2025-01-23 14:46:52 +01:00

574 lines
21 KiB
Python

import os
import torch
from PIL import Image
from pathlib import Path
import numpy as np
import trimesh
from .hy3dgen.shapegen import Hunyuan3DDiTFlowMatchingPipeline, FaceReducer, FloaterRemover, DegenerateFaceRemover
import folder_paths
import comfy.model_management as mm
from comfy.utils import load_torch_file, ProgressBar
script_directory = os.path.dirname(os.path.abspath(__file__))
from .utils import log, print_memory
class ComfyProgressCallback:
def __init__(self, total_steps):
self.pbar = ProgressBar(total_steps)
def __call__(self, pipe, i, t, callback_kwargs):
self.pbar.update(1)
return {
"latents": callback_kwargs["latents"],
"prompt_embeds": callback_kwargs["prompt_embeds"],
"negative_prompt_embeds": callback_kwargs["negative_prompt_embeds"]
}
class Hy3DTorchCompileSettings:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"backend": (["inductor","cudagraphs"], {"default": "inductor"}),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
"dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}),
"compile_transformer": ("BOOLEAN", {"default": True, "tooltip": "Compile single blocks"}),
"compile_vae": ("BOOLEAN", {"default": True, "tooltip": "Compile double blocks"}),
},
}
RETURN_TYPES = ("HY3DCOMPILEARGS",)
RETURN_NAMES = ("torch_compile_args",)
FUNCTION = "loadmodel"
CATEGORY = "HunyuanVideoWrapper"
DESCRIPTION = "torch.compile settings, when connected to the model loader, torch.compile of the selected layers is attempted. Requires Triton and torch 2.5.0 is recommended"
def loadmodel(self, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit, compile_transformer, compile_vae):
compile_args = {
"backend": backend,
"fullgraph": fullgraph,
"mode": mode,
"dynamic": dynamic,
"dynamo_cache_size_limit": dynamo_cache_size_limit,
"compile_transformer": compile_transformer,
"compile_vae": compile_vae,
}
return (compile_args, )
#region Model loading
class Hy3DModelLoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": (folder_paths.get_filename_list("diffusion_models"), {"tooltip": "These models are loaded from the 'ComfyUI/models/diffusion_models' -folder",}),
},
"optional": {
"compile_args": ("HY3DCOMPILEARGS", {"tooltip": "torch.compile settings, when connected to the model loader, torch.compile of the selected models is attempted. Requires Triton and torch 2.5.0 is recommended"}),
}
}
RETURN_TYPES = ("HY3DMODEL",)
RETURN_NAMES = ("pipeline", )
FUNCTION = "loadmodel"
CATEGORY = "Hunyuan3DWrapper"
def loadmodel(self, model, compile_args=None):
device = mm.get_torch_device()
offload_device=mm.unet_offload_device()
config_path = os.path.join(script_directory, "configs", "dit_config.yaml")
model_path = folder_paths.get_full_path("diffusion_models", model)
pipe = Hunyuan3DDiTFlowMatchingPipeline.from_single_file(
ckpt_path=model_path,
config_path=config_path,
use_safetensors=True,
device=device,
offload_device=offload_device,
compile_args=compile_args)
return (pipe,)
class DownloadAndLoadHy3DDelightModel:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": (["hunyuan3d-delight-v2-0"],),
},
}
RETURN_TYPES = ("DELIGHTMODEL",)
RETURN_NAMES = ("delight_pipe", )
FUNCTION = "loadmodel"
CATEGORY = "Hunyuan3DWrapper"
def loadmodel(self, model):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
download_path = os.path.join(folder_paths.models_dir,"diffusers")
model_path = os.path.join(download_path, model)
if not os.path.exists(model_path):
log.info(f"Downloading model to: {model_path}")
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="tencent/Hunyuan3D-2",
allow_patterns=["*hunyuan3d-delight-v2-0*"],
local_dir=download_path,
local_dir_use_symlinks=False,
)
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
delight_pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
model_path,
torch_dtype=torch.float16,
safety_checker=None,
)
delight_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(delight_pipe.scheduler.config)
delight_pipe = delight_pipe.to(device, torch.float16)
delight_pipe.enable_model_cpu_offload()
return (delight_pipe,)
class LoadCustomMesh:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"glb": ("STRING", {"default": "", "tooltip": "The glb path with mesh to load. Tested only for now with other hunyuan3d-2 glbs"}),
}
}
RETURN_TYPES = ("HY3DMESH",)
RETURN_NAMES = ("mesh",)
OUTPUT_TOOLTIPS = ("The glb model with mesh to texturize.",)
FUNCTION = "main"
CATEGORY = "Hunyuan3DWrapper"
DESCRIPTION = "Encodes a text prompt using a CLIP model into an embedding that can be used to guide the diffusion model towards generating specific images."
