diff --git a/nodes/image_nodes.py b/nodes/image_nodes.py
index 22f2214..842f53f 100644
--- a/nodes/image_nodes.py
+++ b/nodes/image_nodes.py
@@ -2467,7 +2467,7 @@ class ImageResizeKJv2:
"width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }),
"height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }),
"upscale_method": (s.upscale_methods,),
- "keep_proportion": (["stretch", "resize", "pad", "pad_edge", "crop"], { "default": False }),
+ "keep_proportion": (["stretch", "resize", "pad", "pad_edge", "pad_edge_pixel", "crop", "pillarbox_blur"], { "default": False }),
"pad_color": ("STRING", { "default": "0, 0, 0", "tooltip": "Color to use for padding."}),
"crop_position": (["center", "top", "bottom", "left", "right"], { "default": "center" }),
"divisible_by": ("INT", { "default": 2, "min": 0, "max": 512, "step": 1, }),
@@ -2507,22 +2507,28 @@ highest dimension.
width = W
if height == 0:
height = H
-
- if keep_proportion == "resize" or keep_proportion.startswith("pad"):
+
+ pillarbox_blur = keep_proportion == "pillarbox_blur"
+ if keep_proportion == "resize" or keep_proportion.startswith("pad") or pillarbox_blur:
# If one of the dimensions is zero, calculate it to maintain the aspect ratio
if width == 0 and height != 0:
ratio = height / H
new_width = round(W * ratio)
+ new_height = height
elif height == 0 and width != 0:
ratio = width / W
+ new_width = width
new_height = round(H * ratio)
elif width != 0 and height != 0:
- # Scale based on which dimension is smaller in proportion to the desired dimensions
ratio = min(width / W, height / H)
new_width = round(W * ratio)
new_height = round(H * ratio)
+ else:
+ new_width = width
+ new_height = height
- if keep_proportion.startswith("pad"):
+ pad_left = pad_right = pad_top = pad_bottom = 0
+ if keep_proportion.startswith("pad") or pillarbox_blur:
# Calculate padding based on position
if crop_position == "center":
pad_left = (width - new_width) // 2
@@ -2558,27 +2564,23 @@ highest dimension.
height = height - (height % divisible_by)
out_image = image.clone().to(device)
-
if mask is not None:
out_mask = mask.clone().to(device)
else:
out_mask = None
-
+
+ # Crop logic
if keep_proportion == "crop":
old_width = W
old_height = H
old_aspect = old_width / old_height
new_aspect = width / height
-
- # Calculate dimensions to keep
- if old_aspect > new_aspect: # Image is wider than target
+ if old_aspect > new_aspect:
crop_w = round(old_height * new_aspect)
crop_h = old_height
- else: # Image is taller than target
+ else:
crop_w = old_width
crop_h = round(old_width / new_aspect)
-
- # Calculate crop position
if crop_position == "center":
x = (old_width - crop_w) // 2
y = (old_height - crop_h) // 2
@@ -2594,50 +2596,45 @@ highest dimension.
