mirror of
https://git.datalinker.icu/kijai/ComfyUI-Hunyuan3DWrapper.git
synced 2025-12-13 14:54:35 +08:00
436 lines
18 KiB
Python
436 lines
18 KiB
Python
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
||
# except for the third-party components listed below.
|
||
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
||
# in the repsective licenses of these third-party components.
|
||
# Users must comply with all terms and conditions of original licenses of these third-party
|
||
# components and must ensure that the usage of the third party components adheres to
|
||
# all relevant laws and regulations.
|
||
|
||
# For avoidance of doubts, Hunyuan 3D means the large language models and
|
||
# their software and algorithms, including trained model weights, parameters (including
|
||
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
|
||
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
||
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
||
|
||
from typing import Union, Tuple, List, Callable
|
||
|
||
import numpy as np
|
||
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
from einops import repeat
|
||
from tqdm import tqdm
|
||
|
||
from .attention_blocks import CrossAttentionDecoder
|
||
from .attention_processors import FlashVDMCrossAttentionProcessor, FlashVDMTopMCrossAttentionProcessor
|
||
from ...utils import logger
|
||
|
||
|
||
def extract_near_surface_volume_fn(input_tensor: torch.Tensor, alpha: float):
|
||
device = input_tensor.device
|
||
D = input_tensor.shape[0]
|
||
signed_val = 0.0
|
||
|
||
# 添加偏移并处理无效值
|
||
val = input_tensor + alpha
|
||
valid_mask = val > -9000 # 假设-9000是无效值
|
||
|
||
# 改进的邻居获取函数(保持维度一致)
|
||
def get_neighbor(t, shift, axis):
|
||
"""根据指定轴进行位移并保持维度一致"""
|
||
if shift == 0:
|
||
return t.clone()
|
||
|
||
# 确定填充轴(输入为[D, D, D]对应z,y,x轴)
|
||
pad_dims = [0, 0, 0, 0, 0, 0] # 格式:[x前,x后,y前,y后,z前,z后]
|
||
|
||
# 根据轴类型设置填充
|
||
if axis == 0: # x轴(最后一个维度)
|
||
pad_idx = 0 if shift > 0 else 1
|
||
pad_dims[pad_idx] = abs(shift)
|
||
elif axis == 1: # y轴(中间维度)
|
||
pad_idx = 2 if shift > 0 else 3
|
||
pad_dims[pad_idx] = abs(shift)
|
||
elif axis == 2: # z轴(第一个维度)
|
||
pad_idx = 4 if shift > 0 else 5
|
||
pad_dims[pad_idx] = abs(shift)
|
||
|
||
# 执行填充(添加batch和channel维度适配F.pad)
|
||
padded = F.pad(t.unsqueeze(0).unsqueeze(0), pad_dims[::-1], mode='replicate') # 反转顺序适配F.pad
|
||
|
||
# 构建动态切片索引
|
||
slice_dims = [slice(None)] * 3 # 初始化为全切片
|
||
if axis == 0: # x轴(dim=2)
|
||
if shift > 0:
|
||
slice_dims[0] = slice(shift, None)
|
||
else:
|
||
slice_dims[0] = slice(None, shift)
|
||
elif axis == 1: # y轴(dim=1)
|
||
if shift > 0:
|
||
slice_dims[1] = slice(shift, None)
|
||
else:
|
||
slice_dims[1] = slice(None, shift)
|
||
elif axis == 2: # z轴(dim=0)
|
||
if shift > 0:
|
||
slice_dims[2] = slice(shift, None)
|
||
else:
|
||
slice_dims[2] = slice(None, shift)
|
||
|
||
# 应用切片并恢复维度
|
||
padded = padded.squeeze(0).squeeze(0)
|
||
sliced = padded[slice_dims]
|
||
return sliced
|
||
|
||
# 获取各方向邻居(确保维度一致)
|
||
left = get_neighbor(val, 1, axis=0) # x方向
|
||
right = get_neighbor(val, -1, axis=0)
|
||
back = get_neighbor(val, 1, axis=1) # y方向
|
||
front = get_neighbor(val, -1, axis=1)
|
||
down = get_neighbor(val, 1, axis=2) # z方向
|
||
up = get_neighbor(val, -1, axis=2)
|