def main(self, glb):
mesh = trimesh.load(glb, force="mesh")
return (mesh,)
class Hy3DDelightImage:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"delight_pipe": ("DELIGHTMODEL",),
"image": ("IMAGE", ),
"steps": ("INT", {"default": 50, "min": 1}),
"width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 16}),
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 16}),
"cfg_image": ("FLOAT", {"default": 1.5, "min": 0.0, "max": 100.0, "step": 0.01}),
"cfg_text": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}),
"seed": ("INT", {"default": 42, "min": 0, "max": 0xffffffffffffffff}),
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "process"
CATEGORY = "Hunyuan3DWrapper"
def process(self, delight_pipe, image, width, height, cfg_image, cfg_text, steps, seed):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
image = image.permute(0, 3, 1, 2).to(device)
image = delight_pipe(
prompt="",
image=image,
generator=torch.manual_seed(seed),
height=height,
width=width,
num_inference_steps=steps,
image_guidance_scale=cfg_image,
guidance_scale=cfg_text,
output_type="pt",
).images[0]
out_tensor = image.unsqueeze(0).permute(0, 2, 3, 1).cpu().float()
return (out_tensor, )
class DownloadAndLoadHy3DPaintModel:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": (["hunyuan3d-paint-v2-0"],),
},
}
RETURN_TYPES = ("HY3DPAINTMODEL",)
RETURN_NAMES = ("multiview_pipe", )
FUNCTION = "loadmodel"
CATEGORY = "Hunyuan3DWrapper"
def loadmodel(self, model):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
download_path = os.path.join(folder_paths.models_dir,"diffusers")
model_path = os.path.join(download_path, model)
if not os.path.exists(model_path):
log.info(f"Downloading model to: {model_path}")
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="tencent/Hunyuan3D-2",
allow_patterns=[f"*{model}*"],
local_dir=download_path,
local_dir_use_symlinks=False,
)
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
custom_pipeline_path = os.path.join(script_directory, 'hy3dgen', 'texgen', 'hunyuanpaint')
pipeline = DiffusionPipeline.from_pretrained(
model_path,
custom_pipeline=custom_pipeline_path,
torch_dtype=torch.float16)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config, timestep_spacing='trailing')
pipeline.enable_model_cpu_offload()
return (pipeline,)
class Hy3DRenderMultiView:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"pipeline": ("HY3DPAINTMODEL",),
"mesh": ("HY3DMESH",),
"image": ("IMAGE", ),
"view_size": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 16}),
"render_size": ("INT", {"default": 1024, "min": 64, "max": 4096, "step": 16}),
"texture_size": ("INT", {"default": 1024, "min": 64, "max": 4096, "step": 16}),
"steps": ("INT", {"default": 30, "min": 1}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
},
}
RETURN_TYPES = ("IMAGE", "MESHRENDER")
RETURN_NAMES = ("image", "renderer")
FUNCTION = "process"
CATEGORY = "Hunyuan3DWrapper"
def process(self, pipeline, image, mesh, view_size, render_size, texture_size, seed, steps):
device = mm.get_torch_device()
mm.soft_empty_cache()
torch.manual_seed(seed)
generator=torch.Generator(device=pipeline.device).manual_seed(seed)
from .hy3dgen.texgen.differentiable_renderer.mesh_render import MeshRender
self.render = MeshRender(
default_resolution=render_size,
texture_size=texture_size)
input_image = image.permute(0, 3, 1, 2).unsqueeze(0).to(device)
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
from .hy3dgen.texgen.utils.uv_warp_utils import mesh_uv_wrap
mesh = mesh_uv_wrap(mesh)
self.render.load_mesh(mesh)
selected_camera_azims = [0, 90, 180, 270, 0, 180]
selected_camera_elevs = [0, 0, 0, 0, 90, -90]
selected_view_weights = [1, 0.1, 0.5, 0.1, 0.05, 0.05]
normal_maps = self.render_normal_multiview(
selected_camera_elevs, selected_camera_azims, use_abs_coor=True)
position_maps = self.render_position_multiview(
selected_camera_elevs, selected_camera_azims)
camera_info = [(((azim // 30) + 9) % 12) // {-20: 1, 0: 1, 20: 1, -90: 3, 90: 3}[
