Add ImageConcatMulti

This commit is contained in:
kijai 2024-06-13 16:51:58 +03:00
parent 36e3b6f66a
commit 07288d1b6f
3 changed files with 54 additions and 7 deletions

View File

@ -51,6 +51,7 @@ NODE_CONFIG = {
"ImageBatchRepeatInterleaving": {"class": ImageBatchRepeatInterleaving},
"ImageBatchTestPattern": {"class": ImageBatchTestPattern, "name": "Image Batch Test Pattern"},
"ImageConcanate": {"class": ImageConcanate, "name": "Image Concatenate"},
"ImageConcatMulti": {"class": ImageConcatMulti, "name": "Image Concatenate Multi"},
"ImageGrabPIL": {"class": ImageGrabPIL, "name": "Image Grab PIL"},
"ImageGridComposite2x2": {"class": ImageGridComposite2x2, "name": "Image Grid Composite 2x2"},
"ImageGridComposite3x3": {"class": ImageGridComposite3x3, "name": "Image Grid Composite 3x3"},

View File

@ -209,11 +209,11 @@ class ImageConcanate:
Concatenates the image2 to image1 in the specified direction.
"""
def concanate(self, image1, image2, direction, match_image_size):
def concanate(self, image1, image2, direction, match_image_size, first_image_shape=None):
# Check if the batch sizes are different
batch_size1 = image1.size(0)
batch_size2 = image2.size(0)
if batch_size1 != batch_size2:
# Calculate the number of repetitions needed
max_batch_size = max(batch_size1, batch_size2)
@ -224,15 +224,18 @@ Concatenates the image2 to image1 in the specified direction.
image1 = image1.repeat(repeats1, 1, 1, 1)
image2 = image2.repeat(repeats2, 1, 1, 1)
if match_image_size:
image2 = torch.nn.functional.interpolate(image2, size=(image1.shape[2], image1.shape[3]), mode="bilinear")
image2_resized = image2.movedim(-1,1)
image2_resized = common_upscale(image2_resized, first_image_shape[2], first_image_shape[1], "lanczos", "disabled").movedim(1,-1)
else:
image2_resized = image2
if direction == 'right':
row = torch.cat((image1, image2), dim=2)
row = torch.cat((image1, image2_resized), dim=2)
elif direction == 'down':
row = torch.cat((image1, image2), dim=1)
row = torch.cat((image1, image2_resized), dim=1)
elif direction == 'left':
row = torch.cat((image2, image1), dim=2)
row = torch.cat((image2_resized, image1), dim=2)
elif direction == 'up':
row = torch.cat((image2, image1), dim=1)
row = torch.cat((image2_resized, image1), dim=1)
return (row,)
class ImageGridComposite2x2:
@ -1198,6 +1201,48 @@ with the **inputcount** and clicking update.
image = torch.sub(image, new_image)
return (image,)
class ImageConcatMulti:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
"image_1": ("IMAGE", ),
"image_2": ("IMAGE", ),
"direction": (
[ 'right',
'down',
'left',
'up',
],
{
"default": 'right'
}),
"match_image_size": ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("images",)
FUNCTION = "combine"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Creates an image from multiple images.
You can set how many inputs the node has,
with the **inputcount** and clicking update.
"""
def combine(self, inputcount, direction, match_image_size, **kwargs):
image = kwargs["image_1"]
first_image_shape = None
if first_image_shape is None:
first_image_shape = image.shape
for c in range(1, inputcount):
new_image = kwargs[f"image_{c + 1}"]
image, = ImageConcanate.concanate(self, image, new_image, direction, match_image_size, first_image_shape=first_image_shape)
first_image_shape = None
return (image,)
class PreviewAnimation:
def __init__(self):
self.output_dir = folder_paths.get_temp_directory()

View File

@ -31,6 +31,7 @@ app.registerExtension({
break;
case "ImageBatchMulti":
case "ImageAddMulti":
case "ImageConcatMulti":
nodeType.prototype.onNodeCreated = function () {
this._type = "IMAGE"
this.inputs_offset = nodeData.name.includes("selective")?1:0