mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2025-12-09 21:04:41 +08:00
Update nodes.py
This commit is contained in:
parent
8a8e4db2df
commit
248fcd0cd3
54
nodes.py
54
nodes.py
@ -44,7 +44,7 @@ class FloatConstant:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"value": ("FLOAT", {"default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.01}),
|
||||
"value": ("FLOAT", {"default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.001}),
|
||||
},
|
||||
}
|
||||
|
||||
@ -2487,7 +2487,7 @@ class NormalizeLatent:
|
||||
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "normalize"
|
||||
CATEGORY = "KJNodes"
|
||||
CATEGORY = "KJNodes/noise"
|
||||
OUTPUT_NODE = True
|
||||
|
||||
def normalize(self, latent):
|
||||
@ -2505,25 +2505,55 @@ class FlipSigmasAdjusted:
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("SIGMAS",)
|
||||
CATEGORY = "sampling/custom_sampling/sigmas"
|
||||
CATEGORY = "KJNodes/noise"
|
||||
|
||||
FUNCTION = "get_sigmas_adjusted"
|
||||
|
||||
def get_sigmas_adjusted(self, sigmas):
|
||||
print(sigmas)
|
||||
|
||||
sigmas = sigmas.flip(0)
|
||||
if sigmas[0] == 0:
|
||||
sigmas[0] = 0.0001
|
||||
adjusted_sigmas = sigmas.clone() # Create a copy to hold the adjusted values
|
||||
|
||||
# Apply the special adjustment: use the current index except for the first element
|
||||
adjusted_sigmas = sigmas.clone()
|
||||
#offset sigma
|
||||
for i in range(1, len(sigmas)):
|
||||
adjusted_sigmas[i] = sigmas[i - 1]
|
||||
|
||||
if adjusted_sigmas[0] == 0:
|
||||
adjusted_sigmas[0] = 0.0001 # Apply the zero adjustment if necessary
|
||||
print(adjusted_sigmas)
|
||||
adjusted_sigmas[0] = 0.0001
|
||||
|
||||
return (adjusted_sigmas,)
|
||||
|
||||
class InjectNoiseToLatent:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"latents":("LATENT",),
|
||||
"strength": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 200.0, "step": 0.001}),
|
||||
"noise": ("LATENT",),
|
||||
"normalize": ("BOOLEAN", {"default": False}),
|
||||
"average": ("BOOLEAN", {"default": False}),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "injectnoise"
|
||||
|
||||
CATEGORY = "KJNodes/noise"
|
||||
|
||||
def injectnoise(self, latents, strength, noise, normalize, average):
|
||||
samples = latents.copy()
|
||||
if latents["samples"].shape != noise["samples"].shape:
|
||||
raise ValueError("InjectNoiseToLatent: Latent and noise must have the same shape")
|
||||
if average:
|
||||
noised = (samples["samples"].clone() + noise["samples"].clone()) / 2
|
||||
else:
|
||||
noised = samples["samples"].clone() + noise["samples"].clone() * strength
|
||||
if normalize:
|
||||
noised = noised / noised.std()
|
||||
|
||||
samples["samples"] = noised
|
||||
return (samples,)
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"INTConstant": INTConstant,
|
||||
@ -2571,7 +2601,8 @@ NODE_CLASS_MAPPINGS = {
|
||||
"ImageGrabPIL": ImageGrabPIL,
|
||||
"DummyLatentOut": DummyLatentOut,
|
||||
"NormalizeLatent": NormalizeLatent,
|
||||
"FlipSigmasAdjusted": FlipSigmasAdjusted
|
||||
"FlipSigmasAdjusted": FlipSigmasAdjusted,
|
||||
"InjectNoiseToLatent": InjectNoiseToLatent
|
||||
}
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"INTConstant": "INT Constant",
|
||||
@ -2618,6 +2649,7 @@ NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"ImageGrabPIL": "ImageGrabPIL",
|
||||
"DummyLatentOut": "DummyLatentOut",
|
||||
"NormalizeLatent": "NormalizeLatent",
|
||||
"FlipSigmasAdjusted": "FlipSigmasAdjusted"
|
||||
"FlipSigmasAdjusted": "FlipSigmasAdjusted",
|
||||
"InjectNoiseToLatent": "InjectNoiseToLatent"
|
||||
|
||||
}
|
||||
Loading…
x
Reference in New Issue
Block a user