Scale the vertices so that the long axis of the bounding box is one."""
|
||||||
|
vert_min = vertices.min(axis=0)
|
||||||
|
vert_max = vertices.max(axis=0)
|
||||||
|
extents = (vert_max - vert_min).max()
|
||||||
|
return 2.0 * scale * vertices / (extents + 1e-6)
|
||||||
|
|
||||||
|
|
||||||
|
def quantize_process_mesh(vertices, faces, quantization_bits=8, block_first_order=True, block_size=32, num_blocks=4):
|
||||||
|
"""Quantize vertices, remove resulting duplicates and reindex faces."""
|
||||||
|
vertices = discretize(vertices, num_discrete=2**quantization_bits)
|
||||||
|
vertices, inv = np.unique(vertices, axis=0, return_inverse=True)
|
||||||
|
|
||||||
|
if block_first_order:
|
||||||
|
block_indices = np.array([block_index(v, block_size) for v in vertices])
|
||||||
|
block_ids = np.array([block_id(b, num_blocks) for b in block_indices])
|
||||||
|
sort_inds = np.lexsort((vertices[:, 0], vertices[:, 1], vertices[:, 2], block_ids))
|
||||||
|
else:
|
||||||
|
# Sort vertices by z then y then x.
|
||||||
|
sort_inds = np.lexsort(vertices.T)
|
||||||
|
|
||||||
|
vertices = vertices[sort_inds]
|
||||||
|
faces = [np.argsort(sort_inds)[inv[f]] for f in faces]
|
||||||
|
|
||||||
|
sub_faces = []
|
||||||
|
for f in faces:
|
||||||
|
cliques = face_to_cycles(f)
|
||||||
|
for c in cliques:
|
||||||
|
c_length = len(c)
|
||||||
|
if c_length > 2:
|
||||||
|
d = np.argmin(f)
|
||||||
|
sub_faces.append([f[(d + i) % c_length] for i in range(c_length)])
|
||||||
|
|
||||||
|
faces = sub_faces
|
||||||
|
|
||||||
|
# Sort faces by lowest vertex indices. If two faces have the same lowest
|
||||||
|
# index then sort by next lowest and so on.
|
||||||
|
faces.sort(key=lambda f: tuple(sorted(f)))
|
||||||
|
num_verts = vertices.shape[0]
|
||||||
|
vert_connected = np.equal(
|
||||||
|
np.arange(num_verts)[:, None], np.hstack(faces)[None]
|
||||||
|
).any(axis=-1)
|
||||||
|
vertices = vertices[vert_connected]
|
||||||
|
|
||||||
|
# Re-index faces to re-ordered vertices.
|
||||||
|
vert_indices = np.arange(num_verts) - np.cumsum(1 - vert_connected.astype("int"))
|
||||||
|
faces = [vert_indices[f].tolist() for f in faces]
|
||||||
|
|
||||||
|
return vertices, faces
|
||||||
|
|
||||||
|
|
||||||
|
def process_mesh(vertices, faces, quantization_bits=8, augment=True, augment_dict=None):
|
||||||
|
"""Process mesh vertices and faces."""
|
||||||
|
|
||||||
|
# Transpose so that z-axis is vertical.
|
||||||
|
vertices = vertices[:, [2, 0, 1]]
|
||||||
|
|
||||||
|
# Translate the vertices so that bounding box is centered at zero.
|
||||||
|
vertices = center_vertices(vertices)
|
||||||
|
|
||||||
|
if augment:
|
||||||
|
vertices = augment_mesh(vertices, **augment_dict)
|
||||||
|
|
||||||
|
# Scale the vertices so that the long diagonal of the bounding box is equal
|
||||||
|
# to one.
|
||||||
|
vertices = normalize_vertices_scale(vertices)
|
||||||
|
|
||||||
|
# Quantize and sort vertices, remove resulting duplicates, sort and reindex
|
||||||
|
# faces.
|
||||||
|
vertices, faces = quantize_process_mesh(
|
||||||
|
vertices, faces, quantization_bits=quantization_bits
|
||||||
|
)
|
||||||
|
vertices = undiscretize(vertices, num_discrete=2**quantization_bits)
|
||||||
|
|
||||||
|
|
||||||
|
# Discard degenerate meshes without faces.
|
||||||
|
return {
|
||||||
|
"vertices": vertices,
|
||||||
|
"faces": faces,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def load_process_mesh(mesh_obj_path, quantization_bits=8, augment=False, augment_dict=None):
|
||||||
|
"""Load obj file and process."""
