mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2025-12-10 05:15:05 +08:00
Rename
This commit is contained in:
parent
ed0ab5231f
commit
1fff7fed6b
@ -41,7 +41,7 @@ NODE_CONFIG = {
|
||||
"ResizeMask": {"class": ResizeMask, "name": "Resize Mask"},
|
||||
"RoundMask": {"class": RoundMask, "name": "Round Mask"},
|
||||
"SeparateMasks": {"class": SeparateMasks, "name": "Separate Masks"},
|
||||
"KJConsolidateMasks": {"class": KJConsolidateMasks, "name": "Consolidate Masks"},
|
||||
"ConsolidateMasksKJ": {"class": ConsolidateMasksKJ, "name": "Consolidate Masks"},
|
||||
#images
|
||||
"AddLabel": {"class": AddLabel, "name": "Add Label"},
|
||||
"ColorMatch": {"class": ColorMatch, "name": "Color Match"},
|
||||
|
||||
@ -1426,12 +1426,12 @@ class SeparateMasks:
|
||||
return torch.empty((1, 64, 64), device=mask.device),
|
||||
|
||||
|
||||
class KJConsolidateMasks:
|
||||
class ConsolidateMasksKJ:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"mask": ("MASK",),
|
||||
"masks": ("MASK",),
|
||||
"width": ("INT", {"default": 512, "min": 0, "max": 4096, "step": 64}),
|
||||
"height": ("INT", {"default": 512, "min": 0, "max": 4096, "step": 64}),
|
||||
"padding": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 1}),
|
||||
@ -1444,8 +1444,8 @@ class KJConsolidateMasks:
|
||||
CATEGORY = "KJNodes/masking"
|
||||
DESCRIPTION = "Consolidates a batch of separate masks by finding the largest group of masks that fit inside a tile of the given width and height (including the padding), and repeating until no more masks can be combined."
|
||||
|
||||
def consolidate(self, mask, width=512, height=512, padding=0):
|
||||
B, H, W = mask.shape
|
||||
def consolidate(self, masks, width=512, height=512, padding=0):
|
||||
B, H, W = masks.shape
|
||||
|
||||
def mask_fits(coords, candidate_coords):
|
||||
x_min, y_min, x_max, y_max = coords
|
||||
@ -1459,7 +1459,7 @@ class KJConsolidateMasks:
|
||||
separated = []
|
||||
final_masks = []
|
||||
for b in range(B):
|
||||
m = mask[b]
|
||||
m = masks[b]
|
||||
rows, cols = m.any(dim=1), m.any(dim=0)
|
||||
y_min, y_max = torch.where(rows)[0][[0, -1]]
|
||||
x_min, x_max = torch.where(cols)[0][[0, -1]]
|
||||
@ -1469,8 +1469,8 @@ class KJConsolidateMasks:
|
||||
|
||||
separated.sort(key=lambda x: x[0])
|
||||
fits = []
|
||||
for i, mask in enumerate(separated):
|
||||
coord = mask[0]
|
||||
for i, masks in enumerate(separated):
|
||||
coord = masks[0]
|
||||
fits_in_box = []
|
||||
for j, cand_mask in enumerate(separated):
|
||||
if i == j:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user