mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2025-12-09 21:04:41 +08:00
Merge pull request #38 from djbielejeski/main
BatchCropFromMaskAdvanced: Fixing bounding boxes being bigger than th…
This commit is contained in:
commit
6ca6f8f51f
124
nodes.py
124
nodes.py
@ -1865,8 +1865,13 @@ class BatchCropFromMaskAdvanced:
|
||||
|
||||
def calculate_bbox(mask):
|
||||
non_zero_indices = np.nonzero(np.array(mask))
|
||||
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
|
||||
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
|
||||
|
||||
# handle empty masks
|
||||
min_x, max_x, min_y, max_y = 0, 0, 0, 0
|
||||
if len(non_zero_indices[1]) > 0 and len(non_zero_indices[0]) > 0:
|
||||
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
|
||||
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
|
||||
|
||||
width = max_x - min_x
|
||||
height = max_y - min_y
|
||||
bbox_size = max(width, height)
|
||||
@ -1896,66 +1901,79 @@ class BatchCropFromMaskAdvanced:
|
||||
# Make sure max_bbox_size is divisible by 16, if not, round it upwards so it is
|
||||
self.max_bbox_size = math.ceil(self.max_bbox_size / 16) * 16
|
||||
|
||||
if self.max_bbox_size > original_images[0].shape[0] or self.max_bbox_size > original_images[0].shape[1]:
|
||||
# max_bbox_size can only be as big as our input's width or height, and it has to be even
|
||||
self.max_bbox_size = math.floor(min(original_images[0].shape[0], original_images[0].shape[1]) / 2) * 2
|
||||
|
||||
# Then, for each mask and corresponding image...
|
||||
for i, (mask, img) in enumerate(zip(masks, original_images)):
|
||||
_mask = tensor2pil(mask)[0]
|
||||
non_zero_indices = np.nonzero(np.array(_mask))
|
||||
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
|
||||
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
|
||||
|
||||
# Calculate center of bounding box
|
||||
center_x = np.mean(non_zero_indices[1])
|
||||
center_y = np.mean(non_zero_indices[0])
|
||||
curr_center = (round(center_x), round(center_y))
|
||||
# check for empty masks
|
||||
if len(non_zero_indices[0]) > 0 and len(non_zero_indices[1]) > 0:
|
||||
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
|
||||
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
|
||||
|
||||
# If this is the first frame, initialize prev_center with curr_center
|
||||
if not hasattr(self, 'prev_center'):
|
||||
self.prev_center = curr_center
|
||||
# Calculate center of bounding box
|
||||
center_x = np.mean(non_zero_indices[1])
|
||||
center_y = np.mean(non_zero_indices[0])
|
||||
curr_center = (round(center_x), round(center_y))
|
||||
|
||||
# Smooth the changes in the center coordinates from the second frame onwards
|
||||
if i > 0:
|
||||
center = self.smooth_center(self.prev_center, curr_center, bbox_smooth_alpha)
|
||||
# If this is the first frame, initialize prev_center with curr_center
|
||||
if not hasattr(self, 'prev_center'):
|
||||
self.prev_center = curr_center
|
||||
|
||||
# Smooth the changes in the center coordinates from the second frame onwards
|
||||
if i > 0:
|
||||
center = self.smooth_center(self.prev_center, curr_center, bbox_smooth_alpha)
|
||||
else:
|
||||
center = curr_center
|
||||
|
||||
# Update prev_center for the next frame
|
||||
self.prev_center = center
|
||||
|
||||
# Create bounding box using max_bbox_size
|
||||
half_box_size = self.max_bbox_size // 2
|
||||
min_x = max(0, center[0] - half_box_size)
|
||||
max_x = min(img.shape[1], center[0] + half_box_size)
|
||||
min_y = max(0, center[1] - half_box_size)
|
||||
max_y = min(img.shape[0], center[1] + half_box_size)
|
||||
|
||||
# Append bounding box coordinates
|
||||
bounding_boxes.append((min_x, min_y, max_x - min_x, max_y - min_y))
|
||||
|
||||
# Crop the image from the bounding box
|
||||
cropped_img = img[min_y:max_y, min_x:max_x, :]
|
||||
cropped_mask = mask[min_y:max_y, min_x:max_x]
|
||||
|
||||
# Resize the cropped image to a fixed size
|
||||
new_size = max(cropped_img.shape[0], cropped_img.shape[1])
|
||||
resize_transform = Resize(new_size, interpolation=InterpolationMode.NEAREST, max_size=max(img.shape[0], img.shape[1]))
|
||||
resized_mask = resize_transform(cropped_mask.unsqueeze(0).unsqueeze(0)).squeeze(0).squeeze(0)
|
||||
resized_img = resize_transform(cropped_img.permute(2, 0, 1))