|
||||||
|
# Load mesh
|
||||||
|
mesh = trimesh.load(mesh_obj_path, force='mesh', process=False)
|
||||||
|
return process_mesh(mesh.vertices, mesh.faces, quantization_bits, augment=augment, augment_dict=augment_dict)
|
||||||
|
|
||||||
|
|
||||||
|
def augment_mesh(vertices, scale_min=0.95, scale_max=1.05, rotation=0., jitter_strength=0.):
|
||||||
|
'''scale vertices by a factor in [0.75, 1.25]'''
|
||||||
|
|
||||||
|
# vertices [nv, 3]
|
||||||
|
for i in range(3):
|
||||||
|
# Generate a random scale factor
|
||||||
|
scale = random.uniform(scale_min, scale_max)
|
||||||
|
|
||||||
|
# independently applied scaling across each axis of vertices
|
||||||
|
vertices[:, i] *= scale
|
||||||
|
|
||||||
|
if rotation != 0.:
|
||||||
|
axis = [random.uniform(-1, 1), random.uniform(-1, 1), random.uniform(-1, 1)]
|
||||||
|
radian = np.pi / 180 * rotation
|
||||||
|
rotation = Rotation.from_rotvec(radian * np.array(axis))
|
||||||
|
vertices =rotation.apply(vertices)
|
||||||
|
|
||||||
|
|
||||||
|
if jitter_strength != 0.:
|
||||||
|
jitter_amount = np.random.uniform(-jitter_strength, jitter_strength)
|
||||||
|
vertices += jitter_amount
|
||||||
|
|
||||||
|
|
||||||
|
return vertices
|
||||||
|
|
||||||
|
|
||||||
|
def discretize(
|
||||||
|
t,
|
||||||
|
continuous_range = (-1, 1),
|
||||||
|
num_discrete: int = 128
|
||||||
|
):
|
||||||
|
lo, hi = continuous_range
|
||||||
|
assert hi > lo
|
||||||
|
|
||||||
|
t = (t - lo) / (hi - lo)
|
||||||
|
t *= num_discrete
|
||||||
|
t -= 0.5
|
||||||
|
|
||||||
|
return t.round().astype(np.int32).clip(min = 0, max = num_discrete - 1)
|
||||||
|
|
||||||
|
|
||||||
|
def undiscretize(
|
||||||
|
t,
|
||||||
|
continuous_range = (-1, 1),
|
||||||
|
num_discrete: int = 128
|
||||||
|
):
|
||||||
|
lo, hi = continuous_range
|
||||||
|
assert hi > lo
|
||||||
|
|
||||||
|
t = t.astype(np.float32)
|
||||||
|
|
||||||
|
t += 0.5
|
||||||
|
t /= num_discrete
|
||||||
|
return t * (hi - lo) + lo
|
||||||
|
|
||||||
90
hy3dgen/shapegen/bpt/model/miche_conditioner.py
Normal file
90
hy3dgen/shapegen/bpt/model/miche_conditioner.py
Normal file
@ -0,0 +1,90 @@
|
|||||||
|
import torch
|
||||||
|
import os
|
||||||
|
from torch import nn
|
||||||
|
from beartype import beartype
|
||||||
|
from ..miche.encode import load_model
|
||||||
|
from ..miche.michelangelo.models.tsal import asl_pl_module
|
||||||
|
|
||||||
|
# helper functions
|
||||||
|
|
||||||
|
def exists(val):
|
||||||
|
return val is not None
|
||||||
|
|
||||||
|
def default(*values):
|
||||||
|
for value in values:
|
||||||
|
if exists(value):
|
||||||
|
return value
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
# point-cloud encoder from Michelangelo
|
||||||
|
@beartype
|
||||||
|
class PointConditioner(torch.nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
dim_latent = None,
|
||||||
|
model_name = 'miche-256-feature',
|
||||||
|
cond_dim = 768,
|
||||||
|
freeze = True,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
# open-source version of miche
|
||||||
|
if model_name == 'miche-256-feature':
|
||||||
|
ckpt_path = None
|
||||||
|
dir = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
model_path = os.path.join(dir, '..\shapevae-256.yaml')
|
||||||
|
config_path = model_path
|
||||||
|
|
||||||
|
self.feature_dim = 1024 # embedding dimension
|
||||||
|
self.cond_length = 257 # length of embedding
|
||||||
|
self.point_encoder = load_model(ckpt_path=ckpt_path, config_path=config_path)
|
||||||
|
|
||||||
|
# additional layers to connect miche and GPT
|
||||||
|
self.cond_head_proj = nn.Linear(cond_dim, self.feature_dim)
|
||||||
|
self.cond_proj = nn.Linear(cond_dim, self.feature_dim)
|
||||||
|
|
||||||
|
else:
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
# whether to finetuen point-cloud encoder
|
||||||
|
if freeze:
|
||||||
|
for parameter in self.point_encoder.parameters():
|
||||||
|
parameter.requires_grad = False
|
||||||
|
|
||||||
|
self.freeze = freeze
|
||||||
|
self.model_name = model_name
|
||||||
|
self.dim_latent = default(dim_latent, self.feature_dim)
|
||||||
|
|
||||||
|
self.register_buffer('_device_param', torch.tensor(0.), persistent = False)
|
||||||
|
|
||||||
|
|
||||||
|
@property
|
||||||
|
def device(self):
|
||||||
|
return next(self.buffers()).device
|
||||||
|
|
||||||
|
|
||||||
|
def embed_pc(self, pc_normal):
|
||||||
|
# encode point cloud to embeddings
|
||||||
|
if self.model_name == 'miche-256-feature':
|
||||||
|
point_feature = self.point_encoder.encode_latents(pc_normal)
|
||||||
|
pc_embed_head = self.cond_head_proj(point_feature[:, 0:1])
|
||||||
|
pc_embed = self.cond_proj(point_feature[:, 1:])
|
||||||
|
pc_embed = torch.cat([pc_embed_head, pc_embed], dim=1)
|
||||||
|
|
||||||
|
return pc_embed
|
||||||
|
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
pc = None,
|
||||||
|
pc_embeds = None,
|
||||||
|
):
|
||||||
|
if pc_embeds is None:
|
||||||
|
pc_embeds = self.embed_pc(pc.to(next(self.buffers()).dtype))
|
||||||
|
|
||||||
|
assert not torch.any(torch.isnan(pc_embeds)), 'NAN values in pc embedings'
|
||||||
|
|
||||||
|
return pc_embeds
|
||||||
|
|
||||||
382
hy3dgen/shapegen/bpt/model/model.py
Normal file
382
hy3dgen/shapegen/bpt/model/model.py
Normal file
@ -0,0 +1,382 @@
|
|||||||
|
import math
|
||||||
|
import torch
|
||||||
|
from torch import nn, Tensor
|
||||||
|
from torch.nn import Module
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from einops import rearrange, repeat, pack
|
||||||
|
from pytorch_custom_utils import save_load
|
||||||
|
from beartype import beartype
|
||||||
|
from beartype.typing import Union, Tuple, Callable, Optional, Any
|
||||||
|
from einops import rearrange, repeat, pack
|
||||||
|
