experimental

This commit is contained in:
Kijai 2024-05-08 18:44:32 +03:00
parent 147c4505d1
commit 4f9d3f4142
2 changed files with 64 additions and 1 deletions

View File

@ -114,6 +114,7 @@ NODE_CONFIG = {
"Superprompt": {"class": Superprompt, "name": "Superprompt"},
"GLIGENTextBoxApplyBatchCoords": {"class": GLIGENTextBoxApplyBatchCoords},
"Intrinsic_lora_sampling": {"class": Intrinsic_lora_sampling, "name": "Intrinsic Lora Sampling"},
"LoadICLightUnet": {"class": LoadICLightUnet},
#instance diffusion
"CreateInstanceDiffusionTracking": {"class": CreateInstanceDiffusionTracking},
"AppendInstanceDiffusionTracking": {"class": AppendInstanceDiffusionTracking},

View File

@ -1629,4 +1629,66 @@ If no image is provided, mode is set to text-to-image
raise Exception(f"Server error: {error_data}")
except json.JSONDecodeError:
# If the response is not valid JSON, raise a different exception
raise Exception(f"Server error: {response.text}")
raise Exception(f"Server error: {response.text}")
class LoadICLightUnet:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"model_path": (folder_paths.get_filename_list("unet"), )
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "load"
CATEGORY = "KJNodes/experimental"
def load(self, model, model_path):
print("LoadICLightUnet: Checking ResAdapter path")
model_full_path = folder_paths.get_full_path("unet", model_path)
if not os.path.exists(model_full_path):
raise Exception("Invalid model path")
else:
print("LoadICLightUnet: Loading LoadICLightUnet weights")
from comfy.utils import load_torch_file
model_clone = model.clone()
new_state_dict = load_torch_file(model_full_path)
prefix_to_remove = 'model.'
new_keys_dict = {key[len(prefix_to_remove):]: new_state_dict[key] for key in new_state_dict if key.startswith(prefix_to_remove)}
print("LoadICLightUnet: Attempting to add patches with LoadICLightUnet weights")
try:
for key in new_keys_dict:
model_clone.add_patches({key: (new_keys_dict[key],)}, 1.0, 1.0)
#print(f"Added patch for: {key}")
except:
raise Exception("Could not patch model")
print("LoadICLightUnet: Added LoadICLightUnet patches")
#model_clone.model.diffusion_model.in_channels = 8
return (model_clone, )
# Change UNet
# with torch.no_grad():
# new_conv_in = torch.nn.Conv2d(8, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
# new_conv_in.weight.zero_()
# new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
# new_conv_in.bias = unet.conv_in.bias
# unet.conv_in = new_conv_in
# unet_original_forward = unet.forward
# def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
# c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample)
# c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0)
# new_sample = torch.cat([sample, c_concat], dim=1)
# kwargs['cross_attention_kwargs'] = {}
# return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)
# unet.forward = hooked_unet_forward