elif crop_position == "right":
x = old_width - crop_w
y = (old_height - crop_h) // 2
-
- # Apply crop
out_image = out_image.narrow(-2, x, crop_w).narrow(-3, y, crop_h)
if mask is not None:
out_mask = out_mask.narrow(-1, x, crop_w).narrow(-2, y, crop_h)
-
- out_image = common_upscale(out_image.movedim(-1,1), width, height, upscale_method, crop="disabled").movedim(1,-1)
+ out_image = common_upscale(out_image.movedim(-1,1), width, height, upscale_method, crop="disabled").movedim(1,-1)
if mask is not None:
if upscale_method == "lanczos":
out_mask = common_upscale(out_mask.unsqueeze(1).repeat(1, 3, 1, 1), width, height, upscale_method, crop="disabled").movedim(1,-1)[:, :, :, 0]
else:
out_mask = common_upscale(out_mask.unsqueeze(1), width, height, upscale_method, crop="disabled").squeeze(1)
-
- if keep_proportion.startswith("pad"):
- if pad_left > 0 or pad_right > 0 or pad_top > 0 or pad_bottom > 0:
- padded_width = width + pad_left + pad_right
- padded_height = height + pad_top + pad_bottom
- if divisible_by > 1:
- width_remainder = padded_width % divisible_by
- height_remainder = padded_height % divisible_by
- if width_remainder > 0:
- extra_width = divisible_by - width_remainder
- pad_right += extra_width
- if height_remainder > 0:
- extra_height = divisible_by - height_remainder
- pad_bottom += extra_height
- out_image, _ = ImagePadKJ.pad(self, out_image, pad_left, pad_right, pad_top, pad_bottom, 0, pad_color, "edge" if keep_proportion == "pad_edge" else "color")
- if mask is not None:
- out_mask = out_mask.unsqueeze(1).repeat(1, 3, 1, 1).movedim(1,-1)
- out_mask, _ = ImagePadKJ.pad(self, out_mask, pad_left, pad_right, pad_top, pad_bottom, 0, pad_color, "edge" if keep_proportion == "pad_edge" else "color")
- out_mask = out_mask[:, :, :, 0]
- else:
- B, H_pad, W_pad, _ = out_image.shape
- out_mask = torch.ones((B, H_pad, W_pad), dtype=out_image.dtype, device=out_image.device)
- out_mask[:, pad_top:pad_top+height, pad_left:pad_left+width] = 0.0
+ # Pad logic
+ if (keep_proportion.startswith("pad") or pillarbox_blur) and (pad_left > 0 or pad_right > 0 or pad_top > 0 or pad_bottom > 0):
+ padded_width = width + pad_left + pad_right
+ padded_height = height + pad_top + pad_bottom
+ if divisible_by > 1:
+ width_remainder = padded_width % divisible_by
+ height_remainder = padded_height % divisible_by
+ if width_remainder > 0:
+ extra_width = divisible_by - width_remainder
+ pad_right += extra_width
+ if height_remainder > 0:
+ extra_height = divisible_by - height_remainder
+ pad_bottom += extra_height
+ pad_mode = (
+ "pillarbox_blur" if pillarbox_blur else
+ "edge" if keep_proportion == "pad_edge" else
+ "edge_pixel" if keep_proportion == "pad_edge_pixel" else
+ "color"
+ )
+ out_image, out_mask = ImagePadKJ.pad(self, out_image, pad_left, pad_right, pad_top, pad_bottom, 0, pad_color, pad_mode, mask=out_mask)
+
+ # Progress UI
if unique_id and PromptServer is not None:
try:
num_elements = out_image.numel()
element_size = out_image.element_size()
memory_size_mb = (num_elements * element_size) / (1024 * 1024)
-
PromptServer.instance.send_progress_text(
f"
| Output: | {out_image.shape[0]} x {out_image.shape[2]} x {out_image.shape[1]} | {memory_size_mb:.2f}MB |
",
unique_id
@@ -2645,8 +2642,8 @@ highest dimension.