from x_transformers import Decoder
|
||||||
|
from x_transformers.x_transformers import LayerIntermediates
|
||||||
|
from x_transformers.autoregressive_wrapper import (
|
||||||
|
eval_decorator,
|
||||||
|
top_k,
|
||||||
|
)
|
||||||
|
from .miche_conditioner import PointConditioner
|
||||||
|
from functools import partial
|
||||||
|
from tqdm import tqdm
|
||||||
|
from .data_utils import discretize
|
||||||
|
|
||||||
|
# helper functions
|
||||||
|
|
||||||
|
def exists(v):
|
||||||
|
return v is not None
|
||||||
|
|
||||||
|
def default(v, d):
|
||||||
|
return v if exists(v) else d
|
||||||
|
|
||||||
|
def first(it):
|
||||||
|
return it[0]
|
||||||
|
|
||||||
|
def divisible_by(num, den):
|
||||||
|
return (num % den) == 0
|
||||||
|
|
||||||
|
def pad_at_dim(t, padding, dim = -1, value = 0):
|
||||||
|
ndim = t.ndim
|
||||||
|
right_dims = (ndim - dim - 1) if dim >= 0 else (-dim - 1)
|
||||||
|
zeros = (0, 0) * right_dims
|
||||||
|
return F.pad(t, (*zeros, *padding), value = value)
|
||||||
|
|
||||||
|
|
||||||
|
# main class of auto-regressive Transformer
|
||||||
|
@save_load()
|
||||||
|
class MeshTransformer(Module):
|
||||||
|
@beartype
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
dim: Union[int, Tuple[int, int]] = 1024, # hidden size of Transformer
|
||||||
|
max_seq_len = 10000, # max sequence length
|
||||||
|
flash_attn = True, # wether to use flash attention
|
||||||
|
attn_depth = 24, # number of layers
|
||||||
|
attn_dim_head = 64, # dim for each head
|
||||||
|
attn_heads = 16, # number of heads
|
||||||
|
attn_kwargs: dict = dict(
|
||||||
|
ff_glu = True,
|
||||||
|
num_mem_kv = 4,
|
||||||
|
attn_qk_norm = True,
|
||||||
|
),
|
||||||
|
dropout = 0.0,
|
||||||
|
pad_id = -1,
|
||||||
|
coor_continuous_range = (-1., 1.),
|
||||||
|
num_discrete_coors = 2**int(7),
|
||||||
|
block_size = 8,
|
||||||
|
offset_size = 16,
|
||||||
|
mode = 'vertices',
|
||||||
|
special_token = -2,
|
||||||
|
use_special_block = True,
|
||||||
|
conditioned_on_pc = True,
|
||||||
|
encoder_name = 'miche-256-feature',
|
||||||
|
encoder_freeze = False,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
if use_special_block:
|
||||||
|
# block_ids, offset_ids, special_block_ids
|
||||||
|
vocab_size = block_size**3 + offset_size**3 + block_size**3
|
||||||
|
self.sp_block_embed = nn.Parameter(torch.randn(1, dim))
|
||||||
|
else:
|
||||||
|
# block_ids, offset_ids, special_token
|
||||||
|
vocab_size = block_size**3 + offset_size**3 + 1
|
||||||
|
self.special_token = special_token
|
||||||
|
self.special_token_cb = block_size**3 + offset_size**3
|
||||||
|
|
||||||
|
self.use_special_block = use_special_block
|
||||||
|
|
||||||
|
self.sos_token = nn.Parameter(torch.randn(dim))
|
||||||
|
self.eos_token_id = vocab_size
|
||||||
|
self.mode = mode
|
||||||
|
self.token_embed = nn.Embedding(vocab_size + 1, dim)
|
||||||
|
self.num_discrete_coors = num_discrete_coors
|
||||||
|
self.coor_continuous_range = coor_continuous_range
|
||||||
|
self.block_size = block_size
|
||||||
|
self.offset_size = offset_size
|
||||||
|
self.abs_pos_emb = nn.Embedding(max_seq_len, dim)
|
||||||
|
self.max_seq_len = max_seq_len
|
||||||
|
self.conditioner = None
|
||||||
|
self.conditioned_on_pc = conditioned_on_pc
|
||||||
|
cross_attn_dim_context = None
|
||||||
|
|
||||||
|
self.block_embed = nn.Parameter(torch.randn(1, dim))
|
||||||
|
self.offset_embed = nn.Parameter(torch.randn(1, dim))
|
||||||
|
|
||||||
|
assert self.block_size * self.offset_size == self.num_discrete_coors
|
||||||
|
|
||||||
|
# load point_cloud encoder
|
||||||
|
if conditioned_on_pc:
|
||||||
|
print(f'Point cloud encoder: {encoder_name} | freeze: {encoder_freeze}')
|
||||||
|
self.conditioner = PointConditioner(model_name=encoder_name, freeze=encoder_freeze)
|
||||||
|
cross_attn_dim_context = self.conditioner.dim_latent
|
||||||
|
else:
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
# main autoregressive attention network
|
||||||
|
self.decoder = Decoder(
|
||||||
|
dim = dim,
|
||||||
|
depth = attn_depth,
|
||||||
|
dim_head = attn_dim_head,
|
||||||
|
heads = attn_heads,
|
||||||
|
attn_flash = flash_attn,
|
||||||
|
attn_dropout = dropout,
|
||||||
|
ff_dropout = dropout,
|
||||||
|
cross_attend = conditioned_on_pc,
|
||||||
|
cross_attn_dim_context = cross_attn_dim_context,
|
||||||
|
cross_attn_num_mem_kv = 4, # needed for preventing nan when dropping out text condition
|
||||||
|
**attn_kwargs
|
||||||
|
)
|
||||||
|
|
||||||
|
self.to_logits = nn.Linear(dim, vocab_size + 1)
|
||||||
|
self.pad_id = pad_id
|
||||||
|
self.discretize_face_coords = partial(
|
||||||
|
discretize,
|
||||||
|
num_discrete = num_discrete_coors,
|
||||||
|
continuous_range = coor_continuous_range
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def device(self):
|
||||||
|
return next(self.parameters()).device
|
||||||
|
|
||||||
|
|
||||||
|
@eval_decorator
|
||||||
|
@torch.no_grad()
|
||||||
|
@beartype
|
||||||
|
def generate(
|
||||||
|
self,
|
||||||
|
prompt: Optional[Tensor] = None,
|
||||||
|
pc: Optional[Tensor] = None,
|
||||||
|
cond_embeds: Optional[Tensor] = None,
|
||||||
|
batch_size: Optional[int] = 1,
|
||||||
|
filter_logits_fn: Callable = top_k,
|
||||||
|
filter_kwargs: dict = dict(),
|
||||||
|
temperature = 0.5,
|
||||||
|
return_codes = False,
|
||||||
|
cache_kv = True,
|
||||||
|
max_seq_len = None,
|
||||||
|
face_coords_to_file: Optional[Callable[[Tensor], Any]] = None,
|
||||||
|
tqdm_position = 0,
|
||||||
|
):
|
||||||
|
max_seq_len = default(max_seq_len, self.max_seq_len)
|
||||||
|
|
||||||
|
if exists(prompt):
|
||||||
|
assert not exists(batch_size)
|
||||||
|
|
||||||
|
prompt = rearrange(prompt, 'b ... -> b (...)')