||
|
||
# 处理边界无效值(使用where保持维度一致)
|
||
def safe_where(neighbor):
|
||
return torch.where(neighbor > -9000, neighbor, val)
|
||
|
||
left = safe_where(left)
|
||
right = safe_where(right)
|
||
back = safe_where(back)
|
||
front = safe_where(front)
|
||
down = safe_where(down)
|
||
up = safe_where(up)
|
||
|
||
# 计算符号一致性(转换为float32确保精度)
|
||
sign = torch.sign(val.to(torch.float32))
|
||
neighbors_sign = torch.stack([
|
||
torch.sign(left.to(torch.float32)),
|
||
torch.sign(right.to(torch.float32)),
|
||
torch.sign(back.to(torch.float32)),
|
||
torch.sign(front.to(torch.float32)),
|
||
torch.sign(down.to(torch.float32)),
|
||
torch.sign(up.to(torch.float32))
|
||
], dim=0)
|
||
|
||
# 检查所有符号是否一致
|
||
same_sign = torch.all(neighbors_sign == sign, dim=0)
|
||
|
||
# 生成最终掩码
|
||
mask = (~same_sign).to(torch.int32)
|
||
return mask * valid_mask.to(torch.int32)
|
||
|
||
|
||
def generate_dense_grid_points(
|
||
bbox_min: np.ndarray,
|
||
bbox_max: np.ndarray,
|
||
octree_resolution: int,
|
||
indexing: str = "ij",
|
||
):
|
||
length = bbox_max - bbox_min
|
||
num_cells = octree_resolution
|
||
|
||
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
|
||
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
|
||
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
|
||
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
|
||
xyz = np.stack((xs, ys, zs), axis=-1)
|
||
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]
|
||
|
||
return xyz, grid_size, length
|
||
|
||
|
||
class VanillaVolumeDecoder:
|
||
@torch.no_grad()
|
||
def __call__(
|
||
self,
|
||
latents: torch.FloatTensor,
|
||
geo_decoder: Callable,
|
||
bounds: Union[Tuple[float], List[float], float] = 1.01,
|
||
num_chunks: int = 10000,
|
||
octree_resolution: int = None,
|
||
enable_pbar: bool = True,
|
||
**kwargs,
|
||
):
|
||
device = latents.device
|
||
dtype = latents.dtype
|
||
batch_size = latents.shape[0]
|
||
|
||
# 1. generate query points
|
||
if isinstance(bounds, float):
|
||
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
|
||
|
||
bbox_min, bbox_max = np.array(bounds[0:3]), np.array(bounds[3:6])
|
||
xyz_samples, grid_size, length = generate_dense_grid_points(
|
||
bbox_min=bbox_min,
|
||
bbox_max=bbox_max,
|
||
octree_resolution=octree_resolution,
|
||
indexing="ij"
|
||
)
|
||
xyz_samples = torch.from_numpy(xyz_samples).to(device, dtype=dtype).contiguous().reshape(-1, 3)
|
||
|
||
# 2. latents to 3d volume
|
||
batch_logits = []
|
||
for start in tqdm(range(0, xyz_samples.shape[0], num_chunks), desc=f"Volume Decoding",
|
||
disable=not enable_pbar):
|
||
chunk_queries = xyz_samples[start: start + num_chunks, :]
|
||
chunk_queries = repeat(chunk_queries, "p c -> b p c", b=batch_size)
|
||
logits = geo_decoder(queries=chunk_queries, latents=latents)
|
||
batch_logits.append(logits)
|
||
|
||
grid_logits = torch.cat(batch_logits, dim=1)
|
||
grid_logits = grid_logits.view((batch_size, *grid_size)).float()
|
||
|
||
return grid_logits
|
||
|
||
|
||
class HierarchicalVolumeDecoding:
|
||
@torch.no_grad()
|
||
def __call__(
|
||
self,
|
||
latents: torch.FloatTensor,
|
||
geo_decoder: Callable,
|
||
bounds: Union[Tuple[float], List[float], float] = 1.01,
|
||
num_chunks: int = 10000,
|
||
mc_level: float = 0.0,
|
||