except:
pass
- return(out_image.cpu(), out_image.shape[2], out_image.shape[1], out_mask.cpu() if out_mask is not None else torch.zeros(64,64, device=torch.device("cpu"), dtype=torch.float32))
-
+ return (out_image.cpu(), out_image.shape[2], out_image.shape[1], out_mask.cpu() if out_mask is not None else torch.zeros(64,64, device=torch.device("cpu"), dtype=torch.float32))
+
import pathlib
class LoadAndResizeImage:
_color_channels = ["alpha", "red", "green", "blue"]
@@ -3582,7 +3579,7 @@ class ImagePadKJ:
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1, }),
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1, }),
"extra_padding": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1, }),
- "pad_mode": (["edge", "color"],),
+ "pad_mode": (["edge", "edge_pixel", "color", "pillarbox_blur"],),
"color": ("STRING", {"default": "0, 0, 0", "tooltip": "Color as RGB values in range 0-255, separated by commas."}),
},
"optional": {
@@ -3600,7 +3597,6 @@ class ImagePadKJ:
def pad(self, image, left, right, top, bottom, extra_padding, color, pad_mode, mask=None, target_width=None, target_height=None):
B, H, W, C = image.shape
-
# Resize masks to image dimensions if necessary
if mask is not None:
BM, HM, WM = mask.shape
@@ -3612,7 +3608,7 @@ class ImagePadKJ:
if len(bg_color) == 1:
bg_color = bg_color * 3 # Grayscale to RGB
bg_color = torch.tensor(bg_color, dtype=image.dtype, device=image.device)
-
+
# Calculate padding sizes with extra padding
if target_width is not None and target_height is not None:
if extra_padding > 0:
@@ -3633,30 +3629,104 @@ class ImagePadKJ:
padded_width = W + pad_left + pad_right
padded_height = H + pad_top + pad_bottom
- out_image = torch.zeros((B, padded_height, padded_width, C), dtype=image.dtype, device=image.device)
-
- # Fill padded areas
- for b in range(B):
- if pad_mode == "edge":
- # Pad with edge color
- # Define edge pixels
- top_edge = image[b, 0, :, :]
- bottom_edge = image[b, H-1, :, :]
- left_edge = image[b, :, 0, :]
- right_edge = image[b, :, W-1, :]
- # Fill borders with edge colors
- out_image[b, :pad_top, :, :] = top_edge.mean(dim=0)
- out_image[b, pad_top+H:, :, :] = bottom_edge.mean(dim=0)
- out_image[b, :, :pad_left, :] = left_edge.mean(dim=0)
- out_image[b, :, pad_left+W:, :] = right_edge.mean(dim=0)
- out_image[b, pad_top:pad_top+H, pad_left:pad_left+W, :] = image[b]
+ # Pillarbox blur mode
+ if pad_mode == "pillarbox_blur":
+ def _gaussian_blur_nchw(img_nchw, sigma_px):
+ if sigma_px <= 0:
+ return img_nchw
+ radius = max(1, int(3.0 * float(sigma_px)))
+ k = 2 * radius + 1
+ x = torch.arange(-radius, radius + 1, device=img_nchw.device, dtype=img_nchw.dtype)
+ k1 = torch.exp(-(x * x) / (2.0 * float(sigma_px) * float(sigma_px)))
+ k1 = k1 / k1.sum()
+ kx = k1.view(1, 1, 1, k)
+ ky = k1.view(1, 1, k, 1)
+ c = img_nchw.shape[1]
+ kx = kx.repeat(c, 1, 1, 1)
+ ky = ky.repeat(c, 1, 1, 1)
+ img_nchw = F.conv2d(img_nchw, kx, padding=(0, radius), groups=c)
+ img_nchw = F.conv2d(img_nchw, ky, padding=(radius, 0), groups=c)
+ return img_nchw
+
+ out_image = torch.zeros((B, padded_height, padded_width, C), dtype=image.dtype, device=image.device)
+ for b in range(B):
+ scale_fill = max(padded_width / float(W), padded_height / float(H)) if (W > 0 and H > 0) else 1.0
+ bg_w = max(1, int(round(W * scale_fill)))
+ bg_h = max(1, int(round(H * scale_fill)))
+ src_b = image[b].movedim(-1, 0).unsqueeze(0)
+ bg = common_upscale(src_b, bg_w, bg_h, "bilinear", crop="disabled")
