Merge 8643d75a6b98dfd1f39eb97ea53e1c927314200a into 06a60ac3fec854909f35aba20aa5be39ff59a6e3

This commit is contained in:
Dango233 2025-12-01 22:21:35 +08:00 committed by GitHub
commit 21dd6170d8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1,6 +1,7 @@
import torch import torch
import comfy.model_management import comfy.model_management
import comfy.utils import comfy.utils
import comfy.lora
import folder_paths import folder_paths
import os import os
import logging import logging
@ -11,6 +12,50 @@ device = comfy.model_management.get_torch_device()
CLAMP_QUANTILE = 0.99 CLAMP_QUANTILE = 0.99
def _resolve_weight_from_patches(patches, key):
base_weight, convert_func = patches[0]
weight_tensor = comfy.model_management.cast_to_device(
base_weight, torch.device("cpu"), torch.float32, copy=True
)
try:
weight_tensor = convert_func(weight_tensor, inplace=True)
except TypeError:
weight_tensor = convert_func(weight_tensor)
if len(patches) > 1:
weight_tensor = comfy.lora.calculate_weight(
patches[1:],
weight_tensor,
key,
intermediate_dtype=torch.float32,
original_weights={key: patches},
)
return weight_tensor
def _build_scaled_fp8_diff(finetuned_model, original_model, prefix, bias_diff):
finetuned_patches = finetuned_model.get_key_patches(prefix)
original_patches = original_model.get_key_patches(prefix)
common_keys = set(finetuned_patches.keys()).intersection(original_patches.keys())
diff_sd = {}
for key in common_keys:
is_weight = key.endswith(".weight")
is_bias = key.endswith(".bias")
if not is_weight and not (bias_diff and is_bias):
continue
ft_tensor = _resolve_weight_from_patches(finetuned_patches[key], key)
orig_tensor = _resolve_weight_from_patches(original_patches[key], key)
diff_sd[key] = ft_tensor.sub(orig_tensor)
return diff_sd
def extract_lora(diff, key, rank, algorithm, lora_type, lowrank_iters=7, adaptive_param=1.0, clamp_quantile=True): def extract_lora(diff, key, rank, algorithm, lora_type, lowrank_iters=7, adaptive_param=1.0, clamp_quantile=True):
""" """
Extracts LoRA weights from a weight difference tensor using SVD. Extracts LoRA weights from a weight difference tensor using SVD.
@ -99,15 +144,18 @@ def extract_lora(diff, key, rank, algorithm, lora_type, lowrank_iters=7, adaptiv
return (U, Vh) return (U, Vh)
def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, lora_type, algorithm, lowrank_iters, out_dtype, bias_diff=False, adaptive_param=1.0, clamp_quantile=True): def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, lora_type, algorithm, lowrank_iters, out_dtype, bias_diff=False, adaptive_param=1.0, clamp_quantile=True, sd_override=None):
comfy.model_management.load_models_gpu([model_diff], force_patch_weights=True) if sd_override is None:
model_diff.model.diffusion_model.cpu() comfy.model_management.load_models_gpu([model_diff], force_patch_weights=True)
sd = model_diff.model_state_dict(filter_prefix=prefix_model) model_diff.model.diffusion_model.cpu()
del model_diff sd = model_diff.model_state_dict(filter_prefix=prefix_model)
comfy.model_management.soft_empty_cache() del model_diff
for k, v in sd.items(): comfy.model_management.soft_empty_cache()
if isinstance(v, torch.Tensor): for k, v in sd.items():
sd[k] = v.cpu() if isinstance(v, torch.Tensor):
sd[k] = v.cpu()
else:
sd = sd_override
# Get total number of keys to process for progress bar # Get total number of keys to process for progress bar
total_keys = len([k for k in sd if k.endswith(".weight") or (bias_diff and k.endswith(".bias"))]) total_keys = len([k for k in sd if k.endswith(".weight") or (bias_diff and k.endswith(".bias"))])
@ -183,17 +231,39 @@ class LoraExtractKJ:
raise ValueError("svd_lowrank algorithm is only supported for standard LoRA extraction.") raise ValueError("svd_lowrank algorithm is only supported for standard LoRA extraction.")
dtype = {"fp8_e4m3fn": torch.float8_e4m3fn, "bf16": torch.bfloat16, "fp16": torch.float16, "fp16_fast": torch.float16, "fp32": torch.float32}[output_dtype] dtype = {"fp8_e4m3fn": torch.float8_e4m3fn, "bf16": torch.bfloat16, "fp16": torch.float16, "fp16_fast": torch.float16, "fp32": torch.float32}[output_dtype]
m = finetuned_model.clone()
kp = original_model.get_key_patches("diffusion_model.") model_diff = None
for k in kp: sd_override = None
m.add_patches({k: kp[k]}, - 1.0, 1.0)
model_diff = m scaled_fp8_ft = getattr(getattr(finetuned_model.model, "model_config", None), "scaled_fp8", None)
scaled_fp8_orig = getattr(getattr(original_model.model, "model_config", None), "scaled_fp8", None)
scaled_fp8_present = scaled_fp8_ft is not None or scaled_fp8_orig is not None
if scaled_fp8_present:
comfy.model_management.load_models_gpu([finetuned_model, original_model], force_patch_weights=True)
logging.info(
"LoraExtractKJ: detected scaled fp8 weights (finetuned=%s, original=%s); using high-precision diff path.",
scaled_fp8_ft is not None,
scaled_fp8_orig is not None,
)
sd_override = _build_scaled_fp8_diff(
finetuned_model, original_model, "diffusion_model.", bias_diff
)
comfy.model_management.soft_empty_cache()
else:
m = finetuned_model.clone()
kp = original_model.get_key_patches("diffusion_model.")
for k in kp:
m.add_patches({k: kp[k]}, - 1.0, 1.0)
model_diff = m
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
output_sd = {} output_sd = {}
if model_diff is not None: if model_diff is not None:
output_sd = calc_lora_model(model_diff, rank, "diffusion_model.", "diffusion_model.", output_sd, lora_type, algorithm, lowrank_iters, dtype, bias_diff=bias_diff, adaptive_param=adaptive_param, clamp_quantile=clamp_quantile) output_sd = calc_lora_model(model_diff, rank, "diffusion_model.", "diffusion_model.", output_sd, lora_type, algorithm, lowrank_iters, dtype, bias_diff=bias_diff, adaptive_param=adaptive_param, clamp_quantile=clamp_quantile)
elif sd_override is not None:
output_sd = calc_lora_model(None, rank, "diffusion_model.", "diffusion_model.", output_sd, lora_type, algorithm, lowrank_iters, dtype, bias_diff=bias_diff, adaptive_param=adaptive_param, clamp_quantile=clamp_quantile, sd_override=sd_override)
if "adaptive" in lora_type: if "adaptive" in lora_type:
rank_str = f"{lora_type}_{adaptive_param:.2f}" rank_str = f"{lora_type}_{adaptive_param:.2f}"
else: else: