Add option for batch capture

This commit is contained in:
kijai 2023-11-30 01:38:41 +02:00
parent f542cdb950
commit 5fc155c073

View File

@ -2414,7 +2414,7 @@ class SplitBboxes:
return (bboxes_a, bboxes_b,)
from PIL import ImageGrab
import time
class ImageGrabPIL:
@classmethod
@ -2435,22 +2435,27 @@ class ImageGrabPIL:
"y": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
"width": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
"height": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
"num_frames": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}),
"delay": ("FLOAT", {"default": 0.1,"min": 0.0, "max": 10.0, "step": 0.1}),
},
}
def screencap(self, x, y, width, height):
# Define the bounding box of the area you want to capture
def screencap(self, x, y, width, height, num_frames, delay):
captures = []
bbox = (x, y, x + width, y + height)
# Capture the screen
screen_capture = ImageGrab.grab(bbox=bbox)
# Convert the PIL Image directly to a PyTorch tensor if that's the desired final format
screen_capture_torch = torch.tensor(np.array(screen_capture), dtype=torch.float32) / 255.0
screen_capture_torch = screen_capture_torch.unsqueeze(0) # Permute to have channel-first format and add batch dimension
return (screen_capture_torch,)
for _ in range(num_frames):
# Capture screen
screen_capture = ImageGrab.grab(bbox=bbox)
screen_capture_torch = torch.tensor(np.array(screen_capture), dtype=torch.float32) / 255.0
screen_capture_torch = screen_capture_torch.unsqueeze(0)
captures.append(screen_capture_torch)
# Wait for a short delay if more than one frame is to be captured
if num_frames > 1:
time.sleep(delay)
return (torch.cat(captures, dim=0),)
NODE_CLASS_MAPPINGS = {