kijai 48c7716b2e Simple basic 2.1 meshgen
just the bare minimum
2025-06-14 00:19:31 +03:00

436 lines
18 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
from typing import Union, Tuple, List, Callable
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import repeat
from tqdm import tqdm
from .attention_blocks import CrossAttentionDecoder
from .attention_processors import FlashVDMCrossAttentionProcessor, FlashVDMTopMCrossAttentionProcessor
from ...utils import logger
def extract_near_surface_volume_fn(input_tensor: torch.Tensor, alpha: float):
device = input_tensor.device
D = input_tensor.shape[0]
signed_val = 0.0
# 添加偏移并处理无效值
val = input_tensor + alpha
valid_mask = val > -9000 # 假设-9000是无效值
# 改进的邻居获取函数(保持维度一致)
def get_neighbor(t, shift, axis):
"""根据指定轴进行位移并保持维度一致"""
if shift == 0:
return t.clone()
# 确定填充轴(输入为[D, D, D]对应z,y,x轴
pad_dims = [0, 0, 0, 0, 0, 0] # 格式:[x前x后y前y后z前z后]
# 根据轴类型设置填充
if axis == 0: # x轴最后一个维度
pad_idx = 0 if shift > 0 else 1
pad_dims[pad_idx] = abs(shift)
elif axis == 1: # y轴中间维度
pad_idx = 2 if shift > 0 else 3
pad_dims[pad_idx] = abs(shift)
elif axis == 2: # z轴第一个维度
pad_idx = 4 if shift > 0 else 5
pad_dims[pad_idx] = abs(shift)
# 执行填充添加batch和channel维度适配F.pad
padded = F.pad(t.unsqueeze(0).unsqueeze(0), pad_dims[::-1], mode='replicate') # 反转顺序适配F.pad
# 构建动态切片索引
slice_dims = [slice(None)] * 3 # 初始化为全切片
if axis == 0: # x轴dim=2
if shift > 0:
slice_dims[0] = slice(shift, None)
else:
slice_dims[0] = slice(None, shift)
elif axis == 1: # y轴dim=1
if shift > 0:
slice_dims[1] = slice(shift, None)
else:
slice_dims[1] = slice(None, shift)
elif axis == 2: # z轴dim=0
if shift > 0:
slice_dims[2] = slice(shift, None)
else:
slice_dims[2] = slice(None, shift)
# 应用切片并恢复维度
padded = padded.squeeze(0).squeeze(0)
sliced = padded[slice_dims]
return sliced
# 获取各方向邻居(确保维度一致)
left = get_neighbor(val, 1, axis=0) # x方向
right = get_neighbor(val, -1, axis=0)
back = get_neighbor(val, 1, axis=1) # y方向
front = get_neighbor(val, -1, axis=1)
down = get_neighbor(val, 1, axis=2) # z方向
up = get_neighbor(val, -1, axis=2)
# 处理边界无效值使用where保持维度一致
def safe_where(neighbor):
return torch.where(neighbor > -9000, neighbor, val)
left = safe_where(left)
right = safe_where(right)
back = safe_where(back)
front = safe_where(front)
down = safe_where(down)
up = safe_where(up)
# 计算符号一致性转换为float32确保精度
sign = torch.sign(val.to(torch.float32))
neighbors_sign = torch.stack([
torch.sign(left.to(torch.float32)),
torch.sign(right.to(torch.float32)),
torch.sign(back.to(torch.float32)),
torch.sign(front.to(torch.float32)),
torch.sign(down.to(torch.float32)),
torch.sign(up.to(torch.float32))
], dim=0)
# 检查所有符号是否一致
same_sign = torch.all(neighbors_sign == sign, dim=0)
# 生成最终掩码
mask = (~same_sign).to(torch.int32)
return mask * valid_mask.to(torch.int32)
def generate_dense_grid_points(
bbox_min: np.ndarray,
bbox_max: np.ndarray,
octree_resolution: int,
indexing: str = "ij",
):
length = bbox_max - bbox_min
num_cells = octree_resolution
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
xyz = np.stack((xs, ys, zs), axis=-1)
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]
return xyz, grid_size, length
class VanillaVolumeDecoder:
@torch.no_grad()
def __call__(
self,
latents: torch.FloatTensor,
geo_decoder: Callable,
bounds: Union[Tuple[float], List[float], float] = 1.01,
num_chunks: int = 10000,