elev] + {-20: 0, 0: 12, 20: 24, -90: 36, 90: 40}[elev] for azim, elev in
zip(selected_camera_azims, selected_camera_elevs)]
control_images = normal_maps + position_maps
for i in range(len(control_images)):
control_images[i] = control_images[i].resize((view_size, view_size))
if control_images[i].mode == 'L':
control_images[i] = control_images[i].point(lambda x: 255 if x > 1 else 0, mode='1')
num_view = len(control_images) // 2
normal_image = [[control_images[i] for i in range(num_view)]]
position_image = [[control_images[i + num_view] for i in range(num_view)]]
#pipeline = pipeline.to(device)
callback = ComfyProgressCallback(total_steps=steps)
multiview_images = pipeline(
input_image,
width=view_size,
height=view_size,
generator=generator,
num_in_batch = num_view,
camera_info_gen = [camera_info],
camera_info_ref = [[0]],
normal_imgs = normal_image,
position_imgs = position_image,
num_inference_steps=steps,
output_type="pt",
callback_on_step_end=callback,
callback_on_step_end_tensor_inputs=["latents", "prompt_embeds", "negative_prompt_embeds"]
).images
#pipeline = pipeline.to(offload_device)
out_tensors = multiview_images.permute(0, 2, 3, 1).cpu().float()
return (out_tensors, self.render)
def render_normal_multiview(self, camera_elevs, camera_azims, use_abs_coor=True):
normal_maps = []
for elev, azim in zip(camera_elevs, camera_azims):
normal_map = self.render.render_normal(
elev, azim, use_abs_coor=use_abs_coor, return_type='pl')
normal_maps.append(normal_map)
return normal_maps
def render_position_multiview(self, camera_elevs, camera_azims):
position_maps = []
for elev, azim in zip(camera_elevs, camera_azims):
position_map = self.render.render_position(
elev, azim, return_type='pl')
position_maps.append(position_map)
return position_maps
class Hy3DBakeFromMultiview:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE", ),
"renderer": ("MESHRENDER",),
},
}
RETURN_TYPES = ("HY3DMESH", "IMAGE", )
RETURN_NAMES = ("mesh", "texture",)
FUNCTION = "process"
CATEGORY = "Hunyuan3DWrapper"
def process(self, images, renderer):
device = mm.get_torch_device()
self.render = renderer
multiviews = images.permute(0, 3, 1, 2)
multiviews = multiviews.cpu().numpy()
multiviews_pil = [Image.fromarray((image.transpose(1, 2, 0) * 255).astype(np.uint8)) for image in multiviews]
selected_camera_azims = [0, 90, 180, 270, 0, 180]
selected_camera_elevs = [0, 0, 0, 0, 90, -90]
selected_view_weights = [1, 0.1, 0.5, 0.1, 0.05, 0.05]
merge_method = 'fast'
self.bake_exp = 4
texture, mask = self.bake_from_multiview(multiviews_pil,
selected_camera_elevs, selected_camera_azims, selected_view_weights,
method=merge_method)
mask_np = (mask.squeeze(-1).cpu().numpy() * 255).astype(np.uint8)
texture_np = self.render.uv_inpaint(texture, mask_np)
texture = torch.tensor(texture_np / 255).float().to(texture.device)
print(texture.shape)
self.render.set_texture(texture)
textured_mesh = self.render.save_mesh()
return (textured_mesh, texture.unsqueeze(0).cpu().float(),)
def bake_from_multiview(self, views, camera_elevs,
camera_azims, view_weights, method='graphcut'):
project_textures, project_weighted_cos_maps = [], []
project_boundary_maps = []
pbar = ProgressBar(len(views))
for view, camera_elev, camera_azim, weight in zip(
views, camera_elevs, camera_azims, view_weights):
project_texture, project_cos_map, project_boundary_map = self.render.back_project(
view, camera_elev, camera_azim)
project_cos_map = weight * (project_cos_map ** self.bake_exp)
project_textures.append(project_texture)
project_weighted_cos_maps.append(project_cos_map)
project_boundary_maps.append(project_boundary_map)
pbar.update(1)
if method == 'fast':
texture, ori_trust_map = self.render.fast_bake_texture(
project_textures, project_weighted_cos_maps)
else:
raise f'no method {method}'
return texture, ori_trust_map > 1E-8
class Hy3DGenerateMesh:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"pipeline": ("HY3DMODEL",),
"image": ("IMAGE", ),
