Add CameraPoseVisualizer

This commit is contained in:
kijai 2024-04-04 01:02:12 +03:00
parent 883f2f48e1
commit 6f88198cc5

131
nodes.py
View File

@ -3953,7 +3953,7 @@ class RemapImageRange:
RETURN_TYPES = ("IMAGE",)
FUNCTION = "remap"
CATEGORY = "Marigold"
CATEGORY = "KJNodes"
def remap(self, image, min, max, clamp):
if image.dtype == torch.float16:
@ -3963,6 +3963,131 @@ class RemapImageRange:
image = torch.clamp(image, min=0.0, max=1.0)
return (image, )
class CameraPoseVisualizer:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"pose_file_path": ("STRING", {"default": 'pose file path here', "multiline": False}),
"sample_stride": ("INT", {"default": 1,"min": 0, "max": 100, "step": 1}),
"frames": ("INT", {"default": 16,"min": 0, "max": 100, "step": 1}),
"base_xval": ("FLOAT", {"default": 0.5,"min": 0, "max": 100, "step": 0.01}),
"zval": ("FLOAT", {"default": 2.0,"min": 0, "max": 100, "step": 0.01}),
"use_exact_fx": ("BOOLEAN", {"default": True}),
"relative_c2w": ("BOOLEAN", {"default": True}),
"x_min": ("FLOAT", {"default": -5.0,"min": -100, "max": 100, "step": 0.01}),
"x_max": ("FLOAT", {"default": 5.0,"min": -100, "max": 100, "step": 0.01}),
"y_min": ("FLOAT", {"default": -5.0,"min": -100, "max": 100, "step": 0.01}),
"y_max": ("FLOAT", {"default": 5.0,"min": -100, "max": 100, "step": 0.01}),
"z_min": ("FLOAT", {"default": -5.0,"min": -100, "max": 100, "step": 0.01}),
"z_max": ("FLOAT", {"default": 5.0,"min": -100, "max": 100, "step": 0.01}),
"use_viewer": ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "plot"
CATEGORY = "KJNodes"
def plot(self, pose_file_path, sample_stride, frames, base_xval, zval, use_exact_fx, relative_c2w, x_min, x_max, y_min, y_max, z_min, z_max, use_viewer):
import matplotlib as mpl
import matplotlib.pyplot as plt
import io
from torchvision.transforms import ToTensor
self.fig = plt.figure(figsize=(18, 7))
self.ax = self.fig.add_subplot(projection='3d')
self.plotly_data = None # plotly data traces
self.ax.set_aspect("auto")
self.ax.set_xlim(x_min, x_max)
self.ax.set_ylim(y_min, y_max)
self.ax.set_zlim(z_min, z_max)
self.ax.set_xlabel('x')
self.ax.set_ylabel('y')
self.ax.set_zlabel('z')
print('initialize camera pose visualizer')
with open(pose_file_path, 'r') as f:
poses = f.readlines()
w2cs = [np.asarray([float(p) for p in pose.strip().split(' ')[7:]]).reshape(3, 4) for pose in poses[1:]]
fxs = [float(pose.strip().split(' ')[1]) for pose in poses[1:]]
cropped_length = frames * sample_stride
total_frames = len(w2cs)
start_frame_ind = random.randint(0, max(0, total_frames - cropped_length - 1))
end_frame_ind = min(start_frame_ind + cropped_length, total_frames)
frame_ind = np.linspace(start_frame_ind, end_frame_ind - 1, frames, dtype=int)
w2cs = [w2cs[x] for x in frame_ind]
transform_matrix = np.asarray([[1, 0, 0, 0], [0, 0, 1, 0], [0, -1, 0, 0], [0, 0, 0, 1]]).reshape(4, 4)
last_row = np.zeros((1, 4))
last_row[0, -1] = 1.0
w2cs = [np.concatenate((w2c, last_row), axis=0) for w2c in w2cs]
c2ws = self.get_c2w(w2cs, transform_matrix, relative_c2w)
for frame_idx, c2w in enumerate(c2ws):
self.extrinsic2pyramid(c2w, frame_idx / frames, hw_ratio=1/1, base_xval=base_xval,
zval=(fxs[frame_idx] if use_exact_fx else zval))
cmap = mpl.cm.rainbow
norm = mpl.colors.Normalize(vmin=0, vmax=frames)
self.fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), ax=self.ax, orientation='vertical', label='Frame Number')
plt.title('Extrinsic Parameters')
plt.draw()
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
buf.seek(0)
img = Image.open(buf)
tensor_img = ToTensor()(img)
buf.close()
tensor_img = tensor_img.permute(1, 2, 0).unsqueeze(0)
if use_viewer:
time.sleep(1)
plt.show()
return (tensor_img,)
def extrinsic2pyramid(self, extrinsic, color_map='red', hw_ratio=1/1, base_xval=1, zval=3):
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
vertex_std = np.array([[0, 0, 0, 1],
[base_xval, -base_xval * hw_ratio, zval, 1],
[base_xval, base_xval * hw_ratio, zval, 1],
[-base_xval, base_xval * hw_ratio, zval, 1],
[-base_xval, -base_xval * hw_ratio, zval, 1]])
vertex_transformed = vertex_std @ extrinsic.T
meshes = [[vertex_transformed[0, :-1], vertex_transformed[1][:-1], vertex_transformed[2, :-1]],
[vertex_transformed[0, :-1], vertex_transformed[2, :-1], vertex_transformed[3, :-1]],
[vertex_transformed[0, :-1], vertex_transformed[3, :-1], vertex_transformed[4, :-1]],
[vertex_transformed[0, :-1], vertex_transformed[4, :-1], vertex_transformed[1, :-1]],
[vertex_transformed[1, :-1], vertex_transformed[2, :-1], vertex_transformed[3, :-1], vertex_transformed[4, :-1]]]
color = color_map if isinstance(color_map, str) else plt.cm.rainbow(color_map)
self.ax.add_collection3d(
Poly3DCollection(meshes, facecolors=color, linewidths=0.3, edgecolors=color, alpha=0.35))
def customize_legend(self, list_label):
from matplotlib.patches import Patch
list_handle = []
for idx, label in enumerate(list_label):
color = plt.cm.rainbow(idx / len(list_label))
patch = Patch(color=color, label=label)
list_handle.append(patch)
plt.legend(loc='right', bbox_to_anchor=(1.8, 0.5), handles=list_handle)
def get_c2w(self, w2cs, transform_matrix, relative_c2w):
if relative_c2w:
target_cam_c2w = np.array([
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]
])
abs2rel = target_cam_c2w @ w2cs[0]
ret_poses = [target_cam_c2w, ] + [abs2rel @ np.linalg.inv(w2c) for w2c in w2cs[1:]]
else:
ret_poses = [np.linalg.inv(w2c) for w2c in w2cs]
ret_poses = [transform_matrix @ x for x in ret_poses]
return np.array(ret_poses, dtype=np.float32)
NODE_CLASS_MAPPINGS = {
"INTConstant": INTConstant,
"FloatConstant": FloatConstant,
@ -4034,7 +4159,8 @@ NODE_CLASS_MAPPINGS = {
"RemapMaskRange": RemapMaskRange,
"LoadResAdapterNormalization": LoadResAdapterNormalization,
"Superprompt": Superprompt,
"RemapImageRange": RemapImageRange
"RemapImageRange": RemapImageRange,
"CameraPoseVisualizer": CameraPoseVisualizer
}
NODE_DISPLAY_NAME_MAPPINGS = {
"INTConstant": "INT Constant",
@ -4107,4 +4233,5 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"LoadResAdapterNormalization": "LoadResAdapterNormalization",
"Superprompt": "Superprompt",
"RemapImageRange": "RemapImageRange",
"CameraPoseVisualizer": "CameraPoseVisualizer",
}