octree_resolution: int = None,
|
||
min_resolution: int = 63,
|
||
enable_pbar: bool = True,
|
||
**kwargs,
|
||
):
|
||
device = latents.device
|
||
dtype = latents.dtype
|
||
|
||
resolutions = []
|
||
if octree_resolution < min_resolution:
|
||
resolutions.append(octree_resolution)
|
||
while octree_resolution >= min_resolution:
|
||
resolutions.append(octree_resolution)
|
||
octree_resolution = octree_resolution // 2
|
||
resolutions.reverse()
|
||
|
||
# 1. generate query points
|
||
if isinstance(bounds, float):
|
||
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
|
||
bbox_min = np.array(bounds[0:3])
|
||
bbox_max = np.array(bounds[3:6])
|
||
bbox_size = bbox_max - bbox_min
|
||
|
||
xyz_samples, grid_size, length = generate_dense_grid_points(
|
||
bbox_min=bbox_min,
|
||
bbox_max=bbox_max,
|
||
octree_resolution=resolutions[0],
|
||
indexing="ij"
|
||
)
|
||
|
||
dilate = nn.Conv3d(1, 1, 3, padding=1, bias=False, device=device, dtype=dtype)
|
||
dilate.weight = torch.nn.Parameter(torch.ones(dilate.weight.shape, dtype=dtype, device=device))
|
||
|
||
grid_size = np.array(grid_size)
|
||
xyz_samples = torch.from_numpy(xyz_samples).to(device, dtype=dtype).contiguous().reshape(-1, 3)
|
||
|
||
# 2. latents to 3d volume
|
||
batch_logits = []
|
||
batch_size = latents.shape[0]
|
||
for start in tqdm(range(0, xyz_samples.shape[0], num_chunks),
|
||
desc=f"Hierarchical Volume Decoding [r{resolutions[0] + 1}]"):
|
||
queries = xyz_samples[start: start + num_chunks, :]
|
||
batch_queries = repeat(queries, "p c -> b p c", b=batch_size)
|
||
logits = geo_decoder(queries=batch_queries, latents=latents)
|
||
batch_logits.append(logits)
|
||
|
||
grid_logits = torch.cat(batch_logits, dim=1).view((batch_size, grid_size[0], grid_size[1], grid_size[2]))
|
||
|
||
for octree_depth_now in resolutions[1:]:
|
||
grid_size = np.array([octree_depth_now + 1] * 3)
|
||
resolution = bbox_size / octree_depth_now
|
||
next_index = torch.zeros(tuple(grid_size), dtype=dtype, device=device)
|
||
next_logits = torch.full(next_index.shape, -10000., dtype=dtype, device=device)
|
||
curr_points = extract_near_surface_volume_fn(grid_logits.squeeze(0), mc_level)
|
||
curr_points += grid_logits.squeeze(0).abs() < 0.95
|
||
|
||
if octree_depth_now == resolutions[-1]:
|
||
expand_num = 0
|
||
else:
|
||
expand_num = 1
|
||
for i in range(expand_num):
|
||
curr_points = dilate(curr_points.unsqueeze(0).to(dtype)).squeeze(0)
|
||
(cidx_x, cidx_y, cidx_z) = torch.where(curr_points > 0)
|
||
next_index[cidx_x * 2, cidx_y * 2, cidx_z * 2] = 1
|
||
for i in range(2 - expand_num):
|
||
next_index = dilate(next_index.unsqueeze(0)).squeeze(0)
|
||
nidx = torch.where(next_index > 0)
|
||
|
||
next_points = torch.stack(nidx, dim=1)
|
||
next_points = (next_points * torch.tensor(resolution, dtype=next_points.dtype, device=device) +
|
||
torch.tensor(bbox_min, dtype=next_points.dtype, device=device))
|
||
batch_logits = []
|
||
for start in tqdm(range(0, next_points.shape[0], num_chunks),
|
||
desc=f"Hierarchical Volume Decoding [r{octree_depth_now + 1}]"):
|
||
queries = next_points[start: start + num_chunks, :]
|
||
batch_queries = repeat(queries, "p c -> b p c", b=batch_size)
|
||
logits = geo_decoder(queries=batch_queries.to(latents.dtype), latents=latents)
|
||
