Exclude TeaCache from compile to avoid possible compile errors, make compiling whole model default for WanVideo

This commit is contained in:
kijai 2025-03-07 16:35:30 +02:00
parent d126b62ceb
commit 68db110554

View File

@ -462,7 +462,7 @@ class TorchCompileModelWanVideo:
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}), "mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}), "dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
"dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}), "dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}),
"compile_transformer_blocks": ("BOOLEAN", {"default": True, "tooltip": "Compile all transformer blocks"}), "compile_transformer_blocks_only": ("BOOLEAN", {"default": False, "tooltip": "Compile only transformer blocks"}),
}, },
} }
RETURN_TYPES = ("MODEL",) RETURN_TYPES = ("MODEL",)
@ -471,16 +471,20 @@ class TorchCompileModelWanVideo:
CATEGORY = "KJNodes/torchcompile" CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True EXPERIMENTAL = True
def patch(self, model, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit, compile_transformer_blocks): def patch(self, model, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit, compile_transformer_blocks_only):
m = model.clone() m = model.clone()
diffusion_model = m.get_model_object("diffusion_model") diffusion_model = m.get_model_object("diffusion_model")
torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit
if not self._compiled: if not self._compiled:
try: try:
if compile_transformer_blocks: if compile_transformer_blocks_only:
for i, block in enumerate(diffusion_model.blocks): for i, block in enumerate(diffusion_model.blocks):
compiled_block = torch.compile(block, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode) compiled_block = torch.compile(block, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode)
m.add_object_patch(f"diffusion_model.blocks.{i}", compiled_block) m.add_object_patch(f"diffusion_model.blocks.{i}", compiled_block)
else:
compiled_model = torch.compile(diffusion_model, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode)
m.add_object_patch("diffusion_model", compiled_model)
self._compiled = True self._compiled = True
compile_settings = { compile_settings = {
"backend": backend, "backend": backend,
@ -731,9 +735,11 @@ def teacache_wanvideo_forward_orig(self, x, t, context, clip_fea=None, freqs=Non
context_clip = self.img_emb(clip_fea) # bs x 257 x dim context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1) context = torch.concat([context_clip, context], dim=1)
@torch.compiler.disable()
def tea_cache(x, e0, e, kwargs):
#teacache for cond and uncond separately #teacache for cond and uncond separately
rel_l1_thresh = kwargs["transformer_options"]["rel_l1_thresh"] rel_l1_thresh = kwargs["transformer_options"]["rel_l1_thresh"]
cache_device = kwargs["transformer_options"]["teacache_device"]
is_cond = True if kwargs["transformer_options"]["cond_or_uncond"] == [0] else False is_cond = True if kwargs["transformer_options"]["cond_or_uncond"] == [0] else False
should_calc = True should_calc = True
@ -778,7 +784,9 @@ def teacache_wanvideo_forward_orig(self, x, t, context, clip_fea=None, freqs=Non
x += cache['previous_residual'].to(x.device) x += cache['previous_residual'].to(x.device)
cache['teacache_skipped_steps'] += 1 cache['teacache_skipped_steps'] += 1
#print(f"TeaCache: Skipping {suffix} step") #print(f"TeaCache: Skipping {suffix} step")
return should_calc, cache
should_calc, cache = tea_cache(x, e0, e, kwargs)
if should_calc: if should_calc:
original_x = x.clone().detach() original_x = x.clone().detach()
# arguments # arguments
@ -790,7 +798,7 @@ def teacache_wanvideo_forward_orig(self, x, t, context, clip_fea=None, freqs=Non
for block in self.blocks: for block in self.blocks:
x = block(x, **block_wargs) x = block(x, **block_wargs)
cache['previous_residual'] = (x - original_x).to(cache_device) cache['previous_residual'] = (x - original_x).to(kwargs["transformer_options"]["teacache_device"])
# head # head
x = self.head(x, e) x = self.head(x, e)