Batch clip seg improvements

This commit is contained in:
kijai 2024-05-12 21:52:56 +03:00
parent 0ef2b86b28
commit 4812eff6e5

View File

@ -36,6 +36,10 @@ class BatchCLIPSeg:
"combine_mask": ("BOOLEAN", {"default": False}),
"use_cuda": ("BOOLEAN", {"default": True}),
},
"optional":
{
"blur_sigma": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step": 0.1}),
}
}
CATEGORY = "KJNodes/masking"
@ -46,55 +50,62 @@ class BatchCLIPSeg:
Segments an image or batch of images using CLIPSeg.
"""
def segment_image(self, images, text, threshold, binary_mask, combine_mask, use_cuda):
def segment_image(self, images, text, threshold, binary_mask, combine_mask, use_cuda, blur_sigma=0.0):
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
height, width, _ = images[0].shape
import torchvision.transforms as transforms
offload_device = model_management.unet_offload_device()
if use_cuda and torch.cuda.is_available():
device = torch.device("cuda")
device = model_management.get_torch_device()
else:
device = torch.device("cpu")
dtype = model_management.unet_dtype()
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
model.to(dtype)
model.to(device)
images = images.to(device)
if not hasattr(self, "model"):
self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
self.model.to(dtype).to(device)
B, H, W, C = images.shape
images = images.to(device)
autocast_condition = (dtype != torch.float32) and not model_management.is_device_mps(device)
with torch.autocast(model_management.get_autocast_device(device), dtype=dtype) if autocast_condition else nullcontext():
images = [Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) for image in images ]
prompt = [text] * len(images)
input_prc = processor(text=prompt, images=images, return_tensors="pt")
# Move the processed input to the device
for key in input_prc:
input_prc[key] = input_prc[key].to(device)
outputs = self.model(**input_prc)
outputs = model(**input_prc)
tensor = torch.sigmoid(outputs.logits)
tensor = torch.where(tensor > (threshold / 10), tensor, torch.tensor(0, dtype=torch.float))
tensor = (tensor - tensor.min()) / (tensor.max() - tensor.min())
tensor = torch.sigmoid(outputs.logits)
tensor_thresholded = torch.where(tensor > threshold, tensor, torch.tensor(0, dtype=torch.float))
tensor_normalized = (tensor_thresholded - tensor_thresholded.min()) / (tensor_thresholded.max() - tensor_thresholded.min())
tensor = tensor_normalized
tensor = F.interpolate(tensor.unsqueeze(1), size=(H, W), mode='nearest')
tensor = tensor.squeeze(1)
# Resize the mask
resized_tensor = F.interpolate(tensor.unsqueeze(1), size=(height, width), mode='nearest')
# Remove the extra dimensions
resized_tensor = resized_tensor.squeeze(1)
results = resized_tensor.cpu().float()
self.model.to(offload_device)
results = tensor.cpu().float()
print(results.min(), results.max())
if binary_mask:
tensor = (tensor > 0).float()
if blur_sigma > 0:
kernel_size = int(6 * blur_sigma + 1)
blur = transforms.GaussianBlur(kernel_size=(kernel_size, kernel_size), sigma=(blur_sigma, blur_sigma))
tensor = blur(tensor)
if combine_mask:
combined_results = torch.max(results, dim=0)[0]
results = combined_results.unsqueeze(0).repeat(len(images),1,1)
tensor = torch.max(tensor, dim=0)[0]
tensor = tensor.unsqueeze(0).repeat(len(images),1,1)
if binary_mask:
results = results.round()
del outputs
model_management.soft_empty_cache()
del outputs, tensor, tensor_thresholded, tensor_normalized, resized_tensor, images
torch.cuda.empty_cache()
return results,
return tensor,
class CreateTextMask: