kijai 280ab59834 Add FlashVDM vae
...and it earned that name, whoa!

https://github.com/Tencent/FlashVDM/
2025-03-19 13:49:07 +02:00

328 lines
11 KiB
Python
Executable File

# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import tempfile
import os
from typing import Union
import torch
import numpy as np
import pymeshlab
import trimesh
from .models.autoencoders import Latent2MeshOutput
import folder_paths
def load_mesh(path):
if path.endswith(".glb"):
mesh = trimesh.load(path)
else:
mesh = pymeshlab.MeshSet()
mesh.load_new_mesh(path)
return mesh
def reduce_face(mesh: pymeshlab.MeshSet, max_facenum: int = 200000):
if max_facenum > mesh.current_mesh().face_number():
return mesh
mesh.apply_filter(
"meshing_decimation_quadric_edge_collapse",
targetfacenum=max_facenum,
qualitythr=1.0,
preserveboundary=True,
boundaryweight=3,
preservenormal=True,
preservetopology=True,
autoclean=True
)
return mesh
def remove_floater(mesh: pymeshlab.MeshSet):
mesh.apply_filter("compute_selection_by_small_disconnected_components_per_face",
nbfaceratio=0.005)
mesh.apply_filter("compute_selection_transfer_face_to_vertex", inclusive=False)
mesh.apply_filter("meshing_remove_selected_vertices_and_faces")
return mesh
def pymeshlab2trimesh(mesh: pymeshlab.MeshSet):
# Create temp directory with explicit permissions
temp_dir = folder_paths.temp_directory
os.makedirs(temp_dir, exist_ok=True)
try:
temp_path = os.path.join(temp_dir, 'temp_mesh.ply')
# Save and load mesh
mesh.save_current_mesh(temp_path)
loaded_mesh = trimesh.load(temp_path)
# Check loaded object type
if isinstance(loaded_mesh, trimesh.Scene):
combined_mesh = trimesh.Trimesh()
# If Scene, iterate through all geometries and combine
for geom in loaded_mesh.geometry.values():
combined_mesh = trimesh.util.concatenate([combined_mesh, geom])
loaded_mesh = combined_mesh
# Cleanup
if os.path.exists(temp_path):
os.remove(temp_path)
return loaded_mesh
except Exception as e:
if os.path.exists(temp_path):
os.remove(temp_path)
raise Exception(f"Error in pymeshlab2trimesh: {str(e)}")
def trimesh2pymeshlab(mesh: trimesh.Trimesh):
# Create temp directory with explicit permissions
temp_dir = folder_paths.temp_directory
os.makedirs(temp_dir, exist_ok=True)
try:
temp_path = os.path.join(temp_dir, 'temp_mesh.ply')
# Handle scene with multiple geometries
if isinstance(mesh, trimesh.scene.Scene):
temp_mesh = None
for idx, obj in enumerate(mesh.geometry.values()):
if idx == 0:
temp_mesh = obj
else:
temp_mesh = temp_mesh + obj
mesh = temp_mesh
# Export and load mesh
mesh.export(temp_path)
mesh_set = pymeshlab.MeshSet()
mesh_set.load_new_mesh(temp_path)
# Cleanup
if os.path.exists(temp_path):
os.remove(temp_path)
return mesh_set
except Exception as e:
if os.path.exists(temp_path):
os.remove(temp_path)
raise Exception(f"Error in trimesh2pymeshlab: {str(e)}")
def export_mesh(input, output):
if isinstance(input, pymeshlab.MeshSet):
mesh = output
elif isinstance(input, Latent2MeshOutput):
output = Latent2MeshOutput()
output.mesh_v = output.current_mesh().vertex_matrix()
output.mesh_f = output.current_mesh().face_matrix()
mesh = output
else:
mesh = pymeshlab2trimesh(output)
return mesh
def import_mesh(mesh: Union[pymeshlab.MeshSet, trimesh.Trimesh, Latent2MeshOutput, str]) -> pymeshlab.MeshSet:
if isinstance(mesh, str):
mesh = load_mesh(mesh)
elif isinstance(mesh, Latent2MeshOutput):
mesh = pymeshlab.MeshSet()
mesh_pymeshlab = pymeshlab.Mesh(vertex_matrix=mesh.mesh_v, face_matrix=mesh.mesh_f)
mesh.add_mesh(mesh_pymeshlab, "converted_mesh")
if isinstance(mesh, (trimesh.Trimesh, trimesh.scene.Scene)):
mesh = trimesh2pymeshlab(mesh)
return mesh
def bpt_remesh(self, mesh: trimesh.Trimesh, verbose: bool = False, with_normal: bool = True, temperature: float = 0.5, batch_size: int = 1, pc_num: int = 4096, seed: int = 1234, samples: int = 50000):
from .bpt.model import data_utils
from .bpt.model.model import MeshTransformer
from .bpt.model.serializaiton import BPT_deserialize
from .bpt.utils import sample_pc, joint_filter
pc_normal = sample_pc(mesh, pc_num=pc_num, with_normal=with_normal, seed=seed, samples=samples)
pc_normal = pc_normal[None, :, :] if len(pc_normal.shape) == 2 else pc_normal
from torch.serialization import add_safe_globals
from deepspeed.runtime.fp16.loss_scaler import LossScaler
from deepspeed.runtime.zero.config import ZeroStageEnum
from deepspeed.utils.tensor_fragment import fragment_address
add_safe_globals([LossScaler, fragment_address, ZeroStageEnum])
model = MeshTransformer()
comfyui_dir = os.path.dirname(os.path.abspath(__file__))
model_path = os.path.join(comfyui_dir, 'bpt/bpt-8-16-500m.pt')
print(model_path)
model.load(model_path)
model = model.eval().cuda().half()
import torch
pc_tensor = torch.from_numpy(pc_normal).cuda().half()
if len(pc_tensor.shape) == 2:
pc_tensor = pc_tensor.unsqueeze(0)
codes = model.generate(
pc=pc_tensor,
filter_logits_fn=joint_filter,
filter_kwargs=dict(k=50, p=0.95),
return_codes=True,
temperature=temperature,
batch_size=batch_size,
)
coords = []
try:
for i in range(len(codes)):
code = codes[i]
code = code[code != model.pad_id].cpu().numpy()
vertices = BPT_deserialize(
code,
block_size=model.block_size,
offset_size=model.offset_size,
use_special_block=model.use_special_block,
)
coords.append(vertices)
except:
coords.append(np.zeros(3, 3))
vertices = coords[i]
faces = torch.arange(1, len(vertices) + 1).view(-1, 3)
# Move to CPU
faces = faces.cpu().numpy()
del model
return data_utils.to_mesh(vertices, faces, transpose=False, post_process=True)
class BptMesh:
def __call__(
self,
mesh: Union[pymeshlab.MeshSet, trimesh.Trimesh, Latent2MeshOutput, str],
temperature: float = 0.5,
batch_size: int = 1,
with_normal: bool = True,
verbose: bool = False,
pc_num: int = 4096,
seed: int = 1234,
samples: int = 50000
) -> Union[pymeshlab.MeshSet, trimesh.Trimesh]:
mesh = bpt_remesh(self, mesh=mesh, temperature=temperature, batch_size=batch_size, with_normal=with_normal, pc_num=pc_num, seed=seed, samples=samples)
return mesh
class FaceReducer:
def __call__(
self,
mesh: Union[pymeshlab.MeshSet, trimesh.Trimesh, Latent2MeshOutput, str],
max_facenum: int = 40000
) -> Union[pymeshlab.MeshSet, trimesh.Trimesh]:
ms = import_mesh(mesh)
ms = reduce_face(ms, max_facenum=max_facenum)
mesh = export_mesh(mesh, ms)
return mesh
class FloaterRemover:
def __call__(
self,
mesh: Union[pymeshlab.MeshSet, trimesh.Trimesh, Latent2MeshOutput, str],
) -> Union[pymeshlab.MeshSet, trimesh.Trimesh, Latent2MeshOutput]:
ms = import_mesh(mesh)
ms = remove_floater(ms)
mesh = export_mesh(mesh, ms)
return mesh
class DegenerateFaceRemover:
def __call__(
self,
mesh: Union[pymeshlab.MeshSet, trimesh.Trimesh, Latent2MeshOutput, str],
) -> Union[pymeshlab.MeshSet, trimesh.Trimesh, Latent2MeshOutput]:
ms = import_mesh(mesh)
# Create temp file with explicit closing
temp_file = tempfile.NamedTemporaryFile(suffix='.ply', delete=False)
temp_file_path = temp_file.name
temp_file.close()
try:
ms.save_current_mesh(temp_file_path)
ms = pymeshlab.MeshSet()
ms.load_new_mesh(temp_file_path)
finally:
# Ensure temp file is removed
if os.path.exists(temp_file_path):
try:
os.remove(temp_file_path)
except:
pass
mesh = export_mesh(mesh, ms)
return mesh
def mesh_normalize(mesh):
"""
Normalize mesh vertices to sphere
"""
scale_factor = 1.2
vtx_pos = np.asarray(mesh.vertices)
max_bb = (vtx_pos - 0).max(0)[0]
min_bb = (vtx_pos - 0).min(0)[0]
center = (max_bb + min_bb) / 2
scale = torch.norm(torch.tensor(vtx_pos - center, dtype=torch.float32), dim=1).max() * 2.0
vtx_pos = (vtx_pos - center) * (scale_factor / float(scale))
mesh.vertices = vtx_pos
return mesh
class MeshSimplifier:
def __init__(self, executable: str = None):
if executable is None:
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
executable = os.path.join(CURRENT_DIR, "mesh_simplifier.bin")
self.executable = executable
def __call__(
self,
mesh: Union[trimesh.Trimesh],
) -> Union[trimesh.Trimesh]:
with tempfile.NamedTemporaryFile(suffix='.obj', delete=False) as temp_input:
with tempfile.NamedTemporaryFile(suffix='.obj', delete=False) as temp_output:
mesh.export(temp_input.name)
os.system(f'{self.executable} {temp_input.name} {temp_output.name}')
ms = trimesh.load(temp_output.name, process=False)
if isinstance(ms, trimesh.Scene):
combined_mesh = trimesh.Trimesh()
for geom in ms.geometry.values():
combined_mesh = trimesh.util.concatenate([combined_mesh, geom])
ms = combined_mesh
ms = mesh_normalize(ms)
return ms