"octree_resolution": ("INT", {"default": 256, "min": 64, "max": 4096, "step": 16}),
"guidance_scale": ("FLOAT", {"default": 5.5, "min": 0.0, "max": 100.0, "step": 0.01}),
"steps": ("INT", {"default": 30, "min": 1}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
},
"optional": {
"mask": ("MASK", ),
}
}
RETURN_TYPES = ("HY3DMESH",)
RETURN_NAMES = ("mesh",)
FUNCTION = "process"
CATEGORY = "Hunyuan3DWrapper"
def process(self, pipeline, image, steps, guidance_scale, octree_resolution, seed, mask=None):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
image = image.permute(0, 3, 1, 2).to(device)
image = image * 2 - 1
if mask is not None:
mask = mask.unsqueeze(0).to(device)
pipeline.to(device)
try:
torch.cuda.reset_peak_memory_stats(device)
except:
pass
mesh = pipeline(
image=image,
mask=mask,
num_inference_steps=steps,
mc_algo='mc',
guidance_scale=guidance_scale,
octree_resolution=octree_resolution,
generator=torch.manual_seed(seed))[0]
log.info(f"Generated mesh with {mesh.vertices.shape[0]} vertices and {mesh.faces.shape[0]} faces")
print_memory(device)
try:
torch.cuda.reset_peak_memory_stats(device)
except:
pass
pipeline.to(offload_device)
return (mesh, )
class Hy3DPostprocessMesh:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mesh": ("HY3DMESH",),
"remove_floaters": ("BOOLEAN", {"default": True}),
"remove_degenerate_faces": ("BOOLEAN", {"default": True}),
"reduce_faces": ("BOOLEAN", {"default": True}),
"max_facenum": ("INT", {"default": 40000, "min": 1, "max": 10000000, "step": 1}),
},
}
RETURN_TYPES = ("HY3DMESH",)
RETURN_NAMES = ("mesh",)
FUNCTION = "process"
CATEGORY = "Hunyuan3DWrapper"
def process(self, mesh, remove_floaters, remove_degenerate_faces, reduce_faces, max_facenum):
if remove_floaters:
mesh = FloaterRemover()(mesh)
log.info(f"Removed floaters, resulting in {mesh.vertices.shape[0]} vertices and {mesh.faces.shape[0]} faces")
if remove_degenerate_faces:
mesh = DegenerateFaceRemover()(mesh)
log.info(f"Removed degenerate faces, resulting in {mesh.vertices.shape[0]} vertices and {mesh.faces.shape[0]} faces")
if reduce_faces:
mesh = FaceReducer()(mesh, max_facenum=max_facenum)
log.info(f"Reduced faces, resulting in {mesh.vertices.shape[0]} vertices and {mesh.faces.shape[0]} faces")
return (mesh, )
class Hy3DExportMesh:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mesh": ("HY3DMESH",),
"filename_prefix": ("STRING", {"default": "3D/Hy3D"}),
},
}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("glb_path",)
FUNCTION = "process"
CATEGORY = "Hunyuan3DWrapper"
def process(self, mesh, filename_prefix):
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory())
output_glb_path = Path(full_output_folder, f'{filename}_{counter:05}_.glb')
output_glb_path.parent.mkdir(exist_ok=True)
mesh.export(output_glb_path)
relative_path = Path(subfolder) / f'{filename}_{counter:05}_.glb'
return (str(relative_path), )
NODE_CLASS_MAPPINGS = {
"Hy3DModelLoader": Hy3DModelLoader,
"Hy3DGenerateMesh": Hy3DGenerateMesh,
"Hy3DExportMesh": Hy3DExportMesh,
"DownloadAndLoadHy3DDelightModel": DownloadAndLoadHy3DDelightModel,
"DownloadAndLoadHy3DPaintModel": DownloadAndLoadHy3DPaintModel,
"Hy3DDelightImage": Hy3DDelightImage,
"Hy3DRenderMultiView": Hy3DRenderMultiView,
"Hy3DBakeFromMultiview": Hy3DBakeFromMultiview,
"Hy3DTorchCompileSettings": Hy3DTorchCompileSettings,
"Hy3DPostprocessMesh": Hy3DPostprocessMesh,
"LoadCustomMesh": LoadCustomMesh
}
NODE_DISPLAY_NAME_MAPPINGS = {
"Hy3DModelLoader": "Hy3DModelLoader",
"Hy3DGenerateMesh": "Hy3DGenerateMesh",
"Hy3DExportMesh": "Hy3DExportMesh",
"DownloadAndLoadHy3DDelightModel": "(Down)Load Hy3D DelightModel",
"DownloadAndLoadHy3DPaintModel": "(Down)Load Hy3D PaintModel",
"Hy3DDelightImage": "Hy3DDelightImage",
"Hy3DRenderMultiView": "Hy3D Render MultiView",
"Hy3DBakeFromMultiview": "Hy3D Bake From Multiview",
"Hy3DTorchCompileSettings": "Hy3D Torch Compile Settings",
"Hy3DPostprocessMesh": "Hy3D Postprocess Mesh",
"LoadCustomMesh": "Load Custom Mesh"
}