|
||||||
|
assert prompt.shape[-1] <= self.max_seq_len
|
||||||
|
|
||||||
|
batch_size = prompt.shape[0]
|
||||||
|
|
||||||
|
# encode point cloud
|
||||||
|
if cond_embeds is None:
|
||||||
|
if self.conditioned_on_pc:
|
||||||
|
cond_embeds = self.conditioner(pc = pc)
|
||||||
|
|
||||||
|
batch_size = default(batch_size, 1)
|
||||||
|
|
||||||
|
codes = default(prompt, torch.empty((batch_size, 0), dtype = torch.long, device = self.device))
|
||||||
|
|
||||||
|
curr_length = codes.shape[-1]
|
||||||
|
|
||||||
|
cache = None
|
||||||
|
eos_iter = None
|
||||||
|
# predict tokens auto-regressively
|
||||||
|
for i in tqdm(range(curr_length, max_seq_len), position=tqdm_position,
|
||||||
|
desc=f'Process: {tqdm_position}', dynamic_ncols=True, leave=False):
|
||||||
|
|
||||||
|
output = self.forward_on_codes(
|
||||||
|
codes,
|
||||||
|
return_loss = False,
|
||||||
|
return_cache = cache_kv,
|
||||||
|
append_eos = False,
|
||||||
|
cond_embeds = cond_embeds,
|
||||||
|
cache = cache
|
||||||
|
)
|
||||||
|
|
||||||
|
if cache_kv:
|
||||||
|
logits, cache = output
|
||||||
|
else:
|
||||||
|
logits = output
|
||||||
|
|
||||||
|
# sample code from logits
|
||||||
|
logits = logits[:, -1]
|
||||||
|
filtered_logits = filter_logits_fn(logits, **filter_kwargs)
|
||||||
|
probs = F.softmax(filtered_logits / temperature, dim=-1)
|
||||||
|
sample = torch.multinomial(probs, 1)
|
||||||
|
codes, _ = pack([codes, sample], 'b *')
|
||||||
|
|
||||||
|
# Check if all sequences have encountered EOS at least once
|
||||||
|
is_eos_codes = (codes == self.eos_token_id)
|
||||||
|
if is_eos_codes.any(dim=-1).all():
|
||||||
|
# Record the iteration (i.e. current sequence length) when EOS is first detected in all sequences
|
||||||
|
if eos_iter is None:
|
||||||
|
eos_iter = codes.shape[-1]
|
||||||
|
# Once we've generated 20% more tokens than eos_iter, break out of the loop
|
||||||
|
if codes.shape[-1] >= int(eos_iter * 1.2):
|
||||||
|
break
|
||||||
|
|
||||||
|
# mask out to padding anything after the first eos
|
||||||
|
|
||||||
|
mask = is_eos_codes.float().cumsum(dim = -1) >= 1
|
||||||
|
codes = codes.masked_fill(mask, self.pad_id)
|
||||||
|
|
||||||
|
# early return of raw residual quantizer codes
|
||||||
|
|
||||||
|
if return_codes:
|
||||||
|
# codes = rearrange(codes, 'b (n q) -> b n q', q = 2)
|
||||||
|
if not self.use_special_block:
|
||||||
|
codes[codes == self.special_token_cb] = self.special_token
|
||||||
|
return codes
|
||||||
|
|
||||||
|
face_coords, face_mask = self.decode_codes(codes)
|
||||||
|
|
||||||
|
if not exists(face_coords_to_file):
|
||||||
|
return face_coords, face_mask
|
||||||
|
|
||||||
|
files = [face_coords_to_file(coords[mask]) for coords, mask in zip(face_coords, face_mask)]
|
||||||
|
return files
|
||||||
|
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
codes: Optional[Tensor] = None,
|
||||||
|
cache: Optional[LayerIntermediates] = None,
|
||||||
|
**kwargs
|
||||||
|
):
|
||||||
|
# convert special tokens
|
||||||
|
if not self.use_special_block:
|
||||||
|
codes[codes == self.special_token] = self.special_token_cb
|
||||||
|
|
||||||
|
return self.forward_on_codes(codes, cache = cache, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
def forward_on_codes(
|
||||||
|
self,
|
||||||
|
codes = None,
|
||||||
|
return_loss = True,
|
||||||
|
return_cache = False,
|
||||||
|
append_eos = True,
|
||||||
|
cache = None,
|
||||||
|
pc = None,
|
||||||
|
cond_embeds = None,
|
||||||
|
):
|
||||||
|
# handle conditions
|
||||||
|
|
||||||
|
attn_context_kwargs = dict()
|
||||||
|
|
||||||
|
if self.conditioned_on_pc:
|
||||||
|
assert exists(pc) ^ exists(cond_embeds), 'point cloud should be given'
|
||||||
|
|
||||||
|
# preprocess faces and vertices
|
||||||
|
if not exists(cond_embeds):
|
||||||
|
cond_embeds = self.conditioner(
|
||||||
|
pc = pc,
|
||||||
|
pc_embeds = cond_embeds,
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_context_kwargs = dict(
|
||||||
|
context = cond_embeds,
|
||||||
|
context_mask = None,
|
||||||
|
)
|
||||||
|
|
||||||
|
# take care of codes that may be flattened
|
||||||
|
|
||||||
|
if codes.ndim > 2:
|
||||||
|
codes = rearrange(codes, 'b ... -> b (...)')
|
||||||
|
|
||||||
|
# prepare mask for position embedding of block and offset tokens
|
||||||
|
block_mask = (0 <= codes) & (codes < self.block_size**3)
|
||||||
|
offset_mask = (self.block_size**3 <= codes) & (codes < self.block_size**3 + self.offset_size**3)
|
||||||
|
if self.use_special_block:
|
||||||
|
sp_block_mask = (
|
||||||
|
self.block_size**3 + self.offset_size**3 <= codes
|
||||||
|
) & (
|
||||||
|
codes < self.block_size**3 + self.offset_size**3 + self.block_size**3
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# get some variable
|
||||||
|
|
||||||
|
batch, seq_len, device = *codes.shape, codes.device
|
||||||
|
|
||||||
|
assert seq_len <= self.max_seq_len, \
|
||||||
|
f'received codes of length {seq_len} but needs to be less than {self.max_seq_len}'
|
||||||
|
|
||||||
|
# auto append eos token
|
||||||
|
|
||||||
|
if append_eos:
|
||||||
|
assert exists(codes)
|
||||||
|
|
||||||
|
code_lens = ((codes == self.pad_id).cumsum(dim = -1) == 0).sum(dim = -1)
|
||||||
|
|
||||||
|
codes = F.pad(codes, (0, 1), value = 0) # value=-1
|
||||||
|
|
||||||
|
batch_arange = torch.arange(batch, device = device)
|
||||||
|
|
||||||
|
batch_arange = rearrange(batch_arange, '... -> ... 1')
|
||||||
|
code_lens = rearrange(code_lens, '... -> ... 1')
|
||||||
|
|
||||||
|
codes[batch_arange, code_lens] = self.eos_token_id
|
||||||
|
|
||||||
|
|
||||||
|
# if returning loss, save the labels for cross entropy
|
||||||
|
|
||||||
|
if return_loss:
|
||||||
|
assert seq_len > 0
|
||||||
|
codes, labels = codes[:, :-1], codes
|
||||||
|
|
||||||
|
# token embed
|
||||||
|
|
||||||
|
codes = codes.masked_fill(codes == self.pad_id, 0)
|
||||||
|
codes = self.token_embed(codes)
|
||||||
|
|
||||||
|
# codebook embed + absolute positions
|
||||||
|
|
||||||
|
seq_arange = torch.arange(codes.shape[-2], device = device)
|
||||||
|
codes = codes + self.abs_pos_emb(seq_arange)
|
||||||
|
|
||||||
|
# add positional embedding for block and offset token
|
||||||
|
block_embed = repeat(self.block_embed, '1 d -> b n d', n = seq_len, b = batch)
|
||||||
|
offset_embed = repeat(self.offset_embed, '1 d -> b n d', n = seq_len, b = batch)
|
||||||
|
codes[block_mask] += block_embed[block_mask]
|
||||||
|
codes[offset_mask] += offset_embed[offset_mask]
|
||||||
|
|
||||||
|
if self.use_special_block:
|
||||||
|
sp_block_embed = repeat(self.sp_block_embed, '1 d -> b n d', n = seq_len, b = batch)
|
||||||
|
codes[sp_block_mask] += sp_block_embed[sp_block_mask]
|
||||||
|
|
||||||
|
# auto prepend sos token
|
||||||
|
|
||||||
|
sos = repeat(self.sos_token, 'd -> b d', b = batch)
|
||||||
|
codes, _ = pack([sos, codes], 'b * d')
|
||||||
|
|
||||||
|
# attention
|
||||||
|
|
||||||
|
attended, intermediates_with_cache = self.decoder(
|
||||||
|
codes,
|
||||||
|
cache = cache,
|
||||||
|
return_hiddens = True,
|
||||||
|
**attn_context_kwargs
|
||||||
|
)
|
||||||
|
|
||||||
|
# logits
|
||||||
|
|
||||||
|
logits = self.to_logits(attended)
|
||||||
|
|
||||||
|
if not return_loss:
|
||||||
|
if not return_cache:
|
||||||
|
return logits
|
||||||
|
|
||||||
|
return logits, intermediates_with_cache
|
||||||
|
|
||||||
|
# loss
|
||||||
|
|
||||||
|
ce_loss = F.cross_entropy(
|
||||||
|
rearrange(logits, 'b n c -> b c n'),
|
||||||
|
labels,
|
||||||
|
ignore_index = self.pad_id
|
||||||
|
)
|
||||||
|
|
||||||
|
return ce_loss
|
||||||
241
hy3dgen/shapegen/bpt/model/serializaiton.py
Normal file
241
hy3dgen/shapegen/bpt/model/serializaiton.py
Normal file
@ -0,0 +1,241 @@
|
|||||||
|
import trimesh
|
||||||
|
import numpy as np
|
||||||
|
from .data_utils import discretize, undiscretize
|
||||||
|
|
||||||
|
|
||||||
|
def patchified_mesh(mesh: trimesh.Trimesh, special_token = -2, fix_orient=True):
|
||||||
|
sequence = []
|
||||||
|
unvisited = np.full(len(mesh.faces), True)
|
||||||
|
degrees = mesh.vertex_degree.copy()
|
||||||
|
|
||||||
|
# with fix_orient=True, the normal would be correct.
|
||||||
|
# but this may increase the difficulty for learning.
|
||||||
|
if fix_orient:
|
||||||
|
face_orient = {}
|
||||||
|
for ind, face in enumerate(mesh.faces):
|
||||||
|
v0, v1, v2 = face[0], face[1], face[2]
|
||||||
|
face_orient['{}-{}-{}'.format(v0, v1, v2)] = True
|
||||||
|
face_orient['{}-{}-{}'.format(v1, v2, v0)] = True
|
||||||
|
face_orient['{}-{}-{}'.format(v2, v0, v1)] = True
|
||||||
|
face_orient['{}-{}-{}'.format(v2, v1, v0)] = False
|
||||||
|
face_orient['{}-{}-{}'.format(v1, v0, v2)] = False
|
||||||
|
face_orient['{}-{}-{}'.format(v0, v2, v1)] = False
|
||||||
|
|
||||||
|
while sum(unvisited):
|
||||||
|
unvisited_faces = mesh.faces[unvisited]
|
||||||
|
|
||||||
|
# select the patch center
|
||||||
|
cur_face = unvisited_faces[0]
|
||||||
|
max_deg_vertex_id = np.argmax(degrees[cur_face])
|
||||||
|
max_deg_vertex = cur_face[max_deg_vertex_id]
|
||||||
|
|
||||||
|
# find all connected faces
|
||||||
|
selected_faces = []
|
||||||
|
for face_idx in mesh.vertex_faces[max_deg_vertex]:
|
||||||
|
if face_idx != -1 and unvisited[face_idx]:
|
||||||
|
face = mesh.faces[face_idx]
|
||||||
|
u, v = sorted([vertex for vertex in face if vertex != max_deg_vertex])
|
||||||
|
selected_faces.append([u, v, face_idx])
|
||||||
|
|
||||||
|
face_patch = set()
|
||||||
|
selected_faces = sorted(selected_faces)
|
||||||
|
|
||||||
|
# select the start vertex, select it if it only appears once (the start or end),
|
||||||
|
# else select the lowest index
|
||||||
|
cnt = {}
|
||||||
|
for u, v, _ in selected_faces:
|
||||||
|
cnt[u] = cnt.get(u, 0) + 1
|
||||||
|
cnt[v] = cnt.get(v, 0) + 1
|
||||||
|
starts = []
|
||||||
|
for vertex, num in cnt.items():
|
||||||
|
if num == 1:
|
||||||
|
starts.append(vertex)
|
||||||
|
start_idx = min(starts) if len(starts) else selected_faces[0][0]
|
||||||
|
|
||||||
|
res = [start_idx]
|
||||||
|
while len(res) <= len(selected_faces):
|
||||||
|
vertex = res[-1]
|
||||||
|
for u_i, v_i, face_idx_i in selected_faces:
|
||||||
|
if face_idx_i not in face_patch and vertex in (u_i, v_i):
|
||||||
|
u_i, v_i = (u_i, v_i) if vertex == u_i else (v_i, u_i)
|
||||||
|
res.append(v_i)
|
||||||
|
face_patch.add(face_idx_i)
|
||||||
|
break
|
||||||
|
|
||||||
|
if res[-1] == vertex:
|
||||||
|
break
|
||||||
|
|
||||||
|
if fix_orient and len(res) >= 2 and not face_orient['{}-{}-{}'.format(max_deg_vertex, res[0], res[1])]:
|
||||||
|
res = res[::-1]
|
||||||
|
|
||||||
|
# reduce the degree of related vertices and mark the visited faces
|
||||||
|
degrees[max_deg_vertex] = len(selected_faces) - len(res) + 1
|
||||||
|
for pos_idx, vertex in enumerate(res):
|
||||||
|
if pos_idx in [0, len(res) - 1]:
|
||||||
|
degrees[vertex] -= 1
|
||||||
|
else:
|
||||||
|
degrees[vertex] -= 2
|
||||||
|
for face_idx in face_patch:
|
||||||
|
unvisited[face_idx] = False
|
||||||
|
sequence.extend(
|
||||||
|
[mesh.vertices[max_deg_vertex]] +
|
||||||
|
[mesh.vertices[vertex_idx] for vertex_idx in res] +
|
||||||
|
[[special_token] * 3]
|
||||||
|
)
|
||||||
|
|
||||||
|
assert sum(degrees) == 0, 'All degrees should be zero'
|
||||||
|
|
||||||
|
return np.array(sequence)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def get_block_representation(
|
||||||
|
sequence,
|
||||||
|
block_size=8,
|
||||||
|
offset_size=16,
|
||||||
|
block_compressed=True,
|
||||||
|
special_token=-2,
|
||||||
|
use_special_block=True
|
||||||
|
):
|
||||||
|
'''
|
||||||
|
convert coordinates from Cartesian system to block indexes.
