mirror of
https://git.datalinker.icu/kijai/ComfyUI-Hunyuan3DWrapper.git
synced 2025-12-09 12:54:27 +08:00
256 lines
9.5 KiB
Python
Executable File
256 lines
9.5 KiB
Python
Executable File
# Open Source Model Licensed under the Apache License Version 2.0
|
|
# and Other Licenses of the Third-Party Components therein:
|
|
# The below Model in this distribution may have been modified by THL A29 Limited
|
|
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
|
|
|
|
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
|
|
# The below software and/or models in this distribution may have been
|
|
# modified by THL A29 Limited ("Tencent Modifications").
|
|
# All Tencent Modifications are Copyright (C) THL A29 Limited.
|
|
|
|
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
|
# except for the third-party components listed below.
|
|
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
|
# in the repsective licenses of these third-party components.
|
|
# Users must comply with all terms and conditions of original licenses of these third-party
|
|
# components and must ensure that the usage of the third party components adheres to
|
|
# all relevant laws and regulations.
|
|
|
|
# For avoidance of doubts, Hunyuan 3D means the large language models and
|
|
# their software and algorithms, including trained model weights, parameters (including
|
|
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
|
|
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
|
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
from torchvision import transforms
|
|
from transformers import (
|
|
CLIPVisionModelWithProjection,
|
|
CLIPVisionConfig,
|
|
Dinov2Model,
|
|
Dinov2Config,
|
|
)
|
|
from ....utils import log
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
|
"""
|
|
embed_dim: output dimension for each position
|
|
pos: a list of positions to be encoded: size (M,)
|
|
out: (M, D)
|
|
"""
|
|
assert embed_dim % 2 == 0
|
|
omega = np.arange(embed_dim // 2, dtype=np.float64)
|
|
omega /= embed_dim / 2.
|
|
omega = 1. / 10000 ** omega # (D/2,)
|
|
|
|
pos = pos.reshape(-1) # (M,)
|
|
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
|
|
|
emb_sin = np.sin(out) # (M, D/2)
|
|
emb_cos = np.cos(out) # (M, D/2)
|
|
|
|
return np.concatenate([emb_sin, emb_cos], axis=1)
|
|
|
|
|
|
class ImageEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
version=None,
|
|
config=None,
|
|
use_cls_token=True,
|
|
image_size=224,
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
self.has_guidance_embed = kwargs.get('has_guidance_embed', False)
|
|
|
|
if config is None:
|
|
self.model = self.MODEL_CLASS.from_pretrained(version)
|
|
else:
|
|
self.model = self.MODEL_CLASS(self.MODEL_CONFIG_CLASS.from_dict(config))
|
|
self.model.eval()
|
|
self.model.requires_grad_(False)
|
|
self.use_cls_token = use_cls_token
|
|
self.size = image_size // 14
|
|
self.num_patches = (image_size // 14) ** 2
|
|
if self.use_cls_token:
|
|
self.num_patches += 1
|
|
|
|
self.transform = transforms.Compose(
|
|
[
|
|
transforms.Resize(image_size, transforms.InterpolationMode.BILINEAR, antialias=True),
|
|
transforms.CenterCrop(image_size),
|
|
transforms.Normalize(
|
|
mean=self.mean,
|
|
std=self.std,
|
|
),
|
|
]
|
|
)
|
|
|
|
#MV
|
|
self.view_num = 4
|
|
pos = np.arange(self.view_num, dtype=np.float32)
|
|
view_embedding = torch.from_numpy(
|
|
get_1d_sincos_pos_embed_from_grid(self.model.config.hidden_size, pos)).float()
|
|
view_embedding = view_embedding.unsqueeze(1).repeat(1, self.num_patches, 1)
|
|
self.view_embed = view_embedding.unsqueeze(0)
|
|
|
|
self.view2idx = {
|
|
'front': 0,
|
|
'left': 1,
|
|
'back': 2,
|
|
'right': 3
|
|
}
|
|
|
|
def forward(self, image, mask=None, value_range=(-1, 1), view_dict=None):
|
|
if view_dict is None:
|
|
self.view_num = 1
|
|
if value_range is not None:
|
|
low, high = value_range
|
|
image = (image - low) / (high - low)
|
|
|
|
image = image.to(self.model.device, dtype=self.model.dtype)
|
|
|
|
if mask is not None:
|
|
mask = mask.to(image)
|
|
image = image * mask
|
|
supported_sizes = [518, 530]
|
|
if (image.shape[2] not in supported_sizes or image.shape[3] not in supported_sizes) and not self.has_guidance_embed:
|
|
log.info(f'Image shape {image.shape} not supported. Resizing to 518x518')
|
|
inputs = self.transform(image)
|
|
else:
|
|
inputs = image
|
|
outputs = self.model(inputs)
|
|
|
|
last_hidden_state = outputs.last_hidden_state
|
|
if not self.use_cls_token:
|
|
last_hidden_state = last_hidden_state[:, 1:, :]
|
|
|
|
return last_hidden_state
|
|
else:
|
|
images = []
|
|
view_indexes = []
|
|
supported_sizes = [518, 530]
|
|
|
|
for view_tag, view_image in view_dict.items():
|
|
if view_image is not None:
|
|
if view_image.shape[1] == 4:
|
|
log.info(f'{view_tag} view image has alpha channel, using it to set background to black')
|
|
rgb = view_image[:, :3, :, :]
|
|
alpha = view_image[:, 3:4, :, :]
|
|
view_image = rgb * alpha
|
|
else:
|
|
log.warning(f"{view_tag} view image has no alpha channel, make sure the background is already black")
|
|
view_image = view_image.to(self.model.device, dtype=self.model.dtype)
|
|
if (view_image.shape[2] not in supported_sizes or view_image.shape[3] not in supported_sizes):
|
|
log.info(f'view_image shape {view_image.shape} not supported. Resizing to 518x518')
|
|
view_image = self.transform(view_image)
|
|
images.append(view_image)
|
|
view_indexes.append(self.view2idx[view_tag])
|
|
|
|
image_tensors = torch.cat(images, 0)
|
|
|
|
outputs = self.model(image_tensors)
|
|
|
|
self.view_num = len(images)
|
|
|
|
last_hidden_state = outputs.last_hidden_state
|
|
last_hidden_state = last_hidden_state.view(
|
|
self.view_num,
|
|
-1,
|
|
last_hidden_state.shape[-1]
|
|
)
|
|
view_embedding = self.view_embed.to(last_hidden_state.dtype).to(last_hidden_state.device)
|
|
if self.view_num != 4:
|
|
view_embeddings = []
|
|
for idx in range(len(view_indexes)):
|
|
view_embeddings.append(self.view_embed[:, idx, ...])
|
|
view_embedding = torch.cat(view_embeddings, 0).to(last_hidden_state.dtype).to(last_hidden_state.device)
|
|
|
|
last_hidden_state = last_hidden_state + view_embedding
|
|
last_hidden_state = last_hidden_state.view(-1, last_hidden_state.shape[-1])
|
|
return last_hidden_state.unsqueeze(0)
|
|
|
|
def unconditional_embedding(self, batch_size):
|
|
device = next(self.model.parameters()).device
|
|
dtype = next(self.model.parameters()).dtype
|
|
zero = torch.zeros(
|
|
batch_size,
|
|
self.num_patches * self.view_num,
|
|
self.model.config.hidden_size,
|
|
device=device,
|
|
dtype=dtype,
|
|
)
|
|
|
|
return zero
|
|
|
|
|
|
class CLIPImageEncoder(ImageEncoder):
|
|
MODEL_CLASS = CLIPVisionModelWithProjection
|
|
MODEL_CONFIG_CLASS = CLIPVisionConfig
|
|
mean = [0.48145466, 0.4578275, 0.40821073]
|
|
std = [0.26862954, 0.26130258, 0.27577711]
|
|
|
|
|
|
class DinoImageEncoder(ImageEncoder):
|
|
MODEL_CLASS = Dinov2Model
|
|
MODEL_CONFIG_CLASS = Dinov2Config
|
|
mean = [0.485, 0.456, 0.406]
|
|
std = [0.229, 0.224, 0.225]
|
|
|
|
|
|
def build_image_encoder(config):
|
|
if config['type'] == 'CLIPImageEncoder':
|
|
return CLIPImageEncoder(**config['kwargs'])
|
|
elif config['type'] == 'DinoImageEncoder':
|
|
return DinoImageEncoder(**config['kwargs'])
|
|
else:
|
|
raise ValueError(f'Unknown image encoder type: {config["type"]}')
|
|
|
|
|
|
class DualImageEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
main_image_encoder,
|
|
additional_image_encoder,
|
|
):
|
|
super().__init__()
|
|
self.main_image_encoder = build_image_encoder(main_image_encoder)
|
|
self.additional_image_encoder = build_image_encoder(additional_image_encoder)
|
|
|
|
def forward(self, image, mask=None):
|
|
outputs = {
|
|
'main': self.main_image_encoder(image, mask=mask),
|
|
'additional': self.additional_image_encoder(image, mask=mask),
|
|
}
|
|
return outputs
|
|
|
|
def unconditional_embedding(self, batch_size):
|
|
outputs = {
|
|
'main': self.main_image_encoder.unconditional_embedding(batch_size),
|
|
'additional': self.additional_image_encoder.unconditional_embedding(batch_size),
|
|
}
|
|
return outputs
|
|
|
|
|
|
class SingleImageEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
main_image_encoder,
|
|
):
|
|
super().__init__()
|
|
self.main_image_encoder = build_image_encoder(main_image_encoder)
|
|
|
|
def forward(self, image=None, mask=None, view_dict=None):
|
|
outputs = {
|
|
'main': self.main_image_encoder(image=image, mask=mask, view_dict=view_dict),
|
|
}
|
|
return outputs
|
|
|
|
def unconditional_embedding(self, batch_size):
|
|
outputs = {
|
|
'main': self.main_image_encoder.unconditional_embedding(batch_size),
|
|
}
|
|
return outputs |