+ y0 = max(0, (bg_h - padded_height) // 2)
+ x0 = max(0, (bg_w - padded_width) // 2)
+ y1 = min(bg_h, y0 + padded_height)
+ x1 = min(bg_w, x0 + padded_width)
+ bg = bg[:, :, y0:y1, x0:x1]
+ if bg.shape[2] != padded_height or bg.shape[3] != padded_width:
+ pad_h = padded_height - bg.shape[2]
+ pad_w = padded_width - bg.shape[3]
+ pad_top_fix = max(0, pad_h // 2)
+ pad_bottom_fix = max(0, pad_h - pad_top_fix)
+ pad_left_fix = max(0, pad_w // 2)
+ pad_right_fix = max(0, pad_w - pad_left_fix)
+ bg = F.pad(bg, (pad_left_fix, pad_right_fix, pad_top_fix, pad_bottom_fix), mode="replicate")
+ sigma = max(1.0, 0.006 * float(min(padded_height, padded_width)))
+ bg = _gaussian_blur_nchw(bg, sigma_px=sigma)
+ if C >= 3:
+ r, g, bch = bg[:, 0:1], bg[:, 1:2], bg[:, 2:3]
+ luma = 0.2126 * r + 0.7152 * g + 0.0722 * bch
+ gray = torch.cat([luma, luma, luma], dim=1)
+ desat = 0.20
+ rgb = torch.cat([r, g, bch], dim=1)
+ rgb = rgb * (1.0 - desat) + gray * desat
+ bg[:, 0:3, :, :] = rgb
+ dim = 0.35
+ bg = torch.clamp(bg * dim, 0.0, 1.0)
+ out_image[b] = bg.squeeze(0).movedim(0, -1)
+ out_image[:, pad_top:pad_top+H, pad_left:pad_left+W, :] = image
+ # Mask handling for pillarbox_blur
+ if mask is not None:
+ fg_mask = mask
+ out_masks = torch.ones((B, padded_height, padded_width), dtype=image.dtype, device=image.device)
+ out_masks[:, pad_top:pad_top+H, pad_left:pad_left+W] = fg_mask
else:
- # Pad with specified background color
- out_image[b, :, :, :] = bg_color.unsqueeze(0).unsqueeze(0) # Expand for H and W dimensions
- out_image[b, pad_top:pad_top+H, pad_left:pad_left+W, :] = image[b]
+ out_masks = torch.ones((B, padded_height, padded_width), dtype=image.dtype, device=image.device)
+ out_masks[:, pad_top:pad_top+H, pad_left:pad_left+W] = 0.0
+ return (out_image, out_masks)
+
+ # Standard pad logic (edge/color)
+ out_image = torch.zeros((B, padded_height, padded_width, C), dtype=image.dtype, device=image.device)
+ for b in range(B):
+ if pad_mode == "edge":
+ # Pad with edge color (mean)
+ top_edge = image[b, 0, :, :]
+ bottom_edge = image[b, H-1, :, :]
+ left_edge = image[b, :, 0, :]
+ right_edge = image[b, :, W-1, :]
+ out_image[b, :pad_top, :, :] = top_edge.mean(dim=0)
+ out_image[b, pad_top+H:, :, :] = bottom_edge.mean(dim=0)
+ out_image[b, :, :pad_left, :] = left_edge.mean(dim=0)
+ out_image[b, :, pad_left+W:, :] = right_edge.mean(dim=0)
+ out_image[b, pad_top:pad_top+H, pad_left:pad_left+W, :] = image[b]
+ elif pad_mode == "edge_pixel":
+ # Pad with exact edge pixel values
+ for y in range(pad_top):
+ out_image[b, y, pad_left:pad_left+W, :] = image[b, 0, :, :]
+ for y in range(pad_top+H, padded_height):
+ out_image[b, y, pad_left:pad_left+W, :] = image[b, H-1, :, :]
+ for x in range(pad_left):
+ out_image[b, pad_top:pad_top+H, x, :] = image[b, :, 0, :]
+ for x in range(pad_left+W, padded_width):
+ out_image[b, pad_top:pad_top+H, x, :] = image[b, :, W-1, :]
+ out_image[b, :pad_top, :pad_left, :] = image[b, 0, 0, :]
+ out_image[b, :pad_top, pad_left+W:, :] = image[b, 0, W-1, :]
+ out_image[b, pad_top+H:, :pad_left, :] = image[b, H-1, 0, :]
+ out_image[b, pad_top+H:, pad_left+W:, :] = image[b, H-1, W-1, :]
+ out_image[b, pad_top:pad_top+H, pad_left:pad_left+W, :] = image[b]
+ else:
+ # Pad with specified background color
+ out_image[b, :, :, :] = bg_color.unsqueeze(0).unsqueeze(0)
+ out_image[b, pad_top:pad_top+H, pad_left:pad_left+W, :] = image[b]
-
if mask is not None:
out_masks = torch.nn.functional.pad(
mask,