|
||||||
|
'''
|
||||||
|
special_block_base = block_size**3 + offset_size**3
|
||||||
|
# prepare coordinates
|
||||||
|
sp_mask = sequence != special_token
|
||||||
|
sp_mask = np.all(sp_mask, axis=1)
|
||||||
|
coords = sequence[sp_mask].reshape(-1, 3)
|
||||||
|
coords = discretize(coords)
|
||||||
|
|
||||||
|
# convert [x, y, z] to [block_id, offset_id]
|
||||||
|
block_id = coords // offset_size
|
||||||
|
block_id = block_id[:, 0] * block_size**2 + block_id[:, 1] * block_size + block_id[:, 2]
|
||||||
|
offset_id = coords % offset_size
|
||||||
|
offset_id = offset_id[:, 0] * offset_size**2 + offset_id[:, 1] * offset_size + offset_id[:, 2]
|
||||||
|
offset_id += block_size**3
|
||||||
|
block_coords = np.concatenate([block_id[..., None], offset_id[..., None]], axis=-1).astype(np.int64)
|
||||||
|
sequence[:, :2][sp_mask] = block_coords
|
||||||
|
sequence = sequence[:, :2]
|
||||||
|
|
||||||
|
# convert to codes
|
||||||
|
codes = []
|
||||||
|
cur_block_id = sequence[0, 0]
|
||||||
|
codes.append(cur_block_id)
|
||||||
|
for i in range(len(sequence)):
|
||||||
|
if sequence[i, 0] == special_token:
|
||||||
|
if not use_special_block:
|
||||||
|
codes.append(special_token)
|
||||||
|
cur_block_id = special_token
|
||||||
|
|
||||||
|
elif sequence[i, 0] == cur_block_id:
|
||||||
|
if block_compressed:
|
||||||
|
codes.append(sequence[i, 1])
|
||||||
|
else:
|
||||||
|
codes.extend([sequence[i, 0], sequence[i, 1]])
|
||||||
|
|
||||||
|
else:
|
||||||
|
if use_special_block and cur_block_id == special_token:
|
||||||
|
block_id = sequence[i, 0] + special_block_base
|
||||||
|
else:
|
||||||
|
block_id = sequence[i, 0]
|
||||||
|
codes.extend([block_id, sequence[i, 1]])
|
||||||
|
cur_block_id = block_id
|
||||||
|
|
||||||
|
codes = np.array(codes).astype(np.int64)
|
||||||
|
sequence = codes
|
||||||
|
|
||||||
|
return sequence.flatten()
|
||||||
|
|
||||||
|
|
||||||
|
def BPT_serialize(mesh: trimesh.Trimesh):
|
||||||
|
# serialize mesh with BPT
|
||||||
|
|
||||||
|
# 1. patchify faces into patches
|
||||||
|
sequence = patchified_mesh(mesh, special_token=-2)
|
||||||
|
|
||||||
|
# 2. convert coordinates to block-wise indexes
|
||||||
|
codes = get_block_representation(
|
||||||
|
sequence, block_size=8, offset_size=16,
|
||||||
|
block_compressed=True, special_token=-2, use_special_block=True
|
||||||
|
)
|
||||||
|
return codes
|
||||||
|
|
||||||
|
|
||||||
|
def decode_block(sequence, compressed=True, block_size=8, offset_size=16):
|
||||||
|
|
||||||
|
# decode from compressed representation
|
||||||
|
if compressed:
|
||||||
|
res = []
|
||||||
|
res_block = 0
|
||||||
|
for token_id in range(len(sequence)):
|
||||||
|
if block_size**3 + offset_size**3 > sequence[token_id] >= block_size**3:
|
||||||
|
res.append([res_block, sequence[token_id]])
|
||||||
|
elif block_size**3 > sequence[token_id] >= 0:
|
||||||
|
res_block = sequence[token_id]
|
||||||
|
else:
|
||||||
|
print('[Warning] too large offset idx!', token_id, sequence[token_id])
|
||||||
|
sequence = np.array(res)
|
||||||
|
|
||||||
|
block_id, offset_id = np.array_split(sequence, 2, axis=-1)
|
||||||
|
|
||||||
|
# from hash representation to xyz
|
||||||
|
coords = []
|
||||||
|
offset_id -= block_size**3
|
||||||
|
for i in [2, 1, 0]:
|
||||||
|
axis = (block_id // block_size**i) * offset_size + (offset_id // offset_size**i)
|
||||||
|
block_id %= block_size**i
|
||||||
|
offset_id %= offset_size**i
|
||||||
|
coords.append(axis)
|
||||||
|
|
||||||
|
coords = np.concatenate(coords, axis=-1) # (nf 3)
|
||||||
|
|
||||||
|
# back to continuous space
|
||||||
|
coords = undiscretize(coords)
|
||||||
|
|
||||||
|
return coords
|
||||||
|
|
||||||
|
|
||||||
|
def BPT_deserialize(sequence, block_size=8, offset_size=16, compressed=True, special_token=-2, use_special_block=True):
|
||||||
|
# decode codes back to coordinates
|
||||||
|
|
||||||
|
special_block_base = block_size**3 + offset_size**3
|
||||||
|
start_idx = 0
|
||||||
|
vertices = []
|
||||||
|
for i in range(len(sequence)):
|
||||||
|
sub_seq = []
|
||||||
|
if not use_special_block and (sequence[i] == special_token or i == len(sequence) - 1):
|
||||||
|
sub_seq = sequence[start_idx:i]
|
||||||
|
sub_seq = decode_block(sub_seq, compressed=compressed, block_size=block_size, offset_size=offset_size)
|
||||||
|
start_idx = i + 1
|
||||||
|
|
||||||
|
elif use_special_block and \
|
||||||
|
(special_block_base <= sequence[i] < special_block_base + block_size**3 or i == len(sequence)-1):
|
||||||
|
if i != 0:
|
||||||
|
sub_seq = sequence[start_idx:i] if i != len(sequence) - 1 else sequence[start_idx: i+1]
|
||||||
|
if special_block_base <= sub_seq[0] < special_block_base + block_size**3:
|
||||||
|
sub_seq[0] -= special_block_base
|
||||||
|
sub_seq = decode_block(sub_seq, compressed=compressed, block_size=block_size, offset_size=offset_size)
|
||||||
|
start_idx = i
|
||||||
|
|
||||||
|
if len(sub_seq):
|
||||||
|
center, sub_seq = sub_seq[0], sub_seq[1:]
|
||||||
|
for j in range(len(sub_seq) - 1):
|
||||||