octree_resolution: int = None,
enable_pbar: bool = True,
**kwargs,
):
device = latents.device
dtype = latents.dtype
batch_size = latents.shape[0]
# 1. generate query points
if isinstance(bounds, float):
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
bbox_min, bbox_max = np.array(bounds[0:3]), np.array(bounds[3:6])
xyz_samples, grid_size, length = generate_dense_grid_points(
bbox_min=bbox_min,
bbox_max=bbox_max,
octree_resolution=octree_resolution,
indexing="ij"
)
xyz_samples = torch.from_numpy(xyz_samples).to(device, dtype=dtype).contiguous().reshape(-1, 3)
# 2. latents to 3d volume
batch_logits = []
for start in tqdm(range(0, xyz_samples.shape[0], num_chunks), desc=f"Volume Decoding",
disable=not enable_pbar):
chunk_queries = xyz_samples[start: start + num_chunks, :]
chunk_queries = repeat(chunk_queries, "p c -> b p c", b=batch_size)
logits = geo_decoder(queries=chunk_queries, latents=latents)
batch_logits.append(logits)
grid_logits = torch.cat(batch_logits, dim=1)
grid_logits = grid_logits.view((batch_size, *grid_size)).float()
return grid_logits
class HierarchicalVolumeDecoding:
@torch.no_grad()
def __call__(
self,
latents: torch.FloatTensor,
geo_decoder: Callable,
bounds: Union[Tuple[float], List[float], float] = 1.01,
num_chunks: int = 10000,
mc_level: float = 0.0,
octree_resolution: int = None,
min_resolution: int = 63,
enable_pbar: bool = True,
**kwargs,
):
device = latents.device
dtype = latents.dtype
resolutions = []
if octree_resolution < min_resolution:
resolutions.append(octree_resolution)
while octree_resolution >= min_resolution:
resolutions.append(octree_resolution)
octree_resolution = octree_resolution // 2
resolutions.reverse()
# 1. generate query points
if isinstance(bounds, float):
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
bbox_min = np.array(bounds[0:3])
bbox_max = np.array(bounds[3:6])
bbox_size = bbox_max - bbox_min
xyz_samples, grid_size, length = generate_dense_grid_points(
bbox_min=bbox_min,
bbox_max=bbox_max,
octree_resolution=resolutions[0],
indexing="ij"
)
dilate = nn.Conv3d(1, 1, 3, padding=1, bias=False, device=device, dtype=dtype)
dilate.weight = torch.nn.Parameter(torch.ones(dilate.weight.shape, dtype=dtype, device=device))
grid_size = np.array(grid_size)
xyz_samples = torch.from_numpy(xyz_samples).to(device, dtype=dtype).contiguous().reshape(-1, 3)
# 2. latents to 3d volume
batch_logits = []
batch_size = latents.shape[0]
for start in tqdm(range(0, xyz_samples.shape[0], num_chunks),
desc=f"Hierarchical Volume Decoding [r{resolutions[0] + 1}]"):
queries = xyz_samples[start: start + num_chunks, :]
batch_queries = repeat(queries, "p c -> b p c", b=batch_size)
logits = geo_decoder(queries=batch_queries, latents=latents)
batch_logits.append(logits)
grid_logits = torch.cat(batch_logits, dim=1).view((batch_size, grid_size[0], grid_size[1], grid_size[2]))
for octree_depth_now in resolutions[1:]:
grid_size = np.array([octree_depth_now + 1] * 3)
resolution = bbox_size / octree_depth_now
next_index = torch.zeros(tuple(grid_size), dtype=dtype, device=device)
next_logits = torch.full(next_index.shape, -10000., dtype=dtype, device=device)
curr_points = extract_near_surface_volume_fn(grid_logits.squeeze(0), mc_level)
curr_points += grid_logits.squeeze(0).abs() < 0.95
if octree_depth_now == resolutions[-1]:
expand_num = 0
else:
expand_num = 1
for i in range(expand_num):
curr_points = dilate(curr_points.unsqueeze(0).to(dtype)).squeeze(0)
(cidx_x, cidx_y, cidx_z) = torch.where(curr_points > 0)
next_index[cidx_x * 2, cidx_y * 2, cidx_z * 2] = 1
for i in range(2 - expand_num):
next_index = dilate(next_index.unsqueeze(0)).squeeze(0)
nidx = torch.where(next_index > 0)
next_points = torch.stack(nidx, dim=1)
next_points = (next_points * torch.tensor(resolution, dtype=next_points.dtype, device=device) +
torch.tensor(bbox_min, dtype=next_points.dtype, device=device))
batch_logits = []
for start in tqdm(range(0, next_points.shape[0], num_chunks),
desc=f"Hierarchical Volume Decoding [r{octree_depth_now + 1}]"):
queries = next_points[start: start + num_chunks, :]
batch_queries = repeat(queries, "p c -> b p c", b=batch_size)
logits = geo_decoder(queries=batch_queries.to(latents.dtype), latents=latents)
batch_logits.append(logits)
grid_logits = torch.cat(batch_logits, dim=1)
next_logits[nidx] = grid_logits[0, ..., 0]
grid_logits = next_logits.unsqueeze(0)
grid_logits[grid_logits == -10000.] = float('nan')
return grid_logits
class FlashVDMVolumeDecoding:
def __init__(self, topk_mode='mean'):
if topk_mode not in ['mean', 'merge']:
raise ValueError(f'Unsupported topk_mode {topk_mode}, available: {["mean", "merge"]}')
if topk_mode == 'mean':
self.processor = FlashVDMCrossAttentionProcessor()
else:
self.processor = FlashVDMTopMCrossAttentionProcessor()
@torch.no_grad()
def __call__(
self,
latents: torch.FloatTensor,
geo_decoder: CrossAttentionDecoder,
bounds: Union[Tuple[float], List[float], float] = 1.01,
num_chunks: int = 10000,
mc_level: float = 0.0,
octree_resolution: int = None,
min_resolution: int = 63,
mini_grid_num: int = 4,
enable_pbar: bool = True,
**kwargs,
):
processor = self.processor
geo_decoder.set_cross_attention_processor(processor)
device = latents.device
dtype = latents.dtype
resolutions = []
if octree_resolution < min_resolution:
resolutions.append(octree_resolution)
while octree_resolution >= min_resolution:
resolutions.append(octree_resolution)
octree_resolution = octree_resolution // 2
resolutions.reverse()
resolutions[0] = round(resolutions[0] / mini_grid_num) * mini_grid_num - 1
for i, resolution in enumerate(resolutions[1:]):
resolutions[i + 1] = resolutions[0] * 2 ** (i + 1)
logger.info(f"FlashVDMVolumeDecoding Resolution: {resolutions}")
# 1. generate query points
if isinstance(bounds, float):
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
bbox_min = np.array(bounds[0:3])
bbox_max = np.array(bounds[3:6])
bbox_size = bbox_max - bbox_min
xyz_samples, grid_size, length = generate_dense_grid_points(
bbox_min=bbox_min,
bbox_max=bbox_max,
octree_resolution=resolutions[0],
indexing="ij"
)
dilate = nn.Conv3d(1, 1, 3, padding=1, bias=False, device=device, dtype=dtype)
dilate.weight = torch.nn.Parameter(torch.ones(dilate.weight.shape, dtype=dtype, device=device))
grid_size = np.array(grid_size)
# 2. latents to 3d volume
xyz_samples = torch.from_numpy(xyz_samples).to(device, dtype=dtype)
batch_size = latents.shape[0]
mini_grid_size = xyz_samples.shape[0] // mini_grid_num
xyz_samples = xyz_samples.view(
mini_grid_num, mini_grid_size,
mini_grid_num, mini_grid_size,
mini_grid_num, mini_grid_size, 3
).permute(
0, 2, 4, 1, 3, 5, 6
).reshape(