batch_logits.append(logits)
|
||
grid_logits = torch.cat(batch_logits, dim=1)
|
||
next_logits[nidx] = grid_logits[0, ..., 0]
|
||
grid_logits = next_logits.unsqueeze(0)
|
||
grid_logits[grid_logits == -10000.] = float('nan')
|
||
|
||
return grid_logits
|
||
|
||
|
||
class FlashVDMVolumeDecoding:
|
||
def __init__(self, topk_mode='mean'):
|
||
if topk_mode not in ['mean', 'merge']:
|
||
raise ValueError(f'Unsupported topk_mode {topk_mode}, available: {["mean", "merge"]}')
|
||
|
||
if topk_mode == 'mean':
|
||
self.processor = FlashVDMCrossAttentionProcessor()
|
||
else:
|
||
self.processor = FlashVDMTopMCrossAttentionProcessor()
|
||
|
||
@torch.no_grad()
|
||
def __call__(
|
||
self,
|
||
latents: torch.FloatTensor,
|
||
geo_decoder: CrossAttentionDecoder,
|
||
bounds: Union[Tuple[float], List[float], float] = 1.01,
|
||
num_chunks: int = 10000,
|
||
mc_level: float = 0.0,
|
||
octree_resolution: int = None,
|
||
min_resolution: int = 63,
|
||
mini_grid_num: int = 4,
|
||
enable_pbar: bool = True,
|
||
**kwargs,
|
||
):
|
||
processor = self.processor
|
||
geo_decoder.set_cross_attention_processor(processor)
|
||
|
||
device = latents.device
|
||
dtype = latents.dtype
|
||
|
||
resolutions = []
|
||
if octree_resolution < min_resolution:
|
||
resolutions.append(octree_resolution)
|
||
while octree_resolution >= min_resolution:
|
||
resolutions.append(octree_resolution)
|
||
octree_resolution = octree_resolution // 2
|
||
resolutions.reverse()
|
||
resolutions[0] = round(resolutions[0] / mini_grid_num) * mini_grid_num - 1
|
||
for i, resolution in enumerate(resolutions[1:]):
|
||
resolutions[i + 1] = resolutions[0] * 2 ** (i + 1)
|
||
|
||
logger.info(f"FlashVDMVolumeDecoding Resolution: {resolutions}")
|
||
|
||
# 1. generate query points
|
||
if isinstance(bounds, float):
|
||
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
|
||
bbox_min = np.array(bounds[0:3])
|
||
bbox_max = np.array(bounds[3:6])
|
||
bbox_size = bbox_max - bbox_min
|
||
|
||
xyz_samples, grid_size, length = generate_dense_grid_points(
|
||
bbox_min=bbox_min,
|
||
bbox_max=bbox_max,
|
||
octree_resolution=resolutions[0],
|
||
indexing="ij"
|
||
)
|
||
|
||
dilate = nn.Conv3d(1, 1, 3, padding=1, bias=False, device=device, dtype=dtype)
|
||
dilate.weight = torch.nn.Parameter(torch.ones(dilate.weight.shape, dtype=dtype, device=device))
|
||
|
||
grid_size = np.array(grid_size)
|
||
|
||
# 2. latents to 3d volume
|
||
xyz_samples = torch.from_numpy(xyz_samples).to(device, dtype=dtype)
|
||
batch_size = latents.shape[0]
|
||
mini_grid_size = xyz_samples.shape[0] // mini_grid_num
|
||
xyz_samples = xyz_samples.view(
|
||
mini_grid_num, mini_grid_size,
|
||
mini_grid_num, mini_grid_size,
|
||
mini_grid_num, mini_grid_size, 3
|
||
).permute(
|
||
0, 2, 4, 1, 3, 5, 6
|
||
).reshape(
|
||
-1, mini_grid_size * mini_grid_size * mini_grid_size, 3
|
||
)
|
||
batch_logits = []
|
||
num_batchs = max(num_chunks // xyz_samples.shape[1], 1)
|
||
for start in tqdm(range(0, xyz_samples.shape[0], num_batchs),
|
||
desc=f"FlashVDM Volume Decoding", disable=not enable_pbar):
|
||
queries = xyz_samples[start: start + num_batchs, :]
|
||
batch = queries.shape[0]
|
||
batch_latents = repeat(latents.squeeze(0), "p c -> b p c", b=batch)
|
||
processor.topk = True
