Add incremental mask expanding and animated mask creatioon

- GrowMaskWithBlur can now output incrementally grown mask from single input
- New node to generate animated gradient for fade effects (wip)
This commit is contained in:
kijai 2023-10-07 17:17:56 +03:00
parent c1cc74ae00
commit 57e8efb7f7

View File

@ -30,6 +30,43 @@ def gaussian_kernel(kernel_size: int, sigma: float, device=None):
g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
return g / g.sum()
class CreateGradientMask:
RETURN_TYPES = ("MASK",)
FUNCTION = "createmask"
CATEGORY = "KJNodes"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"invert": ("BOOLEAN", {"default": False}),
"frames": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
"width": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
},
}
def createmask(self, frames, width, height, invert):
# Define the number of images in the batch
batch_size = frames
out = []
# Create an empty array to store the image batch
image_batch = np.zeros((batch_size, height, width), dtype=np.float32)
# Generate the black to white gradient for each image
for i in range(batch_size):
gradient = np.linspace(1.0, 0.0, width, dtype=np.float32)
time = i / frames # Calculate the time variable
offset_gradient = gradient - time # Offset the gradient values based on time
image_batch[i] = offset_gradient.reshape(1, -1)
output = torch.from_numpy(image_batch)
out.append(output)
if invert:
return (1.0 - torch.stack(out, dim=0),)
return (torch.stack(out, dim=0),)
class GrowMaskWithBlur:
@classmethod
def INPUT_TYPES(cls):
@ -37,11 +74,12 @@ class GrowMaskWithBlur:
"required": {
"mask": ("MASK",),
"expand": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1}),
"incremental_expandrate": ("INT", {"default": 0, "min": 0, "max": 100, "step": 1}),
"tapered_corners": ("BOOLEAN", {"default": True}),
"flip_input": ("BOOLEAN", {"default": False}),
"blur_radius": ("INT", {
"default": 1,
"min": 1,
"default": 0,
"min": 0,
"max": 31,
"step": 1
}),
@ -60,7 +98,7 @@ class GrowMaskWithBlur:
RETURN_NAMES = ("mask", "mask_inverted",)
FUNCTION = "expand_mask"
def expand_mask(self, mask, expand, tapered_corners, flip_input, blur_radius, sigma):
def expand_mask(self, mask, expand, tapered_corners, flip_input, blur_radius, sigma, incremental_expandrate):
if( flip_input ):
mask = 1.0 - mask
c = 0 if tapered_corners else 1
@ -76,6 +114,10 @@ class GrowMaskWithBlur:
output = scipy.ndimage.grey_erosion(output, footprint=kernel)
else:
output = scipy.ndimage.grey_dilation(output, footprint=kernel)
if expand < 0:
expand -= abs(incremental_expandrate) # Use abs(growrate) to ensure positive change
else:
expand += abs(incremental_expandrate) # Use abs(growrate) to ensure positive change
output = torch.from_numpy(output)
out.append(output)
@ -89,8 +131,8 @@ class GrowMaskWithBlur:
blurred = F.conv2d(padded_image, blurkernel, padding=blurkernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius]
blurred = blurred.permute(0, 2, 3, 1)
blurred = blurred[:, :, :, 0]
return (blurred, 1.0 - blurred,)
return (blurred, 1.0 - blurred,)
return (torch.stack(out, dim=0), 1.0 -torch.stack(out, dim=0),)
@ -250,6 +292,7 @@ NODE_CLASS_MAPPINGS = {
"ConditioningSetMaskAndCombine": ConditioningSetMaskAndCombine,
"GrowMaskWithBlur": GrowMaskWithBlur,
"ColorToMask": ColorToMask,
"CreateGradientMask": CreateGradientMask,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"INTConstant": "INT Constant",
@ -257,4 +300,5 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"ConditioningSetMaskAndCombine": "ConditioningSetMaskAndCombine",
"GrowMaskWithBlur": "GrowMaskWithBlur",
"ColorToMask": "ColorToMask",
"CreateGradientMask": "CreateGradientMask",
}