mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2025-12-09 04:44:30 +08:00
Transform incremental_expandrate type from INT to FLOAT for greater precision and smoothness
This commit is contained in:
parent
d418f1adb4
commit
442c6a9127
27
nodes.py
27
nodes.py
@ -726,7 +726,7 @@ class GrowMaskWithBlur:
|
||||
"required": {
|
||||
"mask": ("MASK",),
|
||||
"expand": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"incremental_expandrate": ("INT", {"default": 0, "min": 0, "max": 100, "step": 1}),
|
||||
"incremental_expandrate": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step": 0.1}),
|
||||
"tapered_corners": ("BOOLEAN", {"default": True}),
|
||||
"flip_input": ("BOOLEAN", {"default": False}),
|
||||
"blur_radius": ("FLOAT", {
|
||||
@ -739,7 +739,7 @@ class GrowMaskWithBlur:
|
||||
"decay_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
CATEGORY = "KJNodes/masking"
|
||||
|
||||
RETURN_TYPES = ("MASK", "MASK",)
|
||||
@ -749,7 +749,7 @@ class GrowMaskWithBlur:
|
||||
def expand_mask(self, mask, expand, tapered_corners, flip_input, blur_radius, incremental_expandrate, lerp_alpha, decay_factor):
|
||||
alpha = lerp_alpha
|
||||
decay = decay_factor
|
||||
if( flip_input ):
|
||||
if flip_input:
|
||||
mask = 1.0 - mask
|
||||
c = 0 if tapered_corners else 1
|
||||
kernel = np.array([[c, 1, c],
|
||||
@ -758,44 +758,37 @@ class GrowMaskWithBlur:
|
||||
growmask = mask.reshape((-1, mask.shape[-2], mask.shape[-1]))
|
||||
out = []
|
||||
previous_output = None
|
||||
current_expand = expand
|
||||
for m in growmask:
|
||||
output = m.numpy()
|
||||
for _ in range(abs(expand)):
|
||||
if expand < 0:
|
||||
for _ in range(abs(round(current_expand))):
|
||||
if current_expand < 0:
|
||||
output = scipy.ndimage.grey_erosion(output, footprint=kernel)
|
||||
else:
|
||||
output = scipy.ndimage.grey_dilation(output, footprint=kernel)
|
||||
if expand < 0:
|
||||
expand -= abs(incremental_expandrate) # Use abs(growrate) to ensure positive change
|
||||
if current_expand < 0:
|
||||
current_expand -= abs(incremental_expandrate)
|
||||
else:
|
||||
expand += abs(incremental_expandrate) # Use abs(growrate) to ensure positive change
|
||||
current_expand += abs(incremental_expandrate)
|
||||
output = torch.from_numpy(output)
|
||||
if alpha < 1.0 and previous_output is not None:
|
||||
# Interpolate between the previous and current frame
|
||||
output = alpha * output + (1 - alpha) * previous_output
|
||||
if decay < 1.0 and previous_output is not None:
|
||||
# Add the decayed previous output to the current frame
|
||||
output += decay * previous_output
|
||||
output = output / output.max()
|
||||
previous_output = output
|
||||
out.append(output)
|
||||
|
||||
if blur_radius != 0:
|
||||
# Convert the tensor list to PIL images, apply blur, and convert back
|
||||
for idx, tensor in enumerate(out):
|
||||
# Convert tensor to PIL image
|
||||
pil_image = tensor2pil(tensor.cpu().detach())[0]
|
||||
# Apply Gaussian blur
|
||||
pil_image = pil_image.filter(ImageFilter.GaussianBlur(blur_radius))
|
||||
# Convert back to tensor
|
||||
out[idx] = pil2tensor(pil_image)
|
||||
blurred = torch.cat(out, dim=0)
|
||||
return (blurred, 1.0 - blurred)
|
||||
else:
|
||||
return (torch.stack(out, dim=0), 1.0 - torch.stack(out, dim=0),)
|
||||
|
||||
|
||||
|
||||
|
||||
class PlotNode:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user