|
||||
# Perform the center crop to the desired size
|
||||
# Constrain the crop to the smaller of our bbox or our image so we don't expand past the image dimensions.
|
||||
crop_transform = CenterCrop((min(self.max_bbox_size, resized_img.shape[1]), min(self.max_bbox_size, resized_img.shape[2])))
|
||||
|
||||
cropped_resized_img = crop_transform(resized_img)
|
||||
cropped_images.append(cropped_resized_img.permute(1, 2, 0))
|
||||
|
||||
cropped_resized_mask = crop_transform(resized_mask)
|
||||
cropped_masks.append(cropped_resized_mask)
|
||||
|
||||
combined_cropped_img = original_images[i][new_min_y:new_max_y, new_min_x:new_max_x, :]
|
||||
combined_cropped_images.append(combined_cropped_img)
|
||||
|
||||
combined_cropped_mask = masks[i][new_min_y:new_max_y, new_min_x:new_max_x]
|
||||
combined_cropped_masks.append(combined_cropped_mask)
|
||||
else:
|
||||
center = curr_center
|
||||
bounding_boxes.append((0, 0, img.shape[1], img.shape[0]))
|
||||
cropped_images.append(img)
|
||||
cropped_masks.append(mask)
|
||||
combined_cropped_images.append(img)
|
||||
combined_cropped_masks.append(mask)
|
||||
|
||||
# Update prev_center for the next frame
|
||||
self.prev_center = center
|
||||
|
||||
# Create bounding box using max_bbox_size
|
||||
half_box_size = self.max_bbox_size // 2
|
||||
half_box_size = self.max_bbox_size // 2
|
||||
min_x = max(0, center[0] - half_box_size)
|
||||
max_x = min(img.shape[1], center[0] + half_box_size)
|
||||
min_y = max(0, center[1] - half_box_size)
|
||||
max_y = min(img.shape[0], center[1] + half_box_size)
|
||||
|
||||
# Append bounding box coordinates
|
||||
bounding_boxes.append((min_x, min_y, max_x - min_x, max_y - min_y))
|
||||
|
||||
# Crop the image from the bounding box
|
||||
cropped_img = img[min_y:max_y, min_x:max_x, :]
|
||||
cropped_mask = mask[min_y:max_y, min_x:max_x]
|
||||
|
||||
# Resize the cropped image to a fixed size
|
||||
new_size = max(cropped_img.shape[0], cropped_img.shape[1])
|
||||
resize_transform = Resize(new_size, interpolation = InterpolationMode.NEAREST)
|
||||
resized_mask = resize_transform(cropped_mask.unsqueeze(0).unsqueeze(0)).squeeze(0).squeeze(0)
|
||||
resized_img = resize_transform(cropped_img.permute(2, 0, 1))
|
||||
# Perform the center crop to the desired size
|
||||
crop_transform = CenterCrop((self.max_bbox_size, self.max_bbox_size))
|
||||
|
||||
cropped_resized_img = crop_transform(resized_img)
|
||||
cropped_images.append(cropped_resized_img.permute(1, 2, 0))
|
||||
|
||||
cropped_resized_mask = crop_transform(resized_mask)
|
||||
cropped_masks.append(cropped_resized_mask)
|
||||
|
||||
combined_cropped_img = original_images[i][new_min_y:new_max_y, new_min_x:new_max_x, :]
|
||||
combined_cropped_images.append(combined_cropped_img)
|
||||
|
||||
combined_cropped_mask = masks[i][new_min_y:new_max_y, new_min_x:new_max_x]
|
||||
combined_cropped_masks.append(combined_cropped_mask)
|
||||
|
||||
cropped_out = torch.stack(cropped_images, dim=0)
|
||||
combined_crop_out = torch.stack(combined_cropped_images, dim=0)
|
||||
cropped_masks_out = torch.stack(cropped_masks, dim=0)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user