diff --git a/nodes/curve_nodes.py b/nodes/curve_nodes.py index b4fecde..89796be 100644 --- a/nodes/curve_nodes.py +++ b/nodes/curve_nodes.py @@ -1308,18 +1308,21 @@ output types: normalized_y_values.append(norm_y) normalized.append({'x':norm_x, 'y':norm_y}) - bboxes = json.loads(bboxes) - bboxes = [(int(bboxes["x"]), int(bboxes["y"]), int(bboxes["width"]), int(bboxes["height"]))] - - # Create a blank mask + # Create a blank mask mask = np.zeros((height, width), dtype=np.uint8) + bboxes = json.loads(bboxes) + print(bboxes) + if bboxes["x"] is None or bboxes["y"] is None or bboxes["width"] is None or bboxes["height"] is None: + bboxes = [] + else: + bboxes = [(int(bboxes["x"]), int(bboxes["y"]), int(bboxes["width"]), int(bboxes["height"]))] - # Draw the bounding box on the mask - for bbox in bboxes: - x_min, y_min, w, h = bbox - x_max = x_min + w - y_max = y_min + h - mask[y_min:y_max, x_min:x_max] = 1 # Fill the bounding box area with 1s + # Draw the bounding box on the mask + for bbox in bboxes: + x_min, y_min, w, h = bbox + x_max = x_min + w + y_max = y_min + h + mask[y_min:y_max, x_min:x_max] = 1 # Fill the bounding box area with 1s mask_tensor = torch.from_numpy(mask) mask_tensor = mask_tensor.unsqueeze(0).float().cpu()