-1, mini_grid_size * mini_grid_size * mini_grid_size, 3
)
batch_logits = []
num_batchs = max(num_chunks // xyz_samples.shape[1], 1)
for start in tqdm(range(0, xyz_samples.shape[0], num_batchs),
desc=f"FlashVDM Volume Decoding", disable=not enable_pbar):
queries = xyz_samples[start: start + num_batchs, :]
batch = queries.shape[0]
batch_latents = repeat(latents.squeeze(0), "p c -> b p c", b=batch)
processor.topk = True
logits = geo_decoder(queries=queries, latents=batch_latents)
batch_logits.append(logits)
grid_logits = torch.cat(batch_logits, dim=0).reshape(
mini_grid_num, mini_grid_num, mini_grid_num,
mini_grid_size, mini_grid_size,
mini_grid_size
).permute(0, 3, 1, 4, 2, 5).contiguous().view(
(batch_size, grid_size[0], grid_size[1], grid_size[2])
)
for octree_depth_now in resolutions[1:]:
grid_size = np.array([octree_depth_now + 1] * 3)
resolution = bbox_size / octree_depth_now
next_index = torch.zeros(tuple(grid_size), dtype=dtype, device=device)
next_logits = torch.full(next_index.shape, -10000., dtype=dtype, device=device)
curr_points = extract_near_surface_volume_fn(grid_logits.squeeze(0), mc_level)
curr_points += grid_logits.squeeze(0).abs() < 0.95
if octree_depth_now == resolutions[-1]:
expand_num = 0
else:
expand_num = 1
for i in range(expand_num):
curr_points = dilate(curr_points.unsqueeze(0).to(dtype)).squeeze(0)
(cidx_x, cidx_y, cidx_z) = torch.where(curr_points > 0)
next_index[cidx_x * 2, cidx_y * 2, cidx_z * 2] = 1
for i in range(2 - expand_num):
next_index = dilate(next_index.unsqueeze(0)).squeeze(0)
nidx = torch.where(next_index > 0)
next_points = torch.stack(nidx, dim=1)
next_points = (next_points * torch.tensor(resolution, dtype=torch.float32, device=device) +
torch.tensor(bbox_min, dtype=torch.float32, device=device))
query_grid_num = 6
min_val = next_points.min(axis=0).values
max_val = next_points.max(axis=0).values
vol_queries_index = (next_points - min_val) / (max_val - min_val) * (query_grid_num - 0.001)
index = torch.floor(vol_queries_index).long()
index = index[..., 0] * (query_grid_num ** 2) + index[..., 1] * query_grid_num + index[..., 2]
index = index.sort()
next_points = next_points[index.indices].unsqueeze(0).contiguous()
unique_values = torch.unique(index.values, return_counts=True)
grid_logits = torch.zeros((next_points.shape[1]), dtype=latents.dtype, device=latents.device)
input_grid = [[], []]
logits_grid_list = []
start_num = 0
sum_num = 0
for grid_index, count in zip(unique_values[0].cpu().tolist(), unique_values[1].cpu().tolist()):
if sum_num + count < num_chunks or sum_num == 0:
sum_num += count
input_grid[0].append(grid_index)
input_grid[1].append(count)
else:
processor.topk = input_grid
logits_grid = geo_decoder(queries=next_points[:, start_num:start_num + sum_num], latents=latents)
start_num = start_num + sum_num
logits_grid_list.append(logits_grid)
input_grid = [[grid_index], [count]]
sum_num = count
if sum_num > 0:
processor.topk = input_grid
logits_grid = geo_decoder(queries=next_points[:, start_num:start_num + sum_num], latents=latents)
logits_grid_list.append(logits_grid)
logits_grid = torch.cat(logits_grid_list, dim=1)
grid_logits[index.indices] = logits_grid.squeeze(0).squeeze(-1)
next_logits[nidx] = grid_logits
grid_logits = next_logits.unsqueeze(0)
grid_logits[grid_logits == -10000.] = float('nan')
return grid_logits