|
vertices.extend([center.reshape(1, 3), sub_seq[j].reshape(1, 3), sub_seq[j+1].reshape(1, 3)])
|
||||||
|
|
||||||
|
# (nf, 3)
|
||||||
|
return np.concatenate(vertices, axis=0)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# a simple demo for serialize and deserialize mesh with bpt
|
||||||
|
from data_utils import load_process_mesh, to_mesh
|
||||||
|
import torch
|
||||||
|
mesh = load_process_mesh('/path/to/your/mesh', quantization_bits=7)
|
||||||
|
mesh['faces'] = np.array(mesh['faces'])
|
||||||
|
mesh = to_mesh(mesh['vertices'], mesh['faces'], transpose=True)
|
||||||
|
mesh.export('gt.obj')
|
||||||
|
codes = BPT_serialize(mesh)
|
||||||
|
coordinates = BPT_deserialize(codes)
|
||||||
|
faces = torch.arange(1, len(coordinates) + 1).view(-1, 3)
|
||||||
|
mesh = to_mesh(coordinates, faces, transpose=False, post_process=False)
|
||||||
|
mesh.export('reconstructed.obj')
|
||||||
30
hy3dgen/shapegen/bpt/requirements.txt
Normal file
30
hy3dgen/shapegen/bpt/requirements.txt
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
meshgpt_pytorch==0.6.7
|
||||||
|
pytorch-custom-utils==0.0.21
|
||||||
|
accelerate>=0.25.0
|
||||||
|
beartype
|
||||||
|
classifier-free-guidance-pytorch==0.5.1
|
||||||
|
einops>=0.7.0
|
||||||
|
ema-pytorch
|
||||||
|
pytorch-warmup
|
||||||
|
torch_geometric
|
||||||
|
torchtyping
|
||||||
|
vector-quantize-pytorch==1.12.8
|
||||||
|
x-transformers==1.26.6
|
||||||
|
tqdm
|
||||||
|
matplotlib
|
||||||
|
wandb
|
||||||
|
pyrr
|
||||||
|
trimesh
|
||||||
|
opencv-python
|
||||||
|
pyrender
|
||||||
|
open3d-python
|
||||||
|
easydict
|
||||||
|
chardet
|
||||||
|
deepspeed
|
||||||
|
omegaconf
|
||||||
|
scikit-image
|
||||||
|
setuptools
|
||||||
|
pytorch_lightning
|
||||||
|
mesh2sdf
|
||||||
|
numpy
|
||||||
|
point-cloud-utils
|
||||||
86
hy3dgen/shapegen/bpt/utils.py
Normal file
86
hy3dgen/shapegen/bpt/utils.py
Normal file
@ -0,0 +1,86 @@
|
|||||||
|
import trimesh
|
||||||
|
import numpy as np
|
||||||
|
from x_transformers.autoregressive_wrapper import top_p, top_k
|
||||||
|
|
||||||
|
|
||||||
|
class Dataset:
|
||||||
|
'''
|
||||||
|
A toy dataset for inference
|
||||||
|
'''
|
||||||
|
def __init__(self, input_type, input_list):
|
||||||
|
super().__init__()
|
||||||
|
self.data = []
|
||||||
|
if input_type == 'pc_normal':
|
||||||
|
for input_path in input_list:
|
||||||
|
# load npy
|
||||||
|
cur_data = np.load(input_path)
|
||||||
|
# sample 4096
|
||||||
|
assert cur_data.shape[0] >= 4096, "input pc_normal should have at least 4096 points"
|
||||||
|
idx = np.random.choice(cur_data.shape[0], 4096, replace=False)
|
||||||
|
cur_data = cur_data[idx]
|
||||||
|
self.data.append({'pc_normal': cur_data, 'uid': input_path.split('/')[-1].split('.')[0]})
|
||||||
|
|
||||||
|
elif input_type == 'mesh':
|
||||||
|
mesh_list, pc_list = [], []
|
||||||
|
for input_path in input_list:
|
||||||
|
# sample point cloud and normal from mesh
|
||||||
|
cur_data = trimesh.load(input_path, force='mesh')
|
||||||
|
cur_data = apply_normalize(cur_data)
|
||||||
|
mesh_list.append(cur_data)
|
||||||
|
pc_list.append(sample_pc(cur_data, pc_num=4096, with_normal=True))
|
||||||
|
|
||||||
|
for input_path, cur_data in zip(input_list, pc_list):
|
||||||
|
self.data.append({'pc_normal': cur_data, 'uid': input_path.split('/')[-1].split('.')[0]})
|
||||||
|
|
||||||
|
print(f"dataset total data samples: {len(self.data)}")
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.data)
|
||||||
|
|
||||||
|
def __getitem__(self, idx):
|
||||||
|
data_dict = {}
|
||||||
|
data_dict['pc_normal'] = self.data[idx]['pc_normal']
|
||||||
|
data_dict['uid'] = self.data[idx]['uid']
|
||||||
|
|
||||||
|
return data_dict
|
||||||
|
|
||||||
|
|
||||||
|
def joint_filter(logits, k = 50, p=0.95):
|
||||||
|
logits = top_k(logits, k = k)
|
||||||
|
logits = top_p(logits, thres = p)
|
||||||
|
return logits
|
||||||
|
|
||||||
|
|
||||||
|
def apply_normalize(mesh):
|
||||||
|
'''
|
||||||
|
normalize mesh to [-1, 1]
|
||||||
|
'''
|
||||||
|
bbox = mesh.bounds
|
||||||
|
center = (bbox[1] + bbox[0]) / 2
|
||||||
|
scale = (bbox[1] - bbox[0]).max()
|
||||||
|
|
||||||
|
mesh.apply_translation(-center)
|
||||||
|
mesh.apply_scale(1 / scale * 2 * 0.95)
|
||||||
|
|
||||||
|
return mesh
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def sample_pc(trimesh, pc_num, with_normal=False):
|
||||||
|
mesh = apply_normalize(trimesh)
|
||||||
|
|
||||||
|
if not with_normal:
|
||||||
|
points, _ = mesh.sample(pc_num, return_index=True)
|
||||||
|
return points
|
||||||
|
|
||||||
|
points, face_idx = mesh.sample(50000, return_index=True)
|
||||||
|
normals = mesh.face_normals[face_idx]
|
||||||
|
pc_normal = np.concatenate([points, normals], axis=-1, dtype=np.float16)
|
||||||
|
|
||||||
|
# random sample point cloud
|
||||||
|
ind = np.random.choice(pc_normal.shape[0], pc_num, replace=False)
|
||||||
|
pc_normal = pc_normal[ind]
|
||||||
|
|
||||||
|
return pc_normal
|
||||||
|
|
||||||
|
|
||||||
Loading…
x
Reference in New Issue
Block a user