Add ImagePrepForICLora, ImageCropByMask

This commit is contained in:
kijai 2025-02-16 18:23:30 +02:00
parent 2129789f93
commit 56979210c7
2 changed files with 104 additions and 1 deletions

View File

@ -60,6 +60,7 @@ NODE_CONFIG = {
"ImageConcanate": {"class": ImageConcanate, "name": "Image Concatenate"},
"ImageConcatFromBatch": {"class": ImageConcatFromBatch, "name": "Image Concatenate From Batch"},
"ImageConcatMulti": {"class": ImageConcatMulti, "name": "Image Concatenate Multi"},
"ImageCropByMask": {"class": ImageCropByMask, "name": "Image Crop By Mask"},
"ImageCropByMaskAndResize": {"class": ImageCropByMaskAndResize, "name": "Image Crop By Mask And Resize"},
"ImageCropByMaskBatch": {"class": ImageCropByMaskBatch, "name": "Image Crop By Mask Batch"},
"ImageUncropByMask": {"class": ImageUncropByMask, "name": "Image Uncrop By Mask"},
@ -72,6 +73,7 @@ NODE_CONFIG = {
"ImagePass": {"class": ImagePass},
"ImagePadForOutpaintMasked": {"class": ImagePadForOutpaintMasked, "name": "Image Pad For Outpaint Masked"},
"ImagePadForOutpaintTargetSize": {"class": ImagePadForOutpaintTargetSize, "name": "Image Pad For Outpaint Target Size"},
"ImagePrepForICLora": {"class": ImagePrepForICLora, "name": "Image Prep For ICLora"},
"ImageResizeKJ": {"class": ImageResizeKJ, "name": "Resize Image"},
"ImageUpscaleWithModelBatched": {"class": ImageUpscaleWithModelBatched, "name": "Image Upscale With Model Batched"},
"InsertImagesToBatchIndexed": {"class": InsertImagesToBatchIndexed, "name": "Insert Images To Batch Indexed"},

View File

@ -1092,7 +1092,66 @@ class ImagePadForOutpaintTargetSize:
# Now call the original expand_image with the calculated padding
return ImagePadForOutpaintMasked.expand_image(self, image_scaled, pad_left, pad_top, pad_right, pad_bottom, feathering, mask_scaled)
class ImagePrepForICLora:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"output_width": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
"output_height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
"border_width": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 1}),
},
"optional": {
"mask": ("MASK",),
}
}
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "expand_image"
CATEGORY = "image"
def expand_image(self, image, output_width, output_height, border_width, mask=None):
if mask is not None:
if torch.allclose(mask, torch.zeros_like(mask)):
print("Warning: The incoming mask is fully black. Handling it as None.")
mask = None
B, H, W, C = image.size()
# Handle mask
if mask is not None:
resized_mask = torch.nn.functional.interpolate(
mask.unsqueeze(1),
size=(image.shape[1], image.shape[2]),
mode='nearest'
).squeeze(1)
print(resized_mask.shape)
image = image * resized_mask.unsqueeze(-1)
# Calculate new width maintaining aspect ratio
new_width = int((W / H) * output_height)
# Resize image to new height while maintaining aspect ratio
resized_image = common_upscale(image.movedim(-1,1), new_width, output_height, "lanczos", "disabled").movedim(1,-1)
# Create padded image
empty_image = torch.zeros((B, output_height, output_width, C), device=image.device)
if border_width > 0:
border = torch.zeros((B, output_height, border_width, C), device=image.device)
padded_image = torch.cat((resized_image, border, empty_image), dim=2)
padded_mask = torch.ones((B, padded_image.shape[1], padded_image.shape[2]), device=image.device)
padded_mask[:, :, :new_width + border_width] = 0
else:
padded_image = torch.cat((resized_image, empty_image), dim=2)
padded_mask = torch.ones((B, padded_image.shape[1], padded_image.shape[2]), device=image.device)
padded_mask[:, :, :new_width] = 0
return (padded_image, padded_mask)
class ImageAndMaskPreview(SaveImage):
def __init__(self):
self.output_dir = folder_paths.get_temp_directory()
@ -2789,6 +2848,48 @@ class ImageCropByMaskAndResize:
return (torch.stack(image_list), torch.stack(mask_list), bbox_list)
class ImageCropByMask:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE", ),
"mask": ("MASK", ),
},
}
RETURN_TYPES = ("IMAGE", )
RETURN_NAMES = ("image", )
FUNCTION = "crop"
CATEGORY = "KJNodes/image"
def crop(self, image, mask):
B, H, W, C = image.shape
mask = mask.round()
# Find bounding box for each batch
crops = []
for b in range(B):
# Get coordinates of non-zero elements
rows = torch.any(mask[min(b, mask.shape[0]-1)] > 0, dim=1)
cols = torch.any(mask[min(b, mask.shape[0]-1)] > 0, dim=0)
# Find boundaries
y_min, y_max = torch.where(rows)[0][[0, -1]]
x_min, x_max = torch.where(cols)[0][[0, -1]]
# Crop image and mask
crop = image[b:b+1, y_min:y_max+1, x_min:x_max+1, :]
crops.append(crop)
# Stack results back together
cropped_images = torch.cat(crops, dim=0)
return (cropped_images, )
class ImageUncropByMask:
@classmethod