mirror of
https://git.datalinker.icu/kijai/ComfyUI-Hunyuan3DWrapper.git
synced 2025-12-09 21:04:32 +08:00
Not sure if useful, but at least it doesn't error out unlike the normal model did with larger inputs than 530x530
176 lines
6.0 KiB
Python
Executable File
176 lines
6.0 KiB
Python
Executable File
# Open Source Model Licensed under the Apache License Version 2.0
|
|
# and Other Licenses of the Third-Party Components therein:
|
|
# The below Model in this distribution may have been modified by THL A29 Limited
|
|
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
|
|
|
|
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
|
|
# The below software and/or models in this distribution may have been
|
|
# modified by THL A29 Limited ("Tencent Modifications").
|
|
# All Tencent Modifications are Copyright (C) THL A29 Limited.
|
|
|
|
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
|
# except for the third-party components listed below.
|
|
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
|
# in the repsective licenses of these third-party components.
|
|
# Users must comply with all terms and conditions of original licenses of these third-party
|
|
# components and must ensure that the usage of the third party components adheres to
|
|
# all relevant laws and regulations.
|
|
|
|
# For avoidance of doubts, Hunyuan 3D means the large language models and
|
|
# their software and algorithms, including trained model weights, parameters (including
|
|
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
|
|
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
|
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torchvision import transforms
|
|
from transformers import (
|
|
CLIPVisionModelWithProjection,
|
|
CLIPVisionConfig,
|
|
Dinov2Model,
|
|
Dinov2Config,
|
|
)
|
|
|
|
|
|
class ImageEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
version=None,
|
|
config=None,
|
|
use_cls_token=True,
|
|
image_size=224,
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
self.has_guidance_embed = kwargs.get('has_guidance_embed', False)
|
|
|
|
if config is None:
|
|
self.model = self.MODEL_CLASS.from_pretrained(version)
|
|
else:
|
|
self.model = self.MODEL_CLASS(self.MODEL_CONFIG_CLASS.from_dict(config))
|
|
self.model.eval()
|
|
self.model.requires_grad_(False)
|
|
self.use_cls_token = use_cls_token
|
|
self.size = image_size // 14
|
|
self.num_patches = (image_size // 14) ** 2
|
|
if self.use_cls_token:
|
|
self.num_patches += 1
|
|
|
|
self.transform = transforms.Compose(
|
|
[
|
|
transforms.Resize(image_size, transforms.InterpolationMode.BILINEAR, antialias=True),
|
|
transforms.CenterCrop(image_size),
|
|
transforms.Normalize(
|
|
mean=self.mean,
|
|
std=self.std,
|
|
),
|
|
]
|
|
)
|
|
|
|
def forward(self, image, mask=None, value_range=(-1, 1)):
|
|
if value_range is not None:
|
|
low, high = value_range
|
|
image = (image - low) / (high - low)
|
|
|
|
image = image.to(self.model.device, dtype=self.model.dtype)
|
|
|
|
if mask is not None:
|
|
mask = mask.to(image)
|
|
image = image * mask
|
|
supported_sizes = [518, 530]
|
|
if (image.shape[2] not in supported_sizes or image.shape[3] not in supported_sizes) and not self.has_guidance_embed:
|
|
print(f'Image shape {image.shape} not supported. Resizing to 518x518')
|
|
inputs = self.transform(image)
|
|
else:
|
|
inputs = image
|
|
outputs = self.model(inputs)
|
|
|
|
last_hidden_state = outputs.last_hidden_state
|
|
if not self.use_cls_token:
|
|
last_hidden_state = last_hidden_state[:, 1:, :]
|
|
|
|
return last_hidden_state
|
|
|
|
def unconditional_embedding(self, batch_size):
|
|
device = next(self.model.parameters()).device
|
|
dtype = next(self.model.parameters()).dtype
|
|
zero = torch.zeros(
|
|
batch_size,
|
|
self.num_patches,
|
|
self.model.config.hidden_size,
|
|
device=device,
|
|
dtype=dtype,
|
|
)
|
|
|
|
return zero
|
|
|
|
|
|
class CLIPImageEncoder(ImageEncoder):
|
|
MODEL_CLASS = CLIPVisionModelWithProjection
|
|
MODEL_CONFIG_CLASS = CLIPVisionConfig
|
|
mean = [0.48145466, 0.4578275, 0.40821073]
|
|
std = [0.26862954, 0.26130258, 0.27577711]
|
|
|
|
|
|
class DinoImageEncoder(ImageEncoder):
|
|
MODEL_CLASS = Dinov2Model
|
|
MODEL_CONFIG_CLASS = Dinov2Config
|
|
mean = [0.485, 0.456, 0.406]
|
|
std = [0.229, 0.224, 0.225]
|
|
|
|
|
|
def build_image_encoder(config):
|
|
if config['type'] == 'CLIPImageEncoder':
|
|
return CLIPImageEncoder(**config['kwargs'])
|
|
elif config['type'] == 'DinoImageEncoder':
|
|
return DinoImageEncoder(**config['kwargs'])
|
|
else:
|
|
raise ValueError(f'Unknown image encoder type: {config["type"]}')
|
|
|
|
|
|
class DualImageEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
main_image_encoder,
|
|
additional_image_encoder,
|
|
):
|
|
super().__init__()
|
|
self.main_image_encoder = build_image_encoder(main_image_encoder)
|
|
self.additional_image_encoder = build_image_encoder(additional_image_encoder)
|
|
|
|
def forward(self, image, mask=None):
|
|
outputs = {
|
|
'main': self.main_image_encoder(image, mask=mask),
|
|
'additional': self.additional_image_encoder(image, mask=mask),
|
|
}
|
|
return outputs
|
|
|
|
def unconditional_embedding(self, batch_size):
|
|
outputs = {
|
|
'main': self.main_image_encoder.unconditional_embedding(batch_size),
|
|
'additional': self.additional_image_encoder.unconditional_embedding(batch_size),
|
|
}
|
|
return outputs
|
|
|
|
|
|
class SingleImageEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
main_image_encoder,
|
|
):
|
|
super().__init__()
|
|
self.main_image_encoder = build_image_encoder(main_image_encoder)
|
|
|
|
def forward(self, image, mask=None):
|
|
outputs = {
|
|
'main': self.main_image_encoder(image, mask=mask),
|
|
}
|
|
return outputs
|
|
|
|
def unconditional_embedding(self, batch_size):
|
|
outputs = {
|
|
'main': self.main_image_encoder.unconditional_embedding(batch_size),
|
|
}
|
|
return outputs
|