|
||
logits = geo_decoder(queries=queries, latents=batch_latents)
|
||
batch_logits.append(logits)
|
||
grid_logits = torch.cat(batch_logits, dim=0).reshape(
|
||
mini_grid_num, mini_grid_num, mini_grid_num,
|
||
mini_grid_size, mini_grid_size,
|
||
mini_grid_size
|
||
).permute(0, 3, 1, 4, 2, 5).contiguous().view(
|
||
(batch_size, grid_size[0], grid_size[1], grid_size[2])
|
||
)
|
||
|
||
for octree_depth_now in resolutions[1:]:
|
||
grid_size = np.array([octree_depth_now + 1] * 3)
|
||
resolution = bbox_size / octree_depth_now
|
||
next_index = torch.zeros(tuple(grid_size), dtype=dtype, device=device)
|
||
next_logits = torch.full(next_index.shape, -10000., dtype=dtype, device=device)
|
||
curr_points = extract_near_surface_volume_fn(grid_logits.squeeze(0), mc_level)
|
||
curr_points += grid_logits.squeeze(0).abs() < 0.95
|
||
|
||
if octree_depth_now == resolutions[-1]:
|
||
expand_num = 0
|
||
else:
|
||
expand_num = 1
|
||
for i in range(expand_num):
|
||
curr_points = dilate(curr_points.unsqueeze(0).to(dtype)).squeeze(0)
|
||
(cidx_x, cidx_y, cidx_z) = torch.where(curr_points > 0)
|
||
|
||
next_index[cidx_x * 2, cidx_y * 2, cidx_z * 2] = 1
|
||
for i in range(2 - expand_num):
|
||
next_index = dilate(next_index.unsqueeze(0)).squeeze(0)
|
||
nidx = torch.where(next_index > 0)
|
||
|
||
next_points = torch.stack(nidx, dim=1)
|
||
next_points = (next_points * torch.tensor(resolution, dtype=torch.float32, device=device) +
|
||
torch.tensor(bbox_min, dtype=torch.float32, device=device))
|
||
|
||
query_grid_num = 6
|
||
min_val = next_points.min(axis=0).values
|
||
max_val = next_points.max(axis=0).values
|
||
vol_queries_index = (next_points - min_val) / (max_val - min_val) * (query_grid_num - 0.001)
|
||
index = torch.floor(vol_queries_index).long()
|
||
index = index[..., 0] * (query_grid_num ** 2) + index[..., 1] * query_grid_num + index[..., 2]
|
||
index = index.sort()
|
||
next_points = next_points[index.indices].unsqueeze(0).contiguous()
|
||
unique_values = torch.unique(index.values, return_counts=True)
|
||
grid_logits = torch.zeros((next_points.shape[1]), dtype=latents.dtype, device=latents.device)
|
||
input_grid = [[], []]
|
||
logits_grid_list = []
|
||
start_num = 0
|
||
sum_num = 0
|
||
for grid_index, count in zip(unique_values[0].cpu().tolist(), unique_values[1].cpu().tolist()):
|
||
if sum_num + count < num_chunks or sum_num == 0:
|
||
sum_num += count
|
||
input_grid[0].append(grid_index)
|
||
input_grid[1].append(count)
|
||
else:
|
||
processor.topk = input_grid
|
||
logits_grid = geo_decoder(queries=next_points[:, start_num:start_num + sum_num], latents=latents)
|
||
start_num = start_num + sum_num
|
||
logits_grid_list.append(logits_grid)
|
||
input_grid = [[grid_index], [count]]
|
||
sum_num = count
|
||
if sum_num > 0:
|
||
processor.topk = input_grid
|
||
logits_grid = geo_decoder(queries=next_points[:, start_num:start_num + sum_num], latents=latents)
|
||
logits_grid_list.append(logits_grid)
|
||
logits_grid = torch.cat(logits_grid_list, dim=1)
|
||
grid_logits[index.indices] = logits_grid.squeeze(0).squeeze(-1)
|
||
next_logits[nidx] = grid_logits
|
||
grid_logits = next_logits.unsqueeze(0)
|
||
|
||
grid_logits[grid_logits == -10000.] = float('nan')
|
||
|
